

UNIVERSITI PUTRA MALAYSIA

TISSUE SPECIFIC LOCALIZATION OF SEVERAL OIL PALM GENES DURING FLOWER DEVELOPMENT

ZAIDAH BT. RAHMAT

FSMB 2001 29

TISSUE SPECIFIC LOCALIZATION OF SEVERAL OIL PALM GENES DURING FLOWER DEVELOPMENT

By

ZAIDAH BT. RAHMAT

Thesis is Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Food Science and Biotechnology Universiti Putra Malaysia

July 2001

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

TISSUE SPECIFIC LOCALIZATION OF SEVERAL OIL PALM GENES DURING FLOWER DEVELOPMENT

By

ZAIDAH RAHMAT

July 2001

Chairman: Assoc. Prof. Dr. K. Harikrishna, Ph.D.

Faculty : Food Science & Biotechnology

Flowering is the first introductory step to fruit formation and is a fundamental part of the plants reproduction system. Flowers and fruit are also an integral part of seed production. In most crops, the control of flowering is an important aspect of growth and development. If oil palm flowering could be controlled, yield could be improved by stimulating flowering in accordance to permissive environmental factors. In order to determine the factors that influence flowering of oil palm, the physiological background and the flowering process must be studied. However, oil palm micropropagation had come up against a major difficulty with the discovery of a floral morphogenesis abnormality induced by *in vitro* regeneration (Corley <u>et al.</u>, 1986; Toruan-Mathius <u>et al.</u>, 1998).

From the examination of both morphology and anatomy of oil palm flower development, 9 key stages of normal and abnormal flower development has been classified to assist in the study of tissue specific expression of flowering genes. As plant organ systems are composed of anatomically similar cells and tissues, *in situ* hybridization was chosen as a method of determining gene expression based on its sensitivity and ability to determine the specific location of an mRNA. Examinations carried out on 4 oil palm flowering genes provide more information about the processes occurring during normal and abnormal flower formation of oil palm. OPSOC1, an oil palm homologue of AGL20 and OPLFY, the LFY homologue of oil palm, are both expressed throughout flower initiation and development. OPRLK5, a member of the receptor kinase gene family, is expressed throughout flower development. The last gene, OPUIP2, which encodes a UFO-interacting protein, is also expressed throughout flower development but it is not needed during inflorescence meristem development. Combined with other studies in this area, it is hoped that an understanding of the floral abnormality may be within reach in the near future.

Attempts to isolate flower specific genes from an oil palm floral cDNA library however have been unsuccessful. The choice of cDNA library and conventional molecular tools might not be applicable in isolating these types of genes. Nevertheless, with advanced molecular and genetic tools such as yeast one and two-hybrid system that are being developed, isolation and the determination of function of such genes can be achieved. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

TISU SPESIFIKASI SETEMPAT BEBERAPA GEN KELAPA SAWIT SEMASA PERKEMBANGAN BUNGA

Oleh

ZAIDAH RAHMAT

Julai 2001

Pengerusi : Prof. Madya Dr. K. Harikrishna, Ph.D

Fakulti : Sains Makanan dan Bioteknologi

Bunga adalah langkah pengenalan pertama bagi penghasilan buah dan ia merupakan asas penting bagi sistem reproduksi tumbuhan. Bunga dan buah juga adalah bahagian penting dalam penghasilan biji benih. Bagi kebanyakan tumbuhan, pengawalan bunga merupakan aspek penting bagi perkembangan pertumbuhan. Jika perkembangan bunga kelapa sawit dapat dikawal, hasilnya boleh ditingkatkan dengan mengstimulasi perkembangan bunga berdasarkan faktor-faktor persekitaran. Bagi menentukan faktor-faktor yang mempengaruhinya, kajian latar belakang fisiologi dan proses-proses perkembangan bunga perlu dijalankan. Walau bagaimanapun, mikropropagasi kelapa sawit telah dilanda masalah berikutan penemuan keabnormalan morfogenasi bunga yang dipengaruhi dari regenerasi *in vitro* (Corley <u>et al.</u>, 1986, Toruan-Mathius <u>et al.</u>, 1998).

Daripada kajian morfologi dan anatomi perkembangan bunga kelapa sawit, 9 tahap perkembangan bagi kedua-dua bunga normal dan abnormal telah diklasifikasikan untuk membantu kajian corak ekspresi tisu bagi gen-gen perkembangan bunga. Oleh kerana sistem organ tumbuhan mengandungi sel-sel dan tisu-tisu yang hampir sama anatominya, hibridasi *in situ* dipilih sebagai kaedah penentuan ekspresi gen berdasarkan tahap sensitiviti dan kebolehan kaedah berkenaan untuk menentukan lokasi mRNA yang spesifik. Kajian yang dijalankan ke atas 4 gen perkembangan bunga dapat memberi lebih maklumat tentang proses-proses yang berlaku semasa perkembangan bunga normal dan abnormal bagi kelapa sawit. OPSOC1, "homolog" kelapa sawit bagi AGL20 dan OPLFY, "homolog" LFY bagi kelapa sawit, kedua-duanya menunjukkan ekspresi sepanjang pengenalan dan perkembangan bunga. Manakala 2 lagi gen yang digunakan, OPRLK5, terdiri daripada keluarga gen "receptor kinase" dan OPUIP2, gen yang mengkod protin interaksi-UFO, kedua-duanya juga menunjukkan ekspresi sepanjang perkembangan bunga tetapi OPUIP2 tidak diperlukan semasa perkembangan "inflorescence meristem". Digabung dengan kajian-kajian lain di dalam bidang ini, adalah diharapkan pengetahuan berkenaan keabnormalan bunga boleh dicapai di masa hadapan.

Cubaan pemencilan gen-gen spesifik bunga daripada koleksi cDNA bunga kelapa sawit telah menemui kegagalan. Pemilihan koleksi cDNA dan kaedah molekular konvensional mungkin tidak dapat diaplikasikan di dalam pemencilan gen-gen jenis ini. Walau bagaimanapun, dengan adanya kaedah-kaedah molekular dan genetik lanjutan seperti sistem hibrid yis satu dan dua (yeast one and two hybrid system) yang sedang dikembangkan, pemencilan dan penentuan fungsi bagi gen-gen berkenaan akan dapat dicapai.

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor, Assoc. Prof. Dr. K. Harikrishna for all his guidance, advices and ideas throughout this project. All the ideas almost cost me my sleeps, but thanks, I would not have made it this far if not for your "torture". I should make my own choice, like you said, and I'm doing it.

Most of all, my greatest gratitude goes to my co-supervisor, Dr. Sharifah for letting me handle this project under her guidance. Lots of thanks for funding this project and all the pushes to keep me going. I know setting up the *in situ* cost you a lot of your grant money and now I'm proud of it. So far, we're the only lab in the country doing it. Thanks for being a friend and for showing me I can be who I am now.

Thank you to the Director of Malaysian Palm Oil Board for letting me do all my work there. I would also like to thank all these people for their constant support and friendship while I was conducting the project. All the lab staffs of plant development lab; Kak Zah for being my teacher in the beginning, Kak Ros for helping me with the histology work, Kak Gini for trusting me to handle the SEM machine, Kak Feshah, Shamsul and Roslan for helping around, thanks. To my friends Pick Kuen, thanks for trashing me when I need it and Bianih, though you're not here, thanks for the encouragement. I spent most of times with this circle of people who never fail to keep me going and light up my day when I was down. All the advices, and words of wisdom, for only we know how each other work to get to where we are now. Thanks to all of you; Ayu, Siew Eng, Parames, Kanga, Komala, and Mei. Thanks Mei, for buying all those expensive stuffs.

Last but not least, I wish to thank my family for loving me, all the constant support, words of encouragement and advices as well as patience for the past two years. Life would be meaningless without all of you. Abah & mak, this one is for you. I did it!

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL SHEETS	viii
DECLARATION FORM	x
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF PLATES	xvii
LIST OF ABBREVIATIONS	xviii

CHAPTER

1.0	INTR	ODUCTION		1
2.0	LITE	RATURE RE	VIEW	3
	2.1	Oil Palm		3
	2.2	Flowering ha	abit of oil Palm	3
	2.3	Sex Different	tiation of Oil Palm	4
	2.4	The Female	Inflorescence and Flower	5
	2.5	The Male Inf	florescence and Flower	6
	2.6	Hermaphrod	ite or Mixed Inflorescence	9
	2.7	Flower Deve	lopment	9
	2.8	Meristem Ide	entity Gene	11
	2.9	Organ Identit	ty Gene	13
	2.10	MADS-Box	Gene and The Evodevotics of The Flower	15
	2.11	Floral Abnor	mality	18
	2.12	Possible Cau	ses of Abnormal Floral Development	21
	2.13	The S.E.M. I	nvestigation of Oil Palm Flower Development	22
	2.14	Histogenesis		23
	2.15	In Situ Hybri	idization	24
3.0	MAT	ERIALS AND) METHODS	27
	3.1	Scanning E	lectron Microscope (SEM)	27
	3.2	Histology		28
		3.2.1	Periodic Acid Staining	29
		3.2.2	Microscopy	29
	3.3	Probe Prepa	ration	29
		3.3.1	Plasmid Midiprep	29
		3.3.2	Double Digestion of Plasmid	31
		3.3.3	Probe Purification	31
		3.3.4	Probe Labeling	32

		3.3.5	Estimation of Labeled Probe	32
	3.4	Screening		33
		3.4.1	Preparation of Bacterial Culture For Infection	33
		3.4.2	Plaque Lift	34
		3.4.3	Prehybridization and Hybridization of Plaque	
			Membrane	35
		3.4.4	Random Selection of Plagues	35
		3.4.5	In-vivo Excision	36
		3.4.6	Polymerase Chain Reaction (PCR)	37
	3.5	Southern I	Blot	38
	3.6	Synthesis	ofFirst Strand cDNA	39
	3.7	Reverse N	orthern Hybridization	40
	3.8	In Situ RN	A Hybridization	40
		3.8.1	Probe Preparation	40
		3.8.2	Fixation of Materials on Slides	42
		3.8.3	Prehybridization and Hybridization	43
		3.8.4	Post-hybridization Steps	44
		3.8.5	Immunological Detection	45
		3.8.6	Microscopy	45
40	RESU	LTS AND I	DISCUSSIONS	46
4.0	4 1	Mornholo	gical And Anatomical Study of Oil	46
	1.1	Palm Flow	ver Development	10
		411	The Female Flower of Oil Palm	48
		4.1.2	The Male Flower of Oil Palm	55
		4.1.3	Stages of Oil Palm Flower Development	59
	4.2	Analysis o	f Tissue Expression Pattern During	68
		Floral Dev	velopment	
		4.2.1	Expression Pattern of OPSOC1	72
		4.2.2	OPLFY 3' Was Expressed Throughout Meristem	
			Development	79
		4.2.3	OPRLK5 Showed Continuous Expression	
			Throughout Floral Development	83
		4.2.4	Expression Pattern of OPUIP2	85
	4.3	Screening	-	93
		4.3.1	Isolation of Plaques of Interest	93
		4.3.2	PCR Amplification of Isolated cDNA Clones	95
		4.3.3	Reverse Northern Analysis	95
		4.3.4	Sequence Analysis of Screening Clones	97
	4.4	Possible R	easons For Failure To Isolate Flower Specific Gene	
		From Scre	ening	101
5.0	CON	CLUSION		103
BIBL	IOGRAI	РНҮ		106

APPENDICES	117
DIAGRAM OF WILD-TYPE FLOWER & THE "ABC" MODEL	. 117
THE CIRCULAR MAP & POLYLINKER SEQUENCE	
OF THE pBluescript	118
THE MAP OF PCR R 2.1-TOPO	119
DIAGRAM OF NONRADIOACTIVE DIG RNA-LABELING BY	IN
VITRO TRANSCRIPTION & POLYLINKER SITES OF THE	
TRANSCRIPTION VECTORS pSPT18 & pSPT19	120
THE CHEMICAL & MEDIA FORMULATIONS	121
VITA	122

LIST OF TABLES

Table								Page
1	Summary Development	of	Stages	of	Oil	Palm	Flower	67
2	Summary of S	creen	ing Work W	ith The	5 Probes			94
3	Summary of R	levers	e Northern A	Analysis				96

LIST OF FIGURES

Figure		Page
1	Female Flower of the Oil Palm	7
2	Male Flower of the Oil Palm	8
3	Hermaphrodite or mixed inflorescence	10
4	Abnormalities that occurred in the oil palm	20
5	Normal flower inflorescence	49
6	Normal carpel in close position (A). Stigmatic papillaes are formed at the centre of each carpel (B)	50
7	Development of female flower from the triad of abnormal female flower	52
8	Abnormal carpels (A & B) and cross sections of the normal carpel (C) and abnormal carpel (D)	53
9	Normal male inflorescence	55
10	Stamens from normal and abnormal male inflorescence	57
11	Stages of normal flower development	60
12	Differences between the tissue sections before and after hybridisation	71
13	Expression of full length OPSOC1 in abnormal flowers	74
14	Expression of 3' end of OPSOC1	75
15	Expression of OPLFY on oil palm floral meristem	78
16	Expression of OPLFY at later developmental stages after meristem initiation.	79
17	Expression of OPRLK5 observed in normal female flowers	84
18	Observation of OPRLK5 expressed in abnormal flowers	85

19	Expression of OPUIP2 in normal flowers	89
20	Expression of OPUIP2 in abnormal flowers	90

LIST OF PLATES

Plate							Page
1	An RIM4	autoradiograph	from	primary	screening	with	94
2	Autorathe oil	adiograph from the	secondar A library v	y (A) and ter with RIM4 pr	tiary (B) screen	ning of	95
3	Ampli abnor	ification (A) and Romal (C) flowers from	everse No n the RIN	orthern analy 14 probe	sis of normal (B) and	98

LIST OF ABBREVIATIONS

Symbol	Description
%	Percentage
λ	Lambda
μg	Microgram
μL	Microlitre
μm	micrometer
°C	degree centigrade
AG	AGAMOUS
AGL	AGAMOUS-LIKE
Amp	Ampicillin
AtOH	Acetone
BCIP	5-bromo-4-chloro-3-indolyl-phosphate
bp	base-pair
BSA	Bovine Serum Albumin
cDNA	Copy Deoxyribonucleic Acid
Ci	Curie
Cm	Centimeter
dATP	2'-Deoxy-adenosine-5'-triphosphate
dCTP	2'-Deoxy-cytidine-5'-triphosphate
DEF	DEFICIENS
DEPC	Diethyl Pyrocarbonate
dGTP	2'-Deoxy-guanosine-5'-triphosphate

dH ₂ O	Distilled water
DIG	Digoxigenin
DNA	Deoxyribonucleic Acid
DTT	Dithiothreithol
dTTP	2'-Deoxy-thymidine-5'-triphosphate
EDTA	Ethylenediaminetetraacetic Acid
EtBr	Ethidium Bromide
EtOH	Ethanol
FLIP	Flower Initiation Process
FLO	FLORICAULA
g	Gram
GLO	GLOBOSA
HCl	Hidrochloric Acid
hr	Hour
ISH	In Situ Hybridisation
Jacq.	Jacquin
kb	Kilo base-pair
KCL	Potassium Chloride
LB	Luria-Bertani
LFY	LEAFY
LiCl	Lithium Chloride
MADS	MCM1-AGAMOUS-DEFICIENS-SRF

mg	Milligram
MgCl ₂	Magnesium Chloride
min	Minute (s)
mm	Millimeter
mM	Millimolar
MPOB	Malaysian Palm Oil Board
mRNA	Messenger Ribonucleic Acid
NaCl	Sodium Chloride
NaOH	Sodium Hydroxide
NBT	Nitro Blue Tetrazolium
NTE	Sodium-Tris-EDTA Buffer
OD	Optical Density
OPSOC1	Oil Palm SUPPRESSOR OF CONSTANS OVEREXPRESSION
OPLFY	Oil Palm LEAFY
OPRLK5	Oil Palm Receptor-Like-Kinase Factor 5
OPUIP2	Oil Palm UFO-Interacting Protein
PBS	Phosphate Buffer Saline
RNA	Ribonucleic Acid
RNase	Ribonuclease
rpm	Revolution Per Minute
SDS	Sodium Deodecyl Sulphate
SEM	Scanning Electron Microscope
SSC	Sodium Chloride-Sodium Citrate Buffer

SSC	Sodium Chloride-Sodium Citrate Buffer
TAE	Tris-Acetate-EDTA Buffer
TBS	Tris-Base-Sodium Chloride Buffer
TE	Tris-HCL-EDTA
tRNA	Transfer Ribonucleic Acid
UV	Ultraviolet

CHAPTER 1

INTRODUCTION

Tissue culture of oil palm was initiated in order to provide the oil palm industry with improved, high yielding elite palms by cloning mother palms carrying desirable traits. However, oil palm micropropagation, which began at the start of the 80s, has come up against a major difficulty with the discovery of floral morphogenesis abnormalities induced by *in vitro* regeneration (Corley, <u>et al.</u>, 1986, Toruan-Mathius <u>et al.</u>, 1998). Corley <u>et al.</u> (1986) discovered the first outbreak of floral abnormalities in 1986 and it is now evident that these abnormalities occur at varying levels at various laboratories.

Flowering is the first introductory step to fruit formation and is a fundamental part of the plants reproduction system. Flowers and fruits also are an integral part of seed production. In most crops, control of flowering is an important aspect of growth and development. And, if oil palm flowering could be controlled, yield could be improved by stimulating flowering in accordance to environmental factors.

In order to identify the factors, which influence flowering in oil palm, both the physiological background and the flowering process must be studied. From the examination of both morphology and anatomy of oil palm flower development, 9 key stages of normal and abnormal oil palm flower development has been identified. These

provide a basis for an examination of tissue specific expression of flowering genes during development.

Since the first report of oil palm floral abnormality, a lot of effort has been made to solve the problem. Genetic mutations in the APETALA 3 locus of *Arabidopsis* and DEFICIENS in *Antirrhinum* are found to produce phenotypes similar to the floral abnormality observed in oil palm. Thus perhaps by studying floral homeotic mutations, organ identity genes and flower development in oil palm, the problems of floral abnormalities can be better understood. Combined with information on gene expression patterns during flower development from other plants such as *Arabidopsis*, *Antirrhinum* and maize, predictions on what types of genes that are expressed at different stages of flowering can be made.

The aim of this project is to study the tissue specific and cell type localization of gene expression patterns in different floral organ and to isolate and characterize fulllength homeotic genes that are involved in floral patterning and meristem identity. Full length homeotic genes will contribute to the further understanding of the floral abnormality in oil palm by contributing to the development of a DNA chip for the examination of the floral abnormality as many types of homeotic genes are required to be arrayed onto these chips. This project will lead to a further understanding of the function of flower-specific genes since the characterization technique used allows tissue and cell specific patterns of expression to be examined. This will provide a better view of the differences between normal and abnormal flowers.

CHAPTER 2

LITERATURE REVIEW

2.1 Oil Palm

The oil palm (*Elaeis guineensis*, Jacq.) belongs to the family Palmae where *Elaeis* derived from the Greek word "elaion" or oil while the specific name *guineensis* shows its origin, the Guinea coast. The genus *Elaeis* was founded on palms introduced into Martinique, the oil palm receiving its botanical name from Jacquin in an account of American plants. Its natural habitat is believed to have been restricted to ecosystems such as swamps and riverbanks, with minimal competition from faster growing rainforest species.

Apart from being a large feather-like palm, it is unarmed except for short spines on leaflets on the leaf, which give a characteristic appearance to the palm. The palm is normally monoecious with separate male and female inflorescences on the same plant, but sometimes hermaphrodite flowers do occur (Hartley, 1988). The fruit is a drupe borne on a large compact bunch. The fruit consists of an outer *exocarp* or skin, the fruit pulp or *mesocarp*, which provides the palm oil and the *endocarp* or shell.

2.2 Flowering Habit of Oil Palm

The oil palm is a monoecious plant carrying distinct male and female inflorescence in cycles of varying duration. However, detailed investigation of the flowers showed that each flower primordium is a potential producer of both male and