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INTEGRATION OF PHYSICO-CHEMICAL AND ENZYMATIC 
PRETREATMENTS OF OIL PALM BIOMASS FOR ENHANCEMENT OF 

GLUCOSE PRODUCTION  

By 

NUR FATIN ATHIRAH BINTI AHMAD RIZAL 

July 2018 

Chair : Mohamad Faizal Ibrahim, PhD 
Faculty  : Biotechnology and Biomolecular Sciences 

Oil palm empty fruit bunch (OPEFB) and oil palm mesocarp fiber (OPMF) are 
lignocellulosic biomass that abundantly generated in palm oil mills. However, 
the presence of these oil palm wastes has created a major disposal problem. 
Current treatment is either by mulching at the plantation of dumping at side of 
the mill. Since these materials are rich in carbohydrate the OPEFB and OPMF 
have been widely reported as suitable raw materials to produce fermentable 
sugars. However, the presence of lignin and hemicellulose in their composition 
hinders the access of cellulase to hydrolyze cellulose. Effective pretreatments 
are required to reduce the recalcitrance of lignocellulosic structures and 
improve the fermentable sugars production. Combination of physico-chemical 
and biological pretreatment was proposed to enhance glucose production from 
OPEFB and OPMF.  

Physico-chemical pretreatment using superheated steam (SHS) was employed 
in this study as it can modify the lignocellulosic materials. Results showed SHS 
pretreatment alone had increased the percentage of cellulose by 13.4% for 
OPEFB and 19.4% for OPMF, and reduced hemicelluloses percentage to 
18.7% and 21.3%, respectively. However, this SHS pretreatment could only 
generated 18.4% of glucose yield for OPEFB and 15.6% for OPMF. In order to 
enhance the glucose yield, combination pretreatments of SHS with laccase has 
been studied. Study showed that the best laccase loading for OPEFB was 100 
U/g-substrate while for OPMF was 400 U/g-substrate. This raw size SHS + 
laccase pretreatment had enhanced 34.6% and 36.1% of glucose yield for 
OPEFB and OPMF, respectively. The delignification of OPEFB and OPMF was 
further improved by reducing the particle size to 2 mm, 1 mm, 0.5 mm and 0.25 
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mm using a hammer mill after the SHS pretreatment and before treating with 
laccase. The reduction of size to 0.25 mm had improved the glucose yield by 
71.5% for OPEFB and 63.0% for OPMF which is equivalent to 4.6-fold and 4.8-
fold increment, respectively as compared to untreated substrates. 
 
 
To conclude, this study revealed that glucose yield was successfully enhanced 
by combining SHS with laccase pretreatment together with the size reduction of 
OPEFB and OPMF. 

.  
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GLUKOSA  
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NUR FATIN ATHIRAH BINTI AHMAD RIZAL 

Julai 2018 

Pengerusi : Mohamad Faizal Ibrahim, PhD 
Fakulti  : Bioteknologi dan Sains Biomolekul 
 

Tandan kosong kelapa sawit (TKKS) dan serat mesokarp kelapa sawit (SMKS) 
merupakan biojisim lignoselulosa yang paling banyak dihasilkan di dalam 
kilang kelapa sawit. Walaubagaimanapun, kehadiran sisa-sisa kelapa sawit ini 
telah menyebabkan masalah utama dari segi cara perlupusan. Rawatan terkini 
adalah dengan membiarkan sisa sebagai sungkupan dan lambakan di 
kawasan peladangan berdekatan kilang. Oleh kerana sisa-sisa ini kaya dengan 
karbohidrat, TKKS dan SMKS di laporkan penggunaannya secara meluas 
sebagai bahan mentah yang sesuai untuk penghasilan gula. Namun begitu, 
kehadiran lignin dan hemisellulosa di dalam komposisi menghalang 
kemasukan selulase untuk menghidrolisis selulosa. Pra-rawatan yang 
berkesan diperlukan untuk mengurangkan keliatan struktur lignoselulosik dan 
di samping itu meningkatkan penghasilan gula. Penggabungan antara pra-
rawatan fiziko-kimia dengan biologi telah di cadangkan untuk meningkatkan 
penghasilan pengeluaran glukosa dari TKKS dan SMKS.  
 
 
Pra-rawatan fiziko-kimia menggunakan stim panas lampau (SPL) telah 
dijalankan dalam kajian ini kerana ia dapat mengubah komposisi bahan 
lignoselulosa. Kajian menunjukkan bahawa pra-rawatan menggunakan SPL 
sahaja telah meningkatkan peratusan jisim selulosa sebanyak 13.4% terhadap 
TKKS dan 19.4% terhadap SMKS dan masing-masing menunjukkan 
penurunan peratusan hemiselulosa kepada 18.7% dan 21.3%. 
Walaubagaimanapun, hasil glukosa daripada pra-rawatan SPL hanya 
sebanyak 18.4% terhadap TKKS dan 15.6% terhadap SMKS. Dalam usaha 
untuk meningkatkan hasil glukosa, kombinasi pra-rawatan SPL dan pra-
rawatan lakase telah dikaji. Kajian menunjukkan bahawa, pemuat enzim 
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terbaik untuk TKKS adalah 100 U/g-substrat dan untuk SMKS adalah 400 U/g-
substrat. Pra-rawatan menggunakan saiz mentah SPL + lakase ini telah 
meningkatkan hasil glukosa sebanyak 34.6% terhadap TKKS dan 36.1% 
terhadap SMKS. Delignifikasi TKKS dan SMKS telah ditambah baik  dengan 
mengurangkan saiz kepada 2.0 mm, 1.0 mm, 0.5 mm dan 0.25 mm 
menggunakan pengisar tukul setelah pra-rawatan SPL dan sebelum pra-
rawatan lakase. Pegurangan saiz kepada 0.25 mm telah meningkatkan 
penghasilan glukosa sebanyak 71.5% terhadap TKKS dan 63.0% terhadap 
SMKS dengan peningkatan 4.6-lipatan dan 4.8-lipatan berbanding dengan 
sampel yang tidak dirawat. Kesimpulannya, kajian ini menunjukkan bahawa 
hasil glukosa telah berjaya dipertingkatkan dengan menggabungkan pra-
rawatan menggunakan SPL dan lakase bersama dengan pengurangan saiz 
TKKS dan SMKS. 
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CHAPTER 1  

 
INTRODUCTION 

 
Lignocellulosic biomass is the most abundant plant material on Earth, produced 
mainly from agricultural industry and forestry. Interest on utilizing this 
lignocellulosic biomass has increasing recently due to its potential to be used 
as fermentation substrate to be converted into various valuable products 
(Ibrahim et al., 2017). In Malaysia, oil palm biomass is the most abundant plant 
materials generated every year since palm oil is the biggest Malaysian 
agricultural commodity. In 2016, this plantation occupies in total 5.74 million 
hectares all over Malaysia with 17.32 million tonnes crudes palm oil was 
produced (Malaysian Palm Oil Board, 2016). Processing of oil palm from fresh 
fruit bunch (FFB) at the mills generated 7.34 million tonnes of oil palm empty 
fruit bunch (OPEFB), 7.72 million tonnes oil palm mesocarp fiber (OPMF), 4.46 
million tonnes oil palm kernel shell (OPKS) and 64 million tonnes palm oil mill 
effluent (POME) per year (Loh, 2017). The OPEFB and OPMF which is the 
most abundant oil palm biomass generated in the mill has not yet been fully 
utilized. It is either being mulching at plantation or dumping at near the factory 
for natural degradation. Recently, both materials have been commercialized for 
biocompost production (Siddiquee et al., 2017), biochar and activated carbon 
production (Zainal et al., 2017). These materials also have been tested for 
various fermentation processes including biobutanol (Ibrahim et al., 2013), 
bioethanol (Abdullah, 2015), biohydrogen (Taifor et al., 2017), biogas (Choong 
et al., 2017) and many more. However, the major concern while utilizing these 
biomasses as feedstock for fermentation is the effectiveness of the conversion 
into fermentable sugars.  
 
 
OPEFB and OPMF composed of 60-75% and 50-55% of cellulose and 
hemicelluloses, respectively. These polymers of sugars can be hydrolyzed into 
sugar monomers which subsequently can be used as substrate for 
fermentation. These polymers of sugars can be hydrolyzed into sugar 
monomers, which subsequently can be used as substrate for fermentation. 
OPEFB and OPMF also composed of lignin that protects cellulose and 
hemicelluloses and hinders enzymatic hydrolysis by cellulase into sugars. 
Generally, lignin is the most complex structure and representing about 10-25% 
of the biomass weight with log chain, heterogenous polymer that composed of 
mostly phenyl-propane units, linked by ether bonds (Anwar et al., 2014). It has 
aromatic and rigid biopolymer properties linked via covalent bonds to xylans. 
This arrangement makes the lignocellulosic structure specifically plant cell wall 
become rigid and highly compacted. 
 
 
In order to utilize oil palm biomass as fermentation substrate, suitable and 
effective pretreatments are required to 
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reduce recalcitrance of lignocellulosic biomass by extensive modification of its 
lignocellulosic structure especially lignin. The process can be done using 
physical, physico-chemical, chemical or biological pretreatment (Alvira et al., 
2016; Chandra et al., 2016). Out of these four categories, chemical 
pretreatment using either alkaline or acid had shown the most effective 
pretreatment that could generate high sugar yield in a short pretreatment 
duration (Kshirsagar et al., 2015).  However, implementing chemical 
pretreatment in large scale may cause negative impact towards environment, 
especially water pollution that exhibit toxicity to the water stream. Therefore, a 
considerable improvement from the green biotechnology that contributes to 
lignocellulosic biomass pretreatment has arisen from the last several years. In 
order to keep the reliability of lignocellulosic biomass as fermentation substrate, 
combination of chemical-free pretreatments should be explored and proved as 
effective, clean and feasible for industrial scale. 
 
 
Physico-chemical is the pretreatment that involved the chemical and physical 
interactions in the process in order to breakdown the recalcitrance of 
lignocellulosic materials. Superheated steam (SHS) is one of the physico-
chemical pretreatment  that has been reported as an effective pretreatment to 
loosening the structural arrangement of lignocellulosic and make the hydrolysis 
more efficient (Then et al., 2014; Zakaria et al., 2015b). SHS is a dry steam 
that produced by adding heat to the wet steam. The additional heat aids in 
raising the saturated steam temperature to exceed the boiling point of the liquid 
at certain pressure value (Bahrin et al., 2012). The lignocellulosic material 
exposed to a high steam temperature of >180°C can degrade the hemicellulose 
components as it is less thermally stable than lignin and cellulose. Degradation 
of hemicellulose reduces the recalcitrance of the lignocellulosic material.  It 
should be noted that SHS is safe to be used since it can be conducted at 
atmospheric pressure with low energy consumption of 3.30 kW and could 
cause a very little environmental impact if collected condensate is reused 
(Head et al., 2010; Warid et al., 2016). However, pretreating the lignocellulosic 
biomass using SHS can only cause a small modification to lignocellulosic 
network due to limitation of water contact with the fiber, resulted in a low sugar 
yield after saccharification process (Zakaria et al., 2015a). 
 
 
Combining biological pretreatment after SHS could improve the whole 
pretreatment process to produce sugars. Biological pretreatment of 
lignocellulosic biomass can be carried out by applying microorganism 
(microbial pretreatment) or ligninolytic enzyme (enzymatic pretreatment) to 
digest lignin components. Enzymatic pretreatment is faster than microbial 
pretreatment, hence the process is easier to be controlled. In addition, it 
requires only mild condition such as low temperature, low energy yet the 
process is specific to attack lignin only (Ibrahim et al., 2011; Moreno et al., 
2016). Ligninolytic enzymes are grouped into oxidases and peroxidases 
(Masran et al., 2016). Laccase (EC 1.10.3.2; benzenediol: oxygen 
oxidoreductase) is an oxidizing enzyme that is the most extensively studied for 
lignocellulosic biomass pretreatment. It is a multicopper oxidase produced by 
fungi, plants and bacteria to specifically degrade lignin component. The 
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oxidation of a laccase substrate leads to the formation of free radical and 
reduction of molecular oxygen into water molecule (Catherine et al., 2016). 
However, laccase pretreatment alone did not produce a high yield of 
hydrolyzed sugars (Saha et al., 2016; Zanirun et al., 2015). Therefore, 
combining this enzymatic pretreatment using laccase with SHS could enhance 
the saccharification performance of oil palm biomass into sugars. In addition, 
the effect of size reduction prior to laccase pretreatment was also conducted 
since the enzyme action is highly affected by the exposed surface area particle 
size of the substrate. 
 
 
Therefore, the objective of this research are: 
 
 

i. To enhance the glucose production from oil palm empty fruit bunch and 
oil palm mesocarp fiber through combination of superheated steam and 
laccase pretreatment. 

ii. To analyze the chemical component of OPEFB and OPMF after the 
pretreatment 

iii. To study the effect of integration of superheated steam and laccase 
pretreatment to glucose production during saccharification process of 
OPEFB and OPMF 
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