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HYBRID HARMONY SEARCH-ARTIFICIAL INTELLIGENCE MODELS
IN CREDIT SCORING

By

GOH RUI YING

September 2019

Chairman: Lee Lai Soon, PhD
Faculty: Institute for Mathematical Research

Credit is a type of advanced lending which poses the risk of having default
payments. Thus, credit scoring is important to correctly identify defaulters and
non-defaulters. Statistical models are the main approaches but recently, Artificial
Intelligence (AI) techniques have been popular due to their ability to account for
flexible data patterns. Support Vector Machines (SVM) and Random Forest (RF)
are the main focus in this study due to their competitiveness in the literature.

This study focuses to improve three main drawbacks of both AI techniques i.e.
sensitivity to hyperparameters, the black-box property and increased computational
effort due to hyperparameters tuning procedure. Employment of hyperparameters
tuning have been a common practice for both SVM and RF in ensuring quality
performance. Instead of the conventional Grid Search (GS) and manual tuning (MT)
approaches, automated tuning with metaheuristics approach (MA) have also shown
to be effective in this task. Genetic Algorithm (GA) has been the dominant method
and other MA being attempted recently has shown the potential of MA to perform
hyperparameters tuning. To the best of our knowledge, Harmony Search (HS) has
yet to be utilized with SVM and RF in this domain.

To utilize the SVM credit model, features selection is conducted simultaneously
with hyperparameters tuning using a HS so that the attributes can be focused down
to the reduced features for explanation. For the RF credit model, a HS is hybridized
with RF for hyperparameters tuning. Then, the two types of features importance
computed from RF algorithm are utilized for the attributes explanation. Due to
the increased computational effort from HS-SVM and HS-RF, a modified HS

i



© C
OPYRIG

HT U
PM

(MHS) hybridized with SVM and RF are proposed in this study for an effective yet
efficient search. There are four main modifications of the MHS hybrid models i.e.
elitism selection instead of random selection, dynamic exploration and exploitation
operators following step functions instead of a static value, replacement of the
bandwidth with coefficient of variations and two additional termination criteria
included. To further enhance the computational efficiency, the MHS hybrid models
are parallelized.

The four hybrid models are evaluated by comparing with standard statistical models
across three datasets i.e. German and Australian credit datasets from the public
repository as well as a peer-to-peer (P2P) lending data from Lending Club (LC)
website to account for different credit data patterns. The discussions are based on
discriminating ability, model explainability and computational time.

All the hybrid models have achieved higher discriminating ability than GS-tuned
models. RF hybrid models consistently show better discriminating ability compared
to other methods across the three datasets. Compared to SVM hybrids, RF hybrids
achieved approximately 1% improvement in German and Australian data, and
around 4% improvement in LC dataset. This study also demonstrates model
explainability using reduced features for MHS-SVM and features importance for
MHS-RF. It is shown that these strategies are useful to obtain initial information
on the attributes. For both German and Australian datasets, reduced features and
features importance have directed almost the same features as ‘important’. For LC
dataset, end results shows only one attribute in common for both strategies. This
is believed to be due to the different approaches of both classifiers in capturing
data pattern for classification. In terms of computational time, compared to
GS-tuned models and the respective HS hybrids, the proposed hybrid MHS-SVM
and MHS-RF have reported time improvement of more than 50%, while the parallel
computation have saved up approximately 80% of the computational time.

In addition, hybrid models with MHS have reduced the computational effort yet
maintaining the good discriminating ability. With the parallelization of MHS hybrid
models, the computational time is effectively reduced, with RF hybrid models faster
than SVM hybrid models. Although statistical models are efficient as no hyperpa-
rameters tuning procedure is involved, their inferior performance compared to the AI
models in this study indicates the failure to capture information from the LC dataset.
In terms of model performance, explainability and computational effort, MHS-RF is
the recommended credit scoring model due to its robustness in the three aspects.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Sarjana

MODEL HIBRID CARIAN HARMONI-KECERDASAN BUATAN UNTUK
SKOR KREDIT

Oleh

GOH RUI YING

September 2019

Pengerusi: Lee Lai Soon, PhD
Fakulti: Institut Penyelidikan Matematik

Kredit merupakan sejenis peminjaman dahulu yang membawa risiko tidak mendapat
pembayaran balik daripada peminjam. Oleh itu, model skor kredit penting untuk
mengenal pasti peminjam yang membayar balik dan tidak membayar balik. Model
statistik adalah cara utama yang digunakan, namun sejak kebelakangan ini, kaedah
kecerdasan buatan menjadi popular disebabkan oleh kebolehan kaedah-kaedah ini
untuk mengendalikan corak data yang bervariasi. Support Vector Machines (SVM)
dan Random Forest (RF) ialah fokus utama tesis ini disebabkan oleh daya saing
kedua-dua kaedah ini dalam penyelidakan lepas.

Tesis ini fokus untuk memperbaiki tiga kelemahan dua kaedah kecerdasan buatan
ini, iaitu sensitif terhadap hyperparameter, model tersirat dan peningkatan masa
komputasi dari prosedur pelarasan hyperparameter. Perlaksanaan pelarasan hyper-
parameter ialah amalan biasa untuk SVM dan RF untuk memastikan prestasi yang
berkualiti. Selain daripada kaedah konvensional pencarian grid (PG) dan pelarasan
manual (PM), pelarasan automatik dengan metaheuristik juga merupakan cara
yang efektif untuk kerja pelarasan. Algoritma Gentik (AG) ialah cara dominan dan
metaheuristik lain dalam eksperimen lalu telah menunjukkan potensi metaheuristik
untuk kerja pelarasan hyperparameter. Setakat pengetahuan kita, Carian Harmoni
(CH) belum pernah digunakan dengan SVM dan RF dalam domain ini.

Untuk menjelaskan model kredit SVM, proses pemilihan ciri-ciri dijalankan bersama
dengan pelarasan hyperparameter dengan CH supaya ciri-ciri dapat dikurangkan dan
difokuskan untuk penjelasan model. Bagi model kredit RF, CH dihibridkan dengan
RF untuk pelarasan hyperparameter. Kemudian, dua jenis kepentingan ciri-ciri
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yang dikira dari algoritma RF digunakan untuk penjelasan model. Disebabkan oleh
peningkatan masa komputasi, kaedah modifikasi CH (MCH) dihibridkan dengan
SVM dan RF untuk pencarian solusi secara efektif dan efisien. Empat modifikasi
telah dilaksanakan bagi model hibrid MCH, iaitu pemilihan elit untuk menggantikan
pemilihan rawak, alat eksplorasi dan eksploitasi dinamik untuk menggantikan nilai
statik, penggantian nilai jalur lebar dengan koefisien variasi serta tambahan dua
kriteria penamatan. Bagi memajukan efisiensi, model hibrid MCH diselarikan.

Empat model hibrid dinilai melalui perbandingan dengan model statistik meng-
gunakan tiga data iaitu, kredit German dan Australia dari repositori awam,
dan peminjaman ‘peer-to-peer’ (P2P) dari laman web Lending Club (LC) un-
tuk merangkumi corak kredit data yang bervariasi. Perbincangan hasil adalah
berdasarkan prestasi model, penjelasan model, dan masa komputasi model.

Semua model hibrid mencapai prestasi yang lebih baik daripada model yang
dilaraskan dengan PG. Model hibrid RF menunjukkan prestasi yang lebih baik
daripada kaedah lain dengan konsisten dalam ketiga-tiga data kredit. Perbandingan
antara model hibrid SVM dan model hibrid RF menunjukkan model hibrid RF
telah menambah baik anggaran 1% bagi data German dan Australian, dan lebih
kurang 4% lebih baik bagi data LC. Tesis ini turut menunjukkan penjelasan model
dengan ciri-ciri yang dipilih daripada MCH-SVM dan kepentingan ciri-ciri daripada
MCH-RF. Hasil daripada kedua-dua strategi ini telah menunjukkan kepentingan
strategi ini untuk memperoleh informasi awal daripada ciri-ciri data tersebut. Bagi
data German and Australian, ciri-ciri yang dikurangkan dan kepentingan ciri-ciri
telah melabelkan kebanyakan ciri yang sama sebagai ciri yang ‘penting’. Bagi data
LC, hasil eksperimen menunjukkan hanya satu ciri yang sama daripada kedua-dua
strategi. Hal ini kerana pendekatan yang berbeza bagi kedua-dua model ini untuk
mengendalikan corak data dalam proses klasifikasi. Bagi aspek masa komputasi,
perbandingan antara model hibrid MCH dengan model yang dilaraskan dengan
PG dan model hibrid CH telah menunjukkan model MCH-SVM dan MCH-RF
menambah baik masa komputasi sebanyak 50% manakala model selari telah
menjimatkan masa komputasi sebanyak 80%.

Tambahan pula, model hibrid dengan MCH telah mengurangkan masa komputasi
dan mengekalkan prestasi model. Dengan komputasi selari model hibrid MCH, masa
komputasi dikurangkan dengan efektif, di mana model hibrid RF lebih cekap dari-
pada model hibrid SVM. Walaupun model statistik adalah efisien disebabkan tiada
hyperparameter untuk dilaraskan, kelemahan prestasi model statistik dibandingkan
dengan model kecerdasan buatan menunjukkan kekurangan upaya model statistik
untuk mengendalikan informasi dalam data LC. Dengan pertimbangan serentak as-
pek prestasi model, penjelasan model, dan masa komputasi, model MCH-RF meru-
pakan model skor kredit yang berpotensi hasil daripada keteguhan model ini dalam
ketiga-tiga aspek tersebut.
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CHAPTER 1

INTRODUCTION

1.1 Background

“Quick to borrow is always slow to pay”. In the context of credit industry, this
proverb addresses defaulters that lenders always want to avoid. Credit is a type
of lending to the borrowers where repayment is made in the future together with
interest charged to the lenders. Since the repayment obligation is not immediate,
there may be defaulting borrowers that fail to fulfil their obligations, incurring
loss to financial institutions. For revolving credit services, there may be revolvers
that carry balances and pay interests, posing as another group of potential customers.

As revolving credit services are a part of the overall credit services, hence, defaulters
and non-defaulters are who the lenders always seek for because they account for
losses to financial institutions. Being able to identify these two groups of customers
is a risk management task to maximize profit and minimize cost. Thus, credit
scoring stands out as a crucial tool to correctly classify customers for effective credit
risk evaluation.

Before credit scoring models are developed, all credit granting decisions are purely
judgemental-based. The main aspects considered by decision makers are Character,
Capital, Collateral, Capacity and Condition (5Cs). The initial urge of the credit
scoring model was due to the severe shortage of credit analysts that were being
drafted into military services (Thomas, 2000). When credit cards started to be
introduced in 1960s, the volume of applications made is necessary for credit scoring
models to be developed, where a more efficient way to identify good and bad
customers is considered. Thus, statistical techniques started to be introduced to form
credit scoring models.

The first statistical model used to classify good and bad loans is discriminant analysis
(DA) by Durand (1941). Then, another variant of DA, multiple discriminant analysis
is used to predict company bankruptcy by Altman (1968). Logistic Regression
is another statistical approach introduced by Ohlson (1980) to predict companies
credit-worthiness. Besides, the operations research (OR) based methods are also
attempted for credit scoring by Kolesar and Showers (1985) where mathematical
programming is applied in credit granting decisions.

In order to avoid bank failures during financial crisis, Basel I accord was released
on 1988 as a formal guideline for financial institutions to standardize the capital
adequacy of banks to be at least 8% of the banks’ risks weighted assets. Due to
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the expanding credit industry, Basel II accord was released in 2004 and serves as
a banking regulatory to ensure financial institutions have sufficient capital require-
ment to deal with their exposed risk. Under credit risk, rather than the previous
standardized method, Internal Rating Based (IRB) approach could be adopted by
bank to compute the minimum capital requirement. Then, the economic recession
in 2008 was a wake-up call for financial institutions to realize the importance of
credit risk evaluation. The IRB approach allowed by Basel II together with the 2008
economic downturn have opened up a new page in the credit scoring domain as
financial institutions were now able to develop and utilize internal credit models.
Attempts to form sophisticated credit scoring models have been actively researched
by both financial institutions as well as academic researches.

Since the final decision of credit scoring models is binary, it is equivalent to binary
classification problem. Therefore, apart from statistics-based and OR-based models,
different classification techniques especially Artificial Intelligence (AI) have been
actively researched in credit scoring. Several comparative studies and review papers
(Hand and Henley, 1997; Thomas, 2000; Baesens et al., 2003; Crook et al., 2007;
Lahsasna et al., 2010; Lessmann et al., 2015; Louzada et al., 2016) have shown the
shifting trend of credit models from traditional methods to AI-based methods, and
currently moving towards more complex ensembles or hybrid models. As computer
storage increases, financial institutions are starting to collect more and more
attributes of their customers. In order to take into account for more information, the
dataset available may no longer meet the required assumptions of statistical models.
This is the main motivation of utilizing non-parametric AI techniques in modelling
credit datasets, as they can effectively make prediction based on the different kinds
of data pattern regardless of satisfying assumptions in parametric statistical models.

In the credit industry, FICO score (provided by Fair, Isaac and Company) and
VantageScore (provided by Experian, TransUnion and Equifax) are the main service
providers to financial institutions for credit scores. FICO and VantageScore models
customers information and express their credit-worthiness in a three-digit score,
where higher values indicate higher credit-worthiness and vice versa. Financial
institutions purchase credit score from these service providers as a guideline for
credit granting decisions. Alongside with credit scores from service providers, some
financial institutions developed own internal credit scoring model tailored to their
own customers database to obtain better classification. Aligned with the modelling
trend captured in academic literature, FICO score, VantageScore as well as internal
credit models by financial institutions have also actively involved AI techniques as a
new reliable alternative.

Credit services provided by financial institutions are mainly credit cards and various
types of loans. A wide coverage including retail, housing, mortgage, business, etc
which are part of people’s daily life, credit industry is a surging industry with ex-
panding customer base. As online services are leading the trend in lending recently,
a new type of online lending business, peer-to-peer lending has been initiated.

2
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Increment of customers database storage and the buoyant economic situations that
affect people’s financial abilities urge financial institutions to self-develop internal
credit scoring models that are flexible to account for various customers credit trend
for different types of credit services. Hence, the types of data collected and used
for credit scoring had grown beyond the common variables used in statistics-based
modelling and thus assumptions needed for the modelling will not hold. Therefore,
development of new credit scoring models is perceived as an essential continuous
research trend.

Credit models in the literature have followed an evolving trend. It starts from purely
judgemental-based, moving on to statistical modelling and shifting to the current
leading AI modelling. With the flexibility of non-parametric AI models that can
account for different types of data patterns, AI techniques are the focus of this
study. To narrow down to the main AI techniques in this study, two remarkable
comprehensive studies by Baesens et al. (2003) and Lessmann et al. (2015) on
various techniques utilized in this domain are referred. Hence, Support Vector
Machines (SVM) and Random Forest (RF) are the main AI-based classifiers in
this research study. SVM is first attempted in building credit models by Baesens
et al. (2003) and became recommendable due to its competitiveness against the
other statistics-based, OR-based and AI techniques in the experiment. Thereafter,
SVM has received continuous attention with competitive results in the literature.
On the other hand, RF is an ensemble model which is a recent approach in this
domain. As an update of Baesens et al. (2003) research, Lessmann et al. (2015) have
recommended usage of RF due to the competitive results.

1.2 Definition of Credit Scoring

According to Abdou and Pointon (2011), the credit industry has been around for a
long time but the credit scoring history is shorter as it has just gained its popularity
around the late 20th century. Therefore, proper definitions of credit scoring are only
available thereafter.

Several proper definitions of credit scoring are from (Hand and Henley, 1997;
Thomas, 2000; Anderson, 2007). Hand and Henley (1997) defined credit scoring as
“the term used to describe formal statistical methods used for classifying applicants
for credit into ‘good’ and ‘bad’ risk classes”. Thomas (2000) explained credit
scoring as the technique that helps organizations decide whether or not to grant
credit to consumers who apply them. To describe credit scoring, Anderson (2007)
divided the term into credit and scoring. The first term ‘credit’ originates from
the Latin word ‘credo’, carrying the meaning of I trust or I believe. The second
term ‘scoring’ indicates usage of numerical tool to rank order cases to discriminate
between good and bad qualities. Joining both terms, Anderson (2007) defined credit
scoring as “the use of statistical models to transform relevant data into numerical

3
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measures that guide credit decisions”.

Abdou and Pointon (2011) viewed credit scoring as an important kit to classify
customers for credit evaluation to reduce the risk of bad credit customers. Baesens
et al. (2003) and Lessmann et al. (2015) also provided their views on credit
scoring in their comprehensive review. Baesens et al. (2003) stated that developing
models to distinguish good applicants from bad is the main aim of credit scoring
while Lessmann et al. (2015) described credit score as “a model-based estimate
of the probability that borrower will show some undesirable behaviour in the future”.

In view of the various perspectives from researchers to the term credit scoring, it can
be summarized that credit scoring is a risk evaluation model that effectively classify
customers into defaulters and non-defaulters to identify potential profit and loss.
Since risk management is a crucial routine for financial institutions, credit scoring is
thus regarded as the main tool to carry out this task.

1.3 Problem Statement

AI techniques to model for credit domain has been promising with competitive or
even outstanding results compared with the others statistical models (Baesens et al.,
2003; Crook et al., 2007; Boughaci and Alkhawaldeh, 2009; Louzada et al., 2016).
The main focus in this study, SVM and RF have also shown their great potential
among AI techniques. However, as compared to the standard statistical models, both
SVM and RF pose two main drawbacks i.e. sensitive to hyperparameters settings
and black-box property.

Standard statistical models quantify customers attributes by parameters estimation
during the model training process to do classification. In contrast, AI models have
hyperparameters to be pre-determined before the model training process to effec-
tively capture the data pattern to do the classification. Inappropriate hyperparameters
setting will result in failure of the AI models to perform well. Therefore, careful
hyperparameters tuning have to be conducted. For SVM, the exhaustive Grid Search
(GS) along a recommended range (Hsu et al., 2003) has always been the common
approach. Apart from GS, metaheuristics approach (MA) to tune hyperparameters
have been a recent trend. Genetic Algorithm (GA) has been the most popular to
be hybridized with SVM for hyperparameters tuning (Huang et al., 2007; Zhou
et al., 2009a,b; Yu et al., 2011), followed by few attempts using Particle Swarm
Optimization (PSO) (Danenas et al., 2011; Danenas and Garsva, 2012; Garsva and
Danenas, 2014) and Artificial Bee Colony (ABC) (Chen et al., 2013; Hsu et al.,
2018). For RF, manual tuning through repeated experiments of trial-and-error have
been the usual method used by past researchers. Being a relatively new AI method
that has just recently been considered in credit scoring, there is only one attempt
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from He et al. (2018) utilizing PSO to tune the hyperparameters.

Identification of important customers attributes is a plus point for a good credit
scoring model. Statistical models can identify statistical significance of the at-
tributes but both SVM and RF have complex model building procedure that leads
to the black-box property which is unable to provide information on attributes of
customers. For SVM, there have been hybrid MA-SVM models to do features
selection. Features selection task does not aim to solve the black box model, but it
is able to provide an easier explanation with a reduced subset. To perform features
selection, wrapper model with GA is a well-known approach (Jadhav et al., 2018;
Wang et al., 2018) with some conducting simultaneous hyperparameters tuning and
features selection with GA (Huang et al., 2007; Zhou et al., 2009a). For RF, it poses
a great advantage on the second drawback as it computes the features importance
of every attribute. The features importance is a useful measure to provide insights
to end users on the customers attributes. Hence, RF can utilize these features
importance to explain the features. Research on developing hybrid MA-SVM and
MA-RF in the literature are indications of the potential ability of MA to improve
these AI models. MA is perceived as a suitable tool to be hybridized with SVM
and RF to improve the models’ performance. From the literature, GA is the most
commonly used method. To the best of our knowledge, Harmony Search (HS)
which is also a type of MA has yet to be hybridized with SVM and RF.

In consideration of the two drawbacks of the AI models, there are two additional
issues to be addressed to form a good credit scoring model i.e. low computational
effort and robust across different types of datasets. Utilizing the MA approach to
seek for quality solutions as the input of AI models may be time consuming because
the search space has to be fully explored. The search process using MA has to be
properly developed for efficient modelling. In addition, hybridizing the AI models
with MA eventually form an automated credit model where the input of AI models is
the MA solutions from the automated search process. Thus, the model development
has to ensure the MA solutions from the automated search process will allow the AI
models to be robust in handling different patterns of datasets.

1.4 Research Motivation

With the tremendous growth of credit industry and the need for a risk evaluation
tool, credit scoring models become important. The main motivation of this study is
to improve AI techniques with MA. There are several motivations for the conduct of
this research study focusing on hybrid MA-AI models:

i. The growth of credit industry together with computer storages have altogether
results in wider variety of datasets pattern. AI techniques are the current state-
of-the-art and proven to be potential classifiers for credit modelling due to their
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flexibility in capturing data patterns.

ii. There are two benchmark studies by Baesens et al. (2003) and Lessmann et al.
(2015) in this domain. Although no obvious winners are reported from their
experiments, SVM (Baesens et al., 2003) and RF (Lessmann et al., 2015) are
the recommended potential AI techniques for credit scoring. Thereafter, suc-
cessful applications of these two models have further validated their potential.
Thus, both models are worth to be considered for new hybrid model develop-
ment.

iii. Hybrid MA-SVM can perform simultaneous hyperparameters tuning and fea-
tures selection. Numerous past research have shown the MA approach to con-
duct these two tasks are effective to improve SVM performance; where appro-
priate settings of hyperparameters can ensure stable model performance and
features selection can enhance model explainability with the reduced features.

iv. Hybrid MA-RF perform hyperparameters tuning solely because the computed
features importance is an useful measure for model explainability. As a rel-
atively new ensembles that just received attention lately in this domain, RF
hyperparameters tuning has only one research to tune hyperparameters with
MA approach with good performance. This is perceived as a prospective new
page for automated process of tuning RF hyperparameters in place of manual
repeat trial-and-error.

v. GA is the most popular MA to be hybridized for model improvement. Despite
its successful performance, GA has complex structure for implementation with
a number of operators that control the automated search process. In contrast,
HS has simpler structure with fewer operators to be adjusted. Thus, HS is
believed to have easier implementation and more flexible to be modified to
achieve effective and efficient search process.

1.5 Scope and Limitations

The scope of this study with the corresponding limitations are as follows:

i. The role of HS and MHS in hybridizing with SVM is to perform simultaneous
hyperparameters tuning and features selection. The automated search process
of the hyperparameters and features subset is not expected to find the best
solution for SVM, but the solution is expected to be a ‘satisfactory’ one. This
is because the search process is based on a validation set and the solution from
HS is expected to have good generalization ability on any unseen test sets.
Besides, hybrid HS-SVM and MHS-SVM only enhance model explainability
using the reduced features subset, but it does not solve the complex internal
structure of SVM to make it a transparent model.

ii. The role of HS and MHS in hybridizing with RF is only focused on hyper-
parameters tuning as the features importance is already useful to solve model
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explainability problem. Hence, both hybrid models handle black-box property
of RF via the attributes explanation approach instead of directly solving the
black-box structure. Since the main aim is to introduce an automated tuning
of RF using HS, unlike SVM that has recommended search range in the litera-
ture, the RF search range in this study is considered as a reasonable one which
is decided based on past works. The hybrid HS-RF is focused to tune RF with
good generalization ability instead of finding the ‘best’ hyperparameters on a
particular dataset.

iii. The AI models focused in this study are only SVM and RF, where the evalua-
tion of the proposed hybrid models are only compared with these two. Other
AI models are not studied since they required cautious tuning of the hyperpa-
rameters which will require further investigations.

iv. HS is the main technique for automated tuning process. Although some studies
have treated other MA techniques as a standard to be overcome, we do not
include them in our comparative studies because utilizing MA requires pre-
setting of the parameters, and detailed experimentations are required for these
settings.

v. Application scoring is the main credit domain being focused in this study.
Hence, the classifications are based on applicants information instead of their
payment behaviours as in behavioural scoring.

vi. Predictive modelling that formulates credit models with good predictive ability
is the main study focus. Thus, formulation of descriptive models that study the
relationships of the attributes would require additional research efforts.

1.6 Research Objectives

The main objective of this research is to form credit scoring model that incorporates
HS algorithm with AI techniques. The specific objectives are:

1. to develop a hybrid HS-SVM with HS to conduct simultaneous features selec-
tion and hyperparameters tuning for SVM, then enhance model explainability
with the reduced features subset.

2. to develop a hybrid HS-RF with HS to conduct hyperparameters tuning for
RF, then enhance model explainability with the features importance computed
from RF.

3. to develop hybrid models with modified HS (MHS), forming MHS-SVM and
MHS-RF together with parallel computing that provide comparable solutions
as HS hybrids with lower computational effort.

4. to validate the model performances by internal benchmarking with standard
credit models across three credit datasets of different natures i.e. loan ap-
plication, credit card application and peer-to-peer lending as well as external
benchmarking with past literature studies.
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1.7 Thesis Organization

The content of this thesis are organized in five chapters. The current chapter
provides a general background and definition of credit scoring leading to the
problem statement and research motivation. The scope and limitations and research
objectives are outlined.

Chapter 2 studies the background and literature review of credit scoring, partic-
ularly on SVM, RF and MA. A general trend is outlined, followed by a general
overview of credit models based on the three techniques before funneling down
to the comprehensive review on hyperparameters tuning and model explainability
issues. Several research gaps from past researches are also addressed.

Chapter 3 shows the detailed formulation of the proposed hybrid models. The
standard SVM, RF and HS are explained. MHS for effective and efficient search is
presented. Then, the hybridization of both HS and MHS with the two AI techniques
i.e. SVM and RF are elaborated accordingly to show how the model development
solved the hyperparameters tuning and model explainability problems. Lastly, the
parallelization procedure is described.

Chapter 4 describes the experimental setup procedures starting from the credit
datasets preparation to the computational experiments of the proposed models
together with other benchmark models. Then, the results are reported and discussed
based on three aspects i.e. model performances, model explainability and computa-
tional time.

Chapter 5 summarizes and concludes the research findings based on results and
discussions to answer the research objectives in Chapter 1. Then, possible future
works are pointed out.
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