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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirements for the degree of Doctor of Philosophy 

EXTREMAL REGION DETECTION AND SELECTION WITH FUZZY 
ENCODING FOR FOOD RECOGNITION 

By 

MOHD NORHISHAM BIN RAZALI @ GHAZALI 

June 2019 

Chair :  Noridayu Manshor, PhD 
Faculty  :  Computer Science and Information Technology 

This study proposes the improvement of feature representation by using 
Maximally Stable Extremal Region (MSER) detector in Bag of Features (BoF) 
model which incorporates an interest points detection and selection, and fuzzy 
encoding for food recognition. Three algorithms were used to accomplish the 
task of feature representation. The first algorithm locates interest points in food 
images using an MSER. Dense sampling and Difference of Gaussian (DoG) 
have been used in previous studies but were unable to detect salient interest 
points due to complex appearance of food images. MSER provide discriminative 
features via global segmentation. The arbitrary shape of regions produced by 
the global segmentation is suitable to detect interest points from mixed food 
objects which are known to be characterised by non-rigid deformations and very 
large variations in appearance. However, the traditional MSER detects very few 
interest points on texture-less food images. Thus, an Extremal Region Detection 
(ERD) algorithm in MSER is improved by finding optimum configuration of MSER 
parameters, allowing the quantity of interest points for certain food images to be 
increased appropriately.  

The second algorithm reduces the quantity of interest regions by using the 
Extremal Region Selection (ERS) algorithm. A high number of interest regions 
does not guarantee outstanding classification performance as redundant interest 
regions as well as interest regions from food images with complex background 
were detected. Consequently, computational effort should be used to execute 
the feature encoding process in the Bag of Features model. By decreasing the 
quantity of interest regions, the time efficiency of feature encoding can thus be 
improved without sacrificing classification accuracy. The ERS algorithm is 
performed using unsupervised learning to determine the spatial information of 
the interest regions detected, indicating whether they are from the image 
background, and can thus be removed as noise.  
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In the third algorithm, a soft assignment technique using fuzzy encoding is used 
to transform low-level features into a higher-level feature representation. The 
fuzzy encoding approach adopts fuzzy set theory (FST) to minimise the 
uncertainty and plausibility problems in feature encoding arising from hard 
assignment and fisher vector approaches used in previous studies. The 
uncertainty and plausibility problems have led to confusion in assigning feature 
descriptions to visual words, and they occur due to the high intra-class variability 
of food appearances due to high diversity in color and texture. By adopting FST, 
a thorough evaluation is performed in each assignment of feature description to 
visual words, which is translated into a membership value that indicates the 
relevance of that assignment.  
 

The proposed methods have been evaluated using two image datasets: 
UECFOOD-100 and UNICT-FD1200. The performance of algorithms was 
measured based on classification accuracy, error rate, and precision and recall. 
The quality of the interest region detector was evaluated based on the quantity 
of interest regions. Classification was performed using a Support Vector Machine 
(SVM) with a linear kernel. The experimental results demonstrate the superior 
classification performance of the proposed methods over the previous methods. 
Specifically, the proposed method achieved 99.95% and 100.00% classification 
accuracy on the UECFOOD-100 and UNICT-FD1200 datasets, respectively, 
whereas previous methods have only been able to achieve 79.20% and 85.01% 
on the same datasets.  
 

Overall, the propose method generates a compact and discriminative visual 
dictionary for food recognition using only a single feature type, small numbers of 
interest regions, and low-dimensional feature vectors. Moreover, it provides a 
holistic feature representation able to give outstanding classification 
performance on foods with great variation in appearance.    
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

  

PENGESANAN DAN PEMILIHAN KAWASAN EXTREMAL DENGAN 

PENGEKODAN KABUR UNTUK PENGECAMAN MAKANAN 

 

Oleh 

 

MOHD NORHISHAM BIN RAZALI @ GHAZALI 

 

Jun 2019 

 

Pengerusi : Noridayu Manshor, PhD 
Fakulti              : Sains Komputer dan Teknologi Maklumat 
 
 
Kajian ini mencadangkan pembaikan perwakilan ciri dengan menggunakan 
Maximally Stable Extremal Region (MSER) di dalam model Bag of Features 
(BoF) yang menggabungkan pengesanan dan pemilihan titik minat, dan 
pengekodan ciri untuk pengecaman makanan. Tiga algoritma digunakan untuk 
mencapai tugas perwakilan ciri. Algoritma pertama mencari titik minat dalam 
imej makanan menggunakan MSER. Persampelan padat dan pengesan 
Difference of Gaussian (DoG) telah digunakan di dalam kajian terdahulu tetapi 
tidak dapat mengesan titik minat penting kerana penampilan kompleks imej 
makanan. MSER menyediakan ciri-ciri yang diskriminatif melalui pensegmenan 
global. Bentuk kawasan sembarangan yang dihasilkan oleh pensegmenan 
global adalah sesuai untuk mengesan titik minat dari objek campuran makanan 
yang diketahui mempunyai ciri ubah bentuk tidak tegar dan variasi yang sangat 
besar di dalam penampilan. Walau bagaimanapun, MSER tradisional mengesan 
titik minat yang sangat sedikit pada imej makanan tanpa tekstur. Oleh itu, 
algoritma Pengesanan Wilayah Extremal (ERD) di dalam MSER telah ditambah 
baik dengan menentukan konfigurasi parameter MSER yang optimum, yang 
membolehkan kuantiti mata minat untuk imej makanan tertentu ditingkatkan 
dengan sewajarnya. 
 

Algoritma kedua mengurangkan kuantiti kawasan minat dengan menggunakan 
algoritma Kawasan Extremum (ERS). Kawasan minat yang banyak tidak 
menjamin prestasi pengelasan yang cemerlang memandangkan kawasan minat 
yang berlebihan serta kawasan minat dari imej makanan dengan latar belakang 
yang kompleks turut dikesan. Akibatnya, usaha pengkomputeran harus 
digunakan untuk melaksanakan proses pengekodan ciri di dalam model BoF. 
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Dengan mengurangkan kuantiti kawasan yang minat, kecekapan masa 
pengekodan ciri dapat ditingkatkan tanpa mengorbankan ketepatan pengelasan. 
Algoritma ERS dilakukan menggunakan pembelajaran tanpa penyeliaan untuk 
menentukan maklumat ruangan kawasan minat yang dikesan, untuk 
menunjukkan sama ada ia berasal dari latar belakang imej, dan dengan itu boleh 
singkirkan sebagai gangguan. 
 
 
Di dalam algoritma ketiga, teknik umpukan yang lembut menggunakan 
pengekodan kabur digunakan untuk mengubah ciri peringkat rendah ke dalam 
perwakilan ciri tahap tinggi. Pendekatan pengekodan kabur mengamalkan teori 
set kabur (FST) untuk meminimumkan masalah ketidakpastian dan 
kemungkinan dalam pengekodan ciri yang timbul daripada pendekatan 
umpukan keras dan fisher vector yang digunakan dalam kajian terdahulu. 
Masalah ketidakpastian dan kemungkinan telah menyebabkan kekeliruan dalam 
memberikan perihalan ciri kepada kata-kata visual, dan ia berlaku disebabkan 
oleh variasi keterampilan antara intra kelas yang tinggi kerana kepelbagaian 
warna dan tekstur yang tinggi. Dengan mengadaptasi FST, penilaian yang teliti 
dilakukan dalam setiap tugasan perihalan ciri kepada kata-kata visual, yang 
diterjemahkan ke dalam nilai keanggotaan yang menandakan perkaitan di dalam 
tugasan itu. 
 

Kaedah yang dicadangkan telah dinilai menggunakan dua data imej: 
UECFOOD-100 dan UNICT-FD1200. Prestasi algoritma diukur berdasarkan 
ketepatan pengelasan, kadar kesilapan, dan ketepatan dan penarikan balik. 
Kualiti pengesan kawasan minat dinilai berdasarkan kuantiti kawasan minat. 
Pengelasan dilakukan menggunakan Support Vector Machine (SVM) dengan 
kernel linear. Hasil eksperimen menunjukkan prestasi pengelasan superior di 
dalam kaedah yang dicadangkan berbanding kaedah sebelumnya. Secara 
khusus, kaedah yang dicadangkan mencapai ketepatan pengelasan 99.62% 
dan 100.00% pada dataset UECFOOD-100 dan UNICT-FD1200, manakala 
kaedah sebelumnya hanya dapat mencapai 79.20% dan 85.01% pada dataset 
yang sama. 
 

Secara keseluruhannya, kaedah yang dicadangkan menghasilkan kamus visual 
yang kompak dan diskriminatif untuk pengecaman makanan menggunakan 
hanya satu jenis ciri, bilangan kawasan minat kecil, dan vektor ciri rendah 
dimensi. Tambahan pula, ia memberikan perwakilan ciri holistik yang dapat 
memberikan prestasi pengelasan yang luar biasa terhadap makanan dengan 
variasi penampilan yang hebat. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The long-standing goal of visual object recognition is to develop algorithms able 
to distinguish objects from one another in real-world scenes and cluttered 
environments. Object recognition is important enough to specialise into various 
domains such as face recognition, pedestrian recognition, vehicle recognition, 
and many others. Image processing and machine learning are the heart of most 
tasks in object recognition. Recently, technological advancements in 
smartphone price and image quality, as well as explosive growth in the number 
of images on social media has attracted more interest from researchers to further 
explore this exciting research field. Social media users are more inclined to use 
images instead of relying only on textual content to share their activities and 
interactions. Images provide a highly-expressive medium and are easy to 
capture, store, and share (Song et al., 2015).  

The advancement of mobile technology at a reasonable cost has allowed people 
to photograph their food intake and to share their excitement when having a meal 
on social media. This indulgence has become a worldwide phenomenon (Rich 
et al., 2016). Food recognition is an emerging research area in object recognition 
which has grown substantially in the era of the smartphones and social media 
services (Kagaya & Aizawa, 2015; Xu et al., 2015). Food recognition provides 
automatic identification of the category of foods from an image and can estimate 
the caloric and nutritional content in order to assist dietary assessment in treating 
diet-related chronic diseases. Diet-related chronic diseases such as diabetes, 
hypertension, and heart disease are strongly linked with obesity and are caused 
by an imbalanced nutritional intake and a lack of physical activity. This epidemic 
has serious consequences worldwide with 1.9 billion adults categorised as 
overweight and 650 million of these classed as obese (WHO, 2018). Food 
recognition to provide self-nutrition services is important to prevent and 
overcome the obesity problem. A daily record of food intake via dietary 
assessment may provide a measure of caloric and nutrient intake, allowing 
personalised diet and food intake balance information. However, traditional 
dietary assessment has been reported to be less accurate in measuring the 
amount of food consumed due to the under-reporting of food intake (Coulston et 
al., 2013). Hence, there is demand for novel tools able to provide an automatic, 
personalised, and accurate dietary assessment through food recognition 
algorithms (Anthimopoulos et al., 2013). © C
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In general, food recognition is a challenging task (Zhang et al., 2013) due mainly 
to very small inter-class similarities which make make foods from different 
categories look identical, and large intra-class differences of food objects which 
make foods in the same category look different. The natural appearance of food 
objects is complex as they have deformable structure with large variations. 
Furthermore, state-of-the-art object recognition methods are not necessarily 
robust enough for food recognition (Farinella et al., 2016; Kong et al., 2015; Min 
et al., 2018). Hence, it has become highly challenging to achieve noteworthy 
food recognition performance in real-world applications.  
 
 
The various types of real-world foods are highly diverse and thus are grouped 
into many categories. Indeed, the recent focus in object recognition research is 
to improve recognition performance on large-scale object categories (Li et al., 
2016), which can be performed by extracting image features to represent the 
unique visual characteristics of the respective food categories. Ideally, features 
that can maximise inter-class discrimination and minimise intra-class robustness 
are sought (Bosch et al., 2011). Local feature-based representations that identify 
interest points from images are an effective technique in describing features 
suitable for the complex appearance of food. Such representations have the 
capability to capture more detailed properties of food images and are robust 
towards variations in illumination, scale, and orientation (Kong et al., 2015; Zhu 
et al., 2015).  
 
 
However, local features are low-level and have little semantic content since the 
descriptions they yield are too large and are highly diverse. Thus, local features 
need to be encoded into higher-level representations before machine learning 
algorithms can be employed for the classification of food categories. Commonly, 
local features are encoded using a Bag of Features model (BoF) (Csurka et al., 
2004; Huang & Tan, 2014) which consists of three main stages: local feature 
extraction, local feature encoding, and classification.  
 
 
In previous research, local features have been described using Scale Invariant 
Feature Transform (SIFT) (Giovany et al., 2017; Kong et al., 2015; Zheng, Wang, 
& Zhu, 2017; Zhu et al., 2015), Histogram of Gradients (HOG) (Kawano & Yanai, 
2015), Speeded-Up Robust Features (SURF) (Pooja & Madival, 2016; Zhu et al., 
2015), colour (Kawano & Yanai, 2015; Martinel, Piciarelli, & Micheloni, 2016; 
Zheng et al., 2017), and texture (Farinella et al., 2016). Dense sampling and 
Difference of Gaussians (DoG) are the two most common methods of sampling 
interest points used in previous studies in food recognition (Kawano & Yanai, 
2015; Martinel et al., 2016; Sasano et al., 2016). 
 
 
Local feature extraction generates millions of interest points describing the 
features that need to be transformed into a simpler form via feature encoding 
before they can be fed into a machine learning classifier. Commonly, local 
features are encoded using the k-means algorithm, a hard assignment approach, 
to generate visual words, and then BoF is constructed by counting the number 
of interest points assigned to each cluster center, or centroid (Farinella et al., 
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2016; Kong et al., 2015). In a more recent approach, local features are encoded 
by using a technique known as Fisher Vector (FV) (Kawano, 2015; Zheng et al., 
2017) to overcome issues of efficiency and encoding error found in hard 
assignment approaches. In FV, a Gaussian Mixture Model (GMM) is used to 
generate visual words which are further processed to obtain a final feature 
representation. Since they have proven to be successful in image classification, 
Support Vector Machines (SVMs) with a linear kernel have frequently been used 
for classification in food recognition (Cui et al., 2015). Furthermore, the sparse 
features generated by local features are also more compatible with, and 
separable by, a linear kernel in SVM (Fan, Wang, & Lin, 2015; J. Yang, Yu, Gong, 
& Beckman, 2009).  
 
 
There is always room to improve the existing local-feature-based 
representations in providing a holistic and compact representation that can also 
handle the enormous diversity in food appearance. Notably, certain food 
categories have proved challenging to classify at anything higher than average 
accuracy. This is probably due to the lack of discriminative features or insufficient 
information when a small number of interest points have been detected. Despite 
the merit of local features in localising interest points on a target object, they 
often struggle with images that have a background with more visible texture and 
higher contrast than the foreground. In this context, local segmentation is not the 
best option to rectify this problem as food objects have an arbitrary shape, non-
homogenous structure, and fewer visible edges (Zhu et al., 2015). 
 
 
Existing feature encoding techniques based on hard assignment and FV do not 
handle the problem of uncertainty and plausibility in constructing visual words. 
Uncertainty and plausibility are problems in food recognition because food 
appearance is highly variable, leading to the occurrence of error or information 
loss in constructing a visual dictionary.   
 
 
The aim of this study is to propose a food recognition algorithm that can cope 
with a highly diverse set of foods, regardless of their appearance. This is to 
achieved by enhancing the capability of a recognition algorithm by improving 
interest points detection and feature encoding in BoF representation. In addition 
to improving recognition performance on food categories, a more compact local 
feature representation will result from the interest point selection procedure, 
without losing classification accuracy. This is followed by the improvement of 
feature encoding via fuzzy set theory (FST) approach, which can successfully 
reduce the effects of uncertainty and implausibility, and to produce a highly 
discriminative visual dictionary. 
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OPYRIG

HT U
PM



4 
 

1.2 Research Problems  

MSER detector provide a good alternative interest points sampling for foods. 
Nevertheless, food categories with texture-less surfaces and low contrast 
images are poorly recognised due to the low number of interest points detected 
(Ma et al., 2017; Takeishi et al., 2015). Indeed, sparse interest points such as 
MSER are one of the drawbacks of local feature detectors as they tend to detect 
denser features on textured surfaces as compared to texture-less surfaces (Krig, 
2014; Anthimopoulos et al., 2014). The density of interest points detected by 
using MSER can be increased by configuring certain parameter values (Takeishi 
et al., 2015). However, the parameter configuration will resulted to a significant 
increase of unnecessary interest points number as well that may increase the 
computations time.   
 
 
Inevitably, features will be extracted from irrelevant interest points (i.e from the 
background, especially if it is complex) (Altintakan et al. 2015)  and will generate 
less informative descriptions regardless of the sampling techniques being used. 
Interest region-based detectors using Maximally Stable Extremal Region 
(MSER) use global segmentation and take into account regions from images with 
complex backgrounds as well. In fact, detectors based on DoG also unavoidably 
detect interest points within complex and noisy backgrounds (Yu et al., 2013). 
Furthermore, the number of interest points is still very high for real-time 
applications and the irrelevant interest points increase the computational cost of 
the feature encoding process (Lin et al., 2016; Mukherjee et al., 2016; Xu et al., 
2015).  
 

In the many food recognition studies, hard assignment strategy using k-means 
(Farinella et al., 2016; Giovany et al., 2017; Hassannejad et al., 2017; Martinel, 
Piciarelli, & Micheloni, 2016) and Fisher Vector (FV) (Yoshiyuki Kawano, 2015; 
Zheng et al., 2017) were used generate visual words is popular due to its 
simplicity and efficiency. There are two main problems when using hard 
assignment and FV: visual word uncertainty and visual word plausibility (Umit L. 
Altintakan & Yazici, 2015). Visual word uncertainty is the condition of assigning 
a feature description to one visual word without evaluating the other visual words 
that may be more suitable. Visual word plausibility is the condition of assigning 
a feature description to a visual word even though none of the visual words are 
suitable. These problems of uncertainty and plausibility are of concern for food 
images due to their huge variety of appearance (Ge et al., 2013). This problem 
has also been mentioned in (Kong et al., 2015; Martinel et al., 2016; 
Pouladzadeh et al., 2014) where food images are themselves the source of the 
uncertainty problem due to their visual characteristics of color and texture and 
the irregularities in appearance of foods images that include high deformation, 
complex backgrounds, and high intra-class variations.  
 

Figure 1.1 shows three examples images from the food category sushi in the 
UECFOOD-100 dataset (Kawano & Yanai, 2015) which demonstrate the 
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uncertainty and plausibility problems in generating a visual dictionary using hard 
assignment.  

 
 

Figure 1.1 : Examples of the uncertainty and plausibility problems 
in generating a visual dictionary using hard assignment 

 
As shown in Figure 1.1, images A, B, and C are from the same category but have 
a very different appearance. Consequently, different patterns in the visual 
dictionary are produced as the visual words are generated solely by the 
respective image without any comparisons with other images. The uncertainty 
and plausibility problems (as well as differing numbers of interest points between 
the images) have resulted in large intra-class variation. Similarly, the same 
problems of uncertainty and plausibility are present in FV, as shown in Figure 
1.2.   
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Figure 1.2 : Examples of the uncertainty and plausibility problems 
in generating a visual dictionary using Fisher Vector 

 
 

According to Figure 1.2, three different patterns of feature representation are 
generated using FV on three sushi images A, B, and C. In addition, the 
computation in FV produces an extremely long feature vector with a high 
computational cost for classification, making it less suitable for large-scale 
applications (Wang & Deng, 2015; Xie et al., 2016).  

1.3  Research Objectives  

This study aims to improve the performance in food category recognition. To 
achieve this, the objectives are defined as follows:   
 
 

1. To propose an Extremal Region Detection (ERD) technique in 
MSER to increase the density of interest points detection on foods 
with little texture.The sub-objectives to achieve this objective are as 
follows: 
 
a. To evaluate and choose the optimum parameters configuration 

in MSER in order to increase the number of extremal regions. 
b. To evaluate the optimal number of extremal regions of food 

images that required the MSER parameter configuration.  
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2. To propose an Extremal Region Selection (ERS) in MSER to reduce 
the quantity of interest regions. The sub-objectives to achieve this 
objective are as follows: 
 

a. To evaluate the optimal number of extremal regions that 
required extremal regions selection.  

b. To evaluate the optimum parameters used in ERS.  

 
3. To devise fuzzy encoding technique to reduce the effects of 

uncertainty and plausibility in constructing visual dictionary.   
 

1.4  Research Scope  

The scope of this study is defined in the following: 
 
1. This study focuses on the recognition tasks that consist of two main 

stages which are feature representation and classification to identify the 
category of foods.  
 

2. This study emphasises the feature representation aspect within the Bag 
of Features (BoF) model which focuses on the aspects of interest point 
detection, feature description and the feature encoding process.  

 

3. The classification task of the proposed methods are benchmarked using 
a Support Vector Machine with a linear kernel and by adopting a one-
versus-rest training strategy.  

 

4. The performance evaluation of the proposed methods is conducted 
primarily on classification performance in both individual and overall food 
categories. The interest point detection performance is measured based 
on the number of interest points produced. The length of feature vector 
produced by feature encoding is used to measure the performance of 
feature encoding techniques.  

 

5. The datasets used in this study are food images in real-world settings 
obtained from the World Wide Web (Farinella et al., 2016; Kawano & 
Yanai, 2015). The labels represent the food category, and only a single 
label is considered in this research even if food images consist of 
multiple food categories.  
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1.5 Research Contributions 

The main contribution of this study is the improvement of Bag of Feature (BoF) 
model in food recognition performance via Extremal Region Detection (ERD), 
Extremal Region Selection (ERS), and fuzzy encoding. This study has made six 
individual contributions. The first two concern extremal region detection 
technique. The third contribution is related to the extremal region selection 
technique. The fourth contribution is on the overall BoF model and the last three 
contributions pertain to the feature encoding technique. Explanations of each 
contribution are as follows:  

1. This study has improved recognition performance on foods with a  strong
mixture of ingredients (such as pizza, raisin bread, sirloin cutlets) by
adopting an interest region detector based on Maximally Stable
Extremal Region (MSER) and Speeded Up Robust Feature (SURF)
descriptor (MSER-SURF). Remarkably, MSER-SURF has the lowest
computational complexity for both interest region detection and
description. This is due to the low number of interest regions generated
by MSER and also the shorter length of the feature vectors yielded by
the SURF descriptor.

2. By evaluating the MSER parameters, a thresholding mechanism which
is to determine suitable threshold has been used that has increased the
density of interest regions on food images with smooth or less diverse
textures. This mechanism also provides an alternative way to exclude
the pre-processing task of increasing the brightness and contrast on dull
food images as well as resizing very small images in order to detect an
appropriate number of interest regions.

3. The extremal region selection procedure aims to reduce the amount of
redundant and noisy interest regions in MSER, especially those that
have been detected in the image background. Therefore, a compact,
informative, and discriminative set of interest regions was generated.

4. This study has simplified the stages in the food recognition process since
no image segmentation or local feature dimensionality selection has
been performed. Even though an extremal region detection and
selection procedure has been introduced, the computational complexity
of extraction was not affected significantly.

5. This study has incorporated fuzzy set theory (FST) to the construction of
a visual dictionary in order to minimise the problems of uncertainty and
plausibility posed by the high variability and high intra-class differences
of food images. As a result, visual word assignment during feature
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encoding is performed in a clear and concise manner that decreases 
sparsity as well as promoting greater discriminability of visual words.   

6. Evaluation of the effect of vocabulary sizes in feature encoding shows
that the proposed fuzzy encoding technique can construct a visual
dictionary capable of outstanding recognition accuracy using a smaller
vocabulary size than traditional hard assignment. Also, this technique
does not increase feature vector length with vocabulary size as is the
case for Fisher Vector (FV). The computation of FV, even when using
even a small vocabulary size, will vastly increase the feature dimensions.

1.6 Organisation of the Thesis 

Chapter 2 provides a literature review on food recognition and its associated 
techniques in object recognition. This is followed by Chapter 3 which describes 
the overall methodology undertaken for this study. Chapter 4 presents the 
proposed framework, elaborating the improved algorithms for food recognition. 
Chapter 5 presents experimental results and discussion. Chapter 6 concludes 
this study with remarks about the achievements made and possible future 
research. 
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