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Phishing is a form of social engineering crime that deceives victims by directing them 
to a fake website where their personal credentials are collected eventually for further 
unlawful activities. Traditionally, phishing attacks target email, but now they have 
reached to Online Social Networks (OSNs) like Twitter. The challenging differences 
between the phishing attacks on email and Twitter are that Twitter disseminates vast 
information and is difficult to be detected unlike email. Many phishing detection 
methods, ranging from blacklists, heuristics and visual similarity to machine learning 
are used to detect phishing attacks for spam emails, machine learning approaches 
achieve the best phishing email detection results. However, it is observed that there 
are only a few machine learning solutions to detect phishing attacks on OSNs are being 
proposed and implemented. Phishing detection method of machine learning has been 
used to classify tweets on Twitter but the number of classification features used and 
the one achieving the highest phishing tweet detection accuracy of 94.56% (Random 
Forest) is still considered high. In addition, many phishing tweet detection researchers 
included tweet-based features to train the classification model for detection but such 
an approach could decrease the accuracy of detection systems as claimed by spam 
detection researchers. On another note, the efficiency of response time to alert users 
on Twitter is an important factor as well. However, the maximum response time 
achieved by the existing solutions is still considered high and the one claimed 
achieving the lowest maximum response time of 0.501 seconds is deemed inadequate. 
 
 
The above mentioned problems are the motivation of this research; where it is vital to 
propose a security alert framework using dynamic tweet-based features for phishing 
detection on Twitter. This framework is divided into three phases which are 
classification model of phishing detection, detection algorithm of phishing tweet 
detection and security alert mechanism of phishing tweet detection. The best phishing 
classification features and machine learning technique are identified in order to 
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produce and generate a classification model. This model is then embedded into the 
detection algorithm together with the inclusion of dynamic tweet-based features which 
are not as part of the features used to train a classification model for phishing tweet 
detection. Subsequently, the security alert mechanism is formulated by integrating 
with the detection algorithm to alert Twitter users.  
 
 
The overall result significantly indicates that a novel security alert framework 
using dynamic tweet-based features for phishing detection on Twitter has been 
formulated. In addition, the result proved that the phishing detection accuracy has been 
improved to 94.75% with a reduced number of phishing classification features (11), 
phishing tweet detection accuracy on Twitter has been enhanced with the inclusion of 
dynamic tweet-based features as add-on filtering features (achieving 95.83% 
accuracy) and phishing tweet detection efficiency has been improved (with faster 
response time of 0.425 seconds). As a conclusion, this security alert framework has 
achieved its objective, is the only framework that provides phishing tweet detection 
security alert to prompt Twitter users to the best of our knowledge.  
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KERANGKA AMARAN KESELAMATAN MENGGUNAKAN CIRI-CIRI 
BERASASKAN TWEET DINAMIK UNTUK PENGESANAN PHISHING 

ATAS TWITTER 

Oleh 

LIEW SEOW WOOI 

Mei 2019 

Pengerusi :   Professor Madya Nor Fazlida Mohd Sani, PhD 
Fakulti :   Sains Komputer dan Teknologi Maklumat 

Memancing data (Phishing) ialah sejenis jenayah kejuruteraan sosial yang 
memperdaya mangsanya dengan mengarah mereka ke satu laman web palsu yang 
mana tauliah peribadi mereka akhirnya dikumpul untuk aktiviti menyalahi undang-
undang yang seterusnya. Secara tradisi serangan phishing mensasar e-mel, tetapi 
sekarang mereka telah sampai kepada Talian Rangkaian Sosial (OSN) seperti Twitter. 
Perbezaan yang mencabar antara serangan phishing dalam emel dengan Twitter ialah 
Twitter menyebar maklumat yang pelbagai dan sukar untuk dikesan berbanding emel. 
Banyak cara pengesanan phishing terdiri daripada senarai hitam, heuristik, persamaan 
visual dan pembelajaran mesin digunakan untuk mengesan serangan phishing bagi e-
mel spam, pendekatan pembelajaran mesin mencapai keputusan pengesanan e-mel 
phishing yang terbaik. Walau bagaimanapun, didapati hanya terdapat sedikit 
penyelesaian pembelajaran mesin untuk mengesan serangan phishing ke atas OSN 
yang telah dicadang dan diimplimentasi. Kaedah pengesanan phishing pembelajaran 
mesin telah digunakan untuk mengkelas tweet atas Twitter tetapi bilangan ciri 
pengkelasan yang digunakan dan salah satu pengesanan tweet phishing yang mencapai 
ketepatan tertinggi 94.56% (Hutan Rawak), masih dianggap tinggi. Selain itu, ramai 
penyelidik pengesanan tweet phishing memasukkan ciri-ciri berasaskan tweet untuk 
melatih model pengkelasan bagi pengesanan tetapi pendekatan tersebut boleh 
mengurangkan ketepatan sistem pengesanan sepertimana didakwa oleh penyelidik 
pengesanan spam. Di samping itu, kecekapan masa balasan untuk amaran pengguna 
atas Twitter adalah faktor penting juga. Tetapi, masa balasan maksimum yang dicapai 
oleh penyelesaian yang sedia ada adalah masih dianggap tinggi dan salah satu didakwa 
mencapai masa balasan maksimum paling rendah iaitu 0.501 saat dipercayai belum 
memadai. 
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Masalah-masalah yang dinyatakan di atas menjadi motivasi bagi penyelidikan ini; 
yang mana penting untuk mencadangkan satu kerangka amaran keselamatan 
menggunakan ciri-ciri berasaskan tweet dinamik untuk pengesanan phishing atas 
Twitter. Kerangka ini dibahagikan kepada tiga fasa iaitu model pengkelasan 
pengesanan phishing, algoritma pengesanan tweet phishing dan mekanisme amaran 
keselamatan pengesanan tweet phishing. Ciri-ciri terbaik pengkelasan phishing dan 
teknik pembelajaran mesin dikenalpasti untuk menghasilkan dan menjana satu model 
pengkelasan. Model tersebut kemudian dibenam dalam algoritma pengesanan bersama 
dengan ciri-ciri berasaskan tweet dinamik yang dimasukkan bukan sebagai sebahagian 
ciri-ciri untuk melatih model pengkelasan bagi pengesanan tweet phishing. 
Seterusnya, mekanisme amaran keselamatan dirumuskan dengan mengintegrasikan 
algoritma pengesanan untuk amaran pengguna Twitter.  
 
 
Keputusan keseluruhan menunjukkan dengan signifikan bahawa satu kerangka 
amaran keselamatan yang baharu menggunakan ciri-ciri berasaskan tweet dinamik 
untuk pengesanan phishing atas Twitter telah dirumuskan. Selain itu, keputusan 
tersebut membuktikan bahawa ketepatan pengesanan phishing telah ditingkatkan 
menjadi 94.75% dengan mengurangkan bilangan nombor ciri-ciri pengkelasan 
phishing (11), ketepatan pengesanan tweet phishing atas Twitter telah ditingkatkan 
lagi dengan ciri-ciri berasaskan tweet dinamik dimasukkan sebagai ciri-ciri penapis 
tambahan (hingga ketepatan mencapai 95.83%) dan kecekapan pengesanan tweet 
phishing telah ditingkatkan (masa balasan cepat 0.425 saat). Sebagai kesimpulan, 
kerangka amaran keselamatan ini telah mencapai objektifnya, setakat yang diketahui 
merupakan satu-satu kerangka yang menyediakan amaran keselamatan pengesanan 
tweet phishing kepada pengguna Twitter.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Today, Information Technology (IT) has undoubtedly become a prominent part of our 
daily lives as it is used widely by everyone and serves as a backbone for industries to 
do business globally. It has grown rapidly and has been convenient to everyone in 
many ways. However, IT also results and increases security challenges for us to 
protect our information securely especially from social engineering attacks.  

Social engineering is an art of getting users to compromise information systems   
(Krombholz et al., 2015) and is a form of information gathering involving human 
intervention that breaches security without one realising that he or she has been 
manipulated. Social engineering can also be interpreted as a method of launching 
attacks against information and information systems (Janczewski & Fu, 2010), is 
regarded as “people hacking” (Hasle et al, 2005) and is referred to as information 
systems penetration through the use of social methods. There are two types of social 
engineering approaches. One is human or non-technology based and the other is 
computer or technology based (Gulati, 2003; Maan & Sharma, 2012; Greitzer, 2014). 

Phishing is a most significant computer or technology based social engineering attack; 
one of the most common and serious threats over the Internet (Gupta et al, 2016). 
Basically, it is a form of social engineering crime called “Semantic Attack” and is 
generally known as online identity theft that deceives victims by directing them to a 
fake website looks alike to the legitimate (Arachchilage & Love, 2013; Arachchilage 
& Love, 2014; Arachchilage et al., 2016) where their personal credentials are 
collected.   

Phishing attacks traditionally target email which serves as the primary vector  (Wilcox 
& Bhattacharya, 2015), but today, they have reached into the popular Online Social 
Networks (OSNs) such as Twitter, Facebook, Myspace, etc. (Aggarwal et al., 2012; 
Wilcox & Bhattacharya, 2015). Aaron & Rasmussen (2017) reported that social 
networking is the third industry (19%) targeted by phishing attacks after the industries 
of e-commerce (30%) and financial institutions (25%) in their 2016 statistic of Anti-
Phishing Working Group (APWG) Global Phishing Survey: Trends and Domain 
Name Use. In addition to that, Proofpoint stated that social media phishing attacks 
increased 500% from the beginning of 2016 to the end of 2016 in their Q4 2016 & 
Year In Review : Threat Summary report. The report also stated about the angler 
phishing that intercepts customer support channels on social media with the purpose 
of stealing customers’ credentials. APWG highlighted in their survey that OSNs have 
become significant platforms where phishers launch phishing attacks. In addition to 
APWG’s survey, Amato et al. (2017) pointed out that OSNs have also become a 
primary interest area for cutting-edge cybersecurity applications due to its increasing 
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popularity and the variety of data its interaction models allow for. Furthermore, 
Calabresi (2017) highlighted that ten thousand employees (Twitter users) in the 
Department of Defense, U. S. were targeted by a phishing attack with “expertly 
tailored messages” in March 2017 Time Magazine.  

From the review studies, it was revealed that many Online Social Networks’ (OSNs)’ 
users are still unaware of phishing attacks that are happen in OSN platforms; this could 
cause severe harm to the users, both in the virtual and real world. With present OSN 
platforms, especially Twitter, phishers have started using it to spread phishing attacks 
due to its vast information dissemination and its difficulty to be detected unlike email 
because of it spreads fast in the network, has short content size and uses short Uniform 
Resource Locators (URLs) (Aggarwal et al., 2012; Nair & Prema, 2014). In addition, 
Twitter is an important source where people share information. Twitter is subject to 
attack by many malicious users due to its popularity makes it on  attacked target (Lee 
& Kim, 2013). Therefore, it is important to build an effective phishing detection 
mechanisms for every OSN to protect its users  (Aggarwal et al., 2012; Nair & Prema, 
2014; Sharma et al., 2014) from being tricked by such phishing attacks. 

Machine learning method has been used for phishing detection and the Random Forest 
(RF) machine learning technique is claimed to achieve the highest phishing detection 
accuracy by several researchers (Akinyelu & Adewumi, 2014; Basnet et al., 2014; 
Sananse & Sarode, 2015). In addition, it is claimed to be the best machine learning 
technique that gives the highest accuracy for phishing tweet detection on Twitter 
(Aggarwal et al., 2012; Sharma et al., 2014). 

Despite there are many phishing detection solutions using machine learning 
techniques that were proposed on Twitter, such as RF, Decision Tree (DT), Naive 
Bayes (NB), etc., it is evident that there is still room for improving the phishing 
detection accuracy with the reduction number of classification features in the machine 
learning classification, enhancing the phishing tweet detection accuracy on Twitter 
with a new approach to include the dynamic tweet-based features which are not as part 
of the features used to train the classification model for phishing detection, and 
improving the phishing tweet detection efficiency with fast response time. 

1.2 Problem Statement 

Online Social Networks (OSNs) are among the most common means of social 
engineering attacks. The risks to such networks are expected to increase in future 
because the users’ posted information are valuable elements to OSN providers who 
encourage users to reveal and share more personal information (Algarni et al., 2013). 
In view of this, they highlighted that effective countermeasures should be deployed in 
order to mitigate such attacks.  

 

© C
OPYRIG

HT U
PM



  

 
3 

Many phishing detection methods ranging from blacklists, heuristics and visual 
similarity to machine learning are used to detect phishing attacks for spam emails; in 
which the best phishing detection results are obtained using machine learning 
(Akinyelu & Adewumi, 2014). Despite machine learning approaches achieve the best 
phishing email detection results, it is observed that there are only a few machine 
learning solutions to detect phishing attacks on Online Social Networks (OSNs) are 
being proposed and implemented.  

Phishing detection method of machine learning has been used to classify tweets on 
Twitter and the machine learning technique of Random Forest (RF) has been claimed 
to be the one achieving the highest phishing tweet detection accuracy of 94.56% with 
more than 11 classification features (Sharma et al., 2014). The number of classification 
features used to achieve such detection accuracy is considered high and shall be 
reduced. In addition to the number of classification features, Twitter specific features 
are also important features for phishing tweet detection on Twitter. 

Spam detection studies on Twitter usually involve machine learning classification 
techniques and these studies highlight the use of important Twitter specific features 
for spam detection (Aggarwal et al., 2012). Hence, this implies that Twitter specific 
features or tweet-based features are important features used to classify tweets posted 
on Twitter specifically. Existing machine learning solutions including the one 
achieving the highest accuracy of 94.56% (Sharma et al., 2014) to detect phishing on 
Twitter, included tweet-based features to train a classification model. 
Nevertheless, such features related to followers and friends are dynamic Twitter data 
presented only at each time users tweet (Wood, 2015) and varied over time which 
could decrease the accuracy for detection systems (Shigang Liu et al., 2016; Chao 
Chen et al., 2017). Therefore, a new approach to include the dynamic tweet-based 
features which are not as part of the features used to train a classification model for 
phishing tweet detection shall be proposed. In addition to the new approach for 
enhancing phishing tweet detection, the efficiency in term of response time for 
detecting phishing tweet is vital. 

Aggarwal et al. (2012), Nair & Prema (2014) and Sharma et al. (2014) pointed out that 
building effective phishing detection mechanisms for every OSN to protect its users 
is important because phishing attacks cause the leak of personal information and the 
loss of huge money. As such, this implies that the efficiency of response time to alert 
users especially on Twitter about phishing is an important factor. However, the 
maximum response time achieved by the existing solutions is still considered high and 
the one claimed achieving the lowest maximum response time of 0.501 seconds 
(Sharma et al., 2014) is deemed to be inadequate and shall be improved with a new 
security alert solution for Twitter users. 
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1.3 Research Objectives 

The main objective of this research is to propose a security alert framework 
using dynamic tweet-based features for phishing detection on Twitter. To achieve this 
main objective, the specific objectives as follows are set for the research. 

i. To propose a classification model with reduced number of classification 
features to improve the accuracy of phishing detection. 
  

ii. To propose a detection algorithm with dynamic tweet-based features to 
enhance the accuracy of phishing tweet detection on Twitter. 
 

iii. To propose a security alert mechanism with fast response time to improve the 
efficiency of phishing tweet detection. 

 
 
1.4 Research Scope 

The scope of this research focuses on machine learning of phishing tweet detection on 
Twitter and more specifically, formulates a security alert framework with the 
improvement of phishing detection accuracy, enhancement of phishing tweet 
detection accuracy on Twitter, and improvement of phishing tweet detection 
efficiency.  

Deceptive phishing is a highly common phishing attack type as its attack tactic used 
is simple. It has to be tackled dynamically because it is a major problem in instant 
messengers (Ali & Rajamani , 2012) and Online Social Networks (OSNs). Basically, 
deceptive phishing deceives victims by directing them to a fake website where their 
personal credentials are collected eventually for further unlawful activities.  As such,  
it is being selected as the main focus of this research.  

Twitter is selected among all the other OSNs for this research because it is the fastest 
growing (McCord & Chuah, 2011; Kumar R & Kumar, 2012) and an immensely 
popular OSN that only provides micro-blogging to people to post 140 characters short 
messages called “Tweets” (Wang, 2010; McCord & Chuah, 2011; Aggarwal et al., 
2012; Lee & Kim, 2013; Nair & Prema, 2014; Sharma et al., 2014). In addition, it is a 
popular medium used by phishers to spread phishing attacks due to its vast information 
dissemination and its difficulty to be detected unlike email because of it spreads fast 
in the network, has short content size and uses short Uniform Resource Locators 
(URLs) (Aggarwal et al., 2012; Sharma et al., 2014). 
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The following Figure 1.1 shows the summary of the research area towards the research 
scope. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 : Summary of Research Area towards Research Scope 
 
 
Generally, the formulated security alert framework is based on the general phishing 
tweet detection adopted by a number of researchers (Aggarwal et al., 2012; Nair & 
Prema, 2014; Sharma et al., 2014). This framework comprises three phases namely 
classification model of phishing detection, detection algorithm of phishing tweet 
detection and security alert mechanism of phishing tweet detection. 

In the classification model of phishing detection phase, an evaluation of classification 
accuracy using six machine learning techniques of Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Logistic 
Regression (LR) and Sequential Minimal Optimization (SMO) which is claimed as 
the best machine learning techniques by the respective researchers (Toolan & Carthy, 
2009; Fahmy & Ghoneim, 2011; Aggarwal et al., 2012; Zhang & Wang, 2012; 
Lakshmi & Vijaya MS, 2012; James et al., 2013; Akinyelu & Adewumi, 2014; Basnet 
et al., 2014; Sharma et al., 2014; Akanbi et al., 2015; Aydin & Baykal, 2015; Sananse 
& Sarode, 2015) is conducted. The evaluation also used the training dataset collected 
from Sharma et al. (2014), the possible extracted phishing classification features, ten 
fold cross-validation and the accuracy of 94.56% (targeted baseline) achieved by 
Sharma et al. (2014) on the same training dataset. To identify the best machine 
learning technique, standard information retrieval metrics namely accuracy, precision 
and recall, and a Confusion Matrix are used. The purpose of such evaluation is to 
determine the best machine learning technique with the best phishing classification 
features in order to produce and generate a classification model. This model is then 
embedded into a proposed detection algorithm together with the inclusion of dynamic 
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tweet-based features using a new approach in the detection algorithm of phishing tweet 
detection phase. Subsequently, in the security alert mechanism of phishing tweet 
detection phase, a proposed security alert mechanism is formulated to integrate with 
the proposed detection algorithm to improve the efficiency of the phishing tweet 
detection response time for alerting users on Twitter.  

This research also includes on experimental study to analyse the phishing detection 
accuracy comparison between the produced and generated classification model (with 
reduced number of classification features) and 94.56% achieved by Sharma et al. 
(2014), the phishing tweet detection accuracy on Twitter comparison between the 
formulated detection algorithm (with dynamic tweet-based features) and the Web 
Framework (Sharma et al., 2014), and the phishing tweet detection efficiency 
comparison between the formulated security alert mechanism (with fast response 
time) and the Web Framework (Sharma et al., 2014). 

The research is delimited to two main components covering analysis and identification 
of problem, and formation of security alert framework. They will be discussed further 
in the following chapters and sections. 

1.5 Research Contributions 

The main contribution of this research is to formulate a security alert framework 
using dynamic tweet-based features for phishing detection on Twitter, with specific 
contributions as follows: 

i. A classification model with reduced number of classification features 
improving the phishing detection accuracy. 
 

ii. A detection algorithm with dynamic tweet-based features enhancing the 
phishing tweet detection accuracy on Twitter. 
 

iii. A security alert mechanism with fast response time improving the phishing 
tweet detection efficiency. 

 
 
1.6 Thesis Organisation 

The remaining of this thesis is organised in the following manner: 

Chapter 2 discusses the aspects that were covered in the literature review. It starts off 
with a discussion of the fundamentals of social engineering, covering its trends, 
approaches and types. Then, it talks about phishing, covering topics such as trends, 
types, attacks platforms and detection methods (such as blacklists, heuristics, visual 
similarity and machine learning). Thereafter, it is followed by an in-depth discussion 
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on phishing detection method of machine learning, covering machine learning 
techniques such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), Sequential 
Minimal Optimization (SMO), Naive Bayes (NB) and Multilayer Perceptron (MLP), 
and machine learning classification features for phishing detection, discussions on 
related works in machine learning of phishing tweet detection on Twitter covering 
machine learning technique of RF, general phishing tweet detection framework and 
existing problems of phishing tweet detection on Twitter in term of number of 
classification features, dynamic tweet-based features (Twitter data) and response time. 
This chapter ends with the discussions on the differences between the research work 
and existing works. 

Chapter 3 explains about the methodology adopted for this research. It highlights two 
main components covering four phases. The first component is analysis and 
identification of problem (Phase 1) where potential problems for the research are 
explored and research objectives are formed. The second component, on the other 
hand, is about the formulation of security alert framework comprising classification 
model of phishing detection (Phase 2), detection algorithm of phishing tweet detection 
(Phase 3), and security alert mechanism of phishing tweet detection (Phase 4). The 
second component is the core component for this research where final targeted 
research objectives and research contributions are to be achieved eventually. In this 
chapter, the details of all phases are explained.  

Chapter 4 presents the classification model of phishing detection. Security alert 
framework and its details focusing particularly on classification model are explained. 
In addition, this chapter discusses and explains the classification model design 
including its flowchart of production and generation, and experimental design, and its 
experimental results and discussion. 

Chapter 5 presents the detection algorithm of phishing tweet detection. Similar to 
Chapter 4, security alert framework and its details focusing particularly on detection 
algorithm are explained. In addition, this chapter discusses and explains the detection 
algorithm design including its flowchart and experimental design, and its experimental 
results and discussion. 

Chapter 6 presents the security alert mechanism of phishing tweet detection. Similar 
to Chapter 4 and Chapter 5, security alert framework and its details focusing 
particularly on security alert mechanism are explained. In addition, this chapter 
discusses and explains the security alert mechanism design including its flowchart and 
experimental design, and its experimental results and discussion. 

Chapter 7 summarises the research along with the overall conclusion. In addition to 
the conclusion, future works are discussed in this chapter. This chapter is a last chapter 
for this thesis.  
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