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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

 

FATIGUE ANALYSIS OF WOVEN INTRAPLY CARBON/KEVLAR 

REINFORCED EPOXY HYBRID COMPOSITE AT AMBIENT AND BELOW 

AMBIENT TEMPERATURE 

 

By 

 

NURAIN BINTI HASHIM 

 

August 2019 

 

Chairman: Assoc. Prof. Dayang Laila Abang Abdul Majid, PhD 

Faculty: Engineering 

Investigations on fatigue behaviour of aircrafts’ composite structure at different 

temperature environment are important since it was reported that most aircraft’s 

structural failures were due to fatigue. In addition, cyclic loading of composite structures 

also experiences self-heating, which affects fatigue. Composite materials based on fabric 

constructions for aerospace structures are usually made up of woven fabric fibres with 

multitude of ply orientations and stacking sequences. Carbon/Kevlar reinforced epoxy 

composite is one example with improved impact resistance compared to homogeneous 

CFRP and still maintains its high tensile strength and fatigue strength. However, 

fundamental understanding on how hybrid composites affected by fatigue remains an 

active research topic. This work seeks to establish the tensile and low-cycle fatigue 

behaviour of woven intraply carbon/Kevlar reinforced epoxy hybrid composites at 

ambient and low temperatures. The effects of self-heating to the fatigue life and how 

different environmental temperature affect the self-heating were also investigated. A 

cooling chamber was designed to provide the cold environment for both tests. In this 

work, coupon shape of woven intraply carbon/Kevlar reinforced hybrid composites were 

fabricated and tested at three different directions at tensile and fatigue tests. Concurrently, 

thermocouples were attached at the samples’ surfaces for self-heating analysis. Differ 

from common unidirectional composite, best tensile strength was obtained at 0°, 

followed by 90° and 45° fibre direction as Kevlar fibre plays as the dominant role at 90° 

fibre direction. Tension-tension fatigue tests in ambient temperature were done at 0°, 45° 

and 90° fibre directions. Best fatigue strength found at 90° direction as it has the lowest 

life degradation rate, which is 4.1% of its UTS. However, only fatigue data at carbon 

direction is agreeing with the mean curves plotted using the MLE method. S-N curves 

have larger scatter for samples tested at 45° and 90°, where the life cycles can be seen to 

be divided into two different stages. At low temperature, hybrid composite samples were 

only tested in tensile test and fatigue test at 0° direction, at 0° C, -5°C and -10°C. This 

material showed higher tensile strength but more brittle properties at low temperature. 

The fatigue behaviour was improved as the life degradation rate at sub-zero temperature 

decreased from 5.2% to around 3% of its UTS. For self-heating observation, internal heat 

generation is significantly influenced by the fibre structures and its stiffening properties, 
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not the stress level. At lower temperature, the heat generation also found to be influenced 

by the tensile modulus but did not affect the materials’ fatigue properties. All the results 

showed that the existence of different fibres in intraply hybrid composite gives large 

difference in tensile and fatigue properties. Low temperature condition also had affected 

the hybrid composites’ tensile and fatigue properties significantly.  
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ANALISIS KELESUAN KOMPOSIT EPOKSI DIPERKUAT DENGAN 

FABRIK HIBRID KARBON/KEVLAR DALAM SUHU AMBIEN DAN BAWAH 

SUHU AMBIEN 

 

Oleh 

 

NURAIN BINTI HASHIM 

 

 

Ogos 2019 

  

 

Pengerusi: Prof. Madya Dayang Laila Abang Abdul Majid, PhD 

Fakulti: Kejuruteraan 

 
Penyelidikan terhadap tingkah laku kelesuan struktur komposit pesawat udara pada suhu 

ambien dan bukan ambien adalah penting kerana majoriti kegagalan struktur pesawat 

adalah disebabkan oleh kelesuan. Semasa dikenakan kitaran daya, bahan komposit juga 

mengalami pemanasan sendiri, yang mempercepatkan kelesuan. Bahan komposit yang 

berasakan gentian untuk struktur aeroangkasa biasanya terdiri daripada gentian yang 

ditenun rapat dengan pelbagai orientasi dan susunan. Sebagai contoh, epoksi komposit 

yang diperkuat dengan karbon/Kevlar mempunyai rintangan hentaman yang lebih baik 

dari komposit yang dengan hanya gentian karbon dan pada masa yang sama masih 

mempunyai kekuatan tegangan dan kelesuan yang tinggi. Jenis komposit hybrid ini biasa 

digunakan dalam pesawat komersil Airbus A380 dan A310. Gabungan hibrid karbon / 

Kevlar ini diketahui akan mempunyai kekuatan tegangan dan kelesuan yang lebih baik 

dengan peratusan gentian karbon tertentu. Komposit intra-lapisan yang terdiri daripada 

pelbagai jenis gentian juga telah dilaporkan mempunyai peningkatan dalam kekuatan 

tegangan dalam penyelidikan yang terdahulu. Walau bagaimanapun, pemahaman asas 

sifat kelesuan dalam komposit hibrid masih lagi aktif sebagai topik penyelidikan. Tujuan 

kerja penyelidikan ini adalah untuk menganalisa dan memahami tingkah laku kelesuan 

komposit hibrid epoksi yang diperkuat dengan karbon /Kevlar pada kitaran tegangan 

rendah pada suhu ambien dan suhu rendah. Penyelidikan ini juga menyelidik kesan 

pemanasan sendiri kepada sifat kelesuan komposit dan juga bagaimana ia dipengaruhi 

oleh perbezaan suhu sekitar. Ruang penyejuk telah direka untuk menyediakan 

persekitaran yang sejuk. Komposit dipotong dalam bentuk kupon dan diuji pada tiga arah 

yang berbeza dalam ujian tegangan dan ujian kelesuan. Pada masa yang sama, 

termogandingan dilekatkan pada permukaan sampel untuk analisis pemanasan. Berbeza 

dengan komposit dengan susunan gentian sehala, kekuatan tegangan terbaik untuk 

komposit hybrid ini diperoleh pada arah sudut 0° diikuti oleh 90° dan 45°. Ini kerana 

gentian Kevlar bertindak sebagai dominan pada arah 90°. Ujian kelesuan di suhu ambien 

juga dilakukan pada sudut arah 0°, 45° dan 90°. Kekuatan kelesuan terbaik didapati pada 

arah 90° dengan catatan degradasi hayat bahan yang terendah sebanyak 4.1% daripada 

kekuatan tegangannya. Bagaimanapun, hanya data dari sampel yang diuji pada arah 0° 

didapati mematuhi garis linear MLE metod. Garis linear yang diplot untuk sampel yang 

diuji pada arah 90° and 45° kelihatan lebih berselerak dan kitaran hayat bahan terdiri 
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daripada dua peringkat yang berbeza. Pada suhu rendah, sampel komposit hibrid hanya 

diuji dalam ujian tegangan pada arah 0° pada suhu 0°C, -5°C dan -10°C. Bahan ini 

menunjukkan kekuatan tegangan dan sifat rapuh yang lebih tinggi pada suhu rendah. 

Tingkah laku kelesuan bertambah baik pada suhu rendah daripada 0°C, dimana kadar 

degradasi hayat bahan menurun dari 5.1% kepada 3% daripada nilai kekuatan tegangan. 

Untuk fenomena pemanasan sendiri bahan pada suhu ambien, penjanaan haba dalam 

struktur komposit tidak dipengaruhi oleh magnitud tegangan, tetapi sangat dipengaruhi 

oleh susunan dan sifat mengeras gentian. Pemanasan sendiri pada suhu rendah pula 

menunjukkan penjanaan haba juga dipengaruhi oleh modulus tegangan tetapi tidak 

mempengaruhi sifat kelesuan bahan. Keputusan penyelidikan menunjukkan bahawa 

kewujudan gentian yang berbeza dalam komposit hibrid dengan susunan intra-lapis telah 

memberikan perbezaan yang besar dalam sifat tegangan dan kelesuan. Keadaan suhu 

yang rendah juga didapati mempengaruhi sifat tegangan dan kelesuan komposit hibrid 

dengan ketara. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

 

Fibre Reinforced Polymer (FRP) composite materials are generally known as 

heterogeneous materials because it has two different constituents in one structure. The 

first constituent acts as the reinforcement, which are the fibres and can be in continuous 

or discontinuous form. The second constituent is the matrix that plays the role as the load 

transmitter inside the composite structures. Composite materials are naturally had been 

existed since the ancient time, where the Egyptian used the fibres from papyrus plant as 

the structure of their boats and sails and straws as the reinforcement in their mud wall 

structures (Herakovich, 1998). As composite materials are known for its high strength 

and light properties in general, what actually makes it popular and in the structure 

industries are its ability to be designed with specific strength and stiffness by tailoring 

the fibre directions and stacking sequences. Thus, researchers and engineers had been 

exploiting composite materials domestically in various kinds of technologies that need 

structures to be designed in a lighter and stronger form such as aircraft structures, wind 

turbines and bridges since the early of 1960s (Wang et al., 2011). 

 

 

Until recent, one of the biggest industries that actively exploiting FRP composite is the 

aircraft and aerospace industry. As replacing metals with FRP composites can reduce the 

weight of the aircrafts’ structure, these materials has been used widely for exterior 

structures of the aircrafts such as radome, fairings, horizontal stabilizer and rudder. It 

was also reported that in 2014, usage of composite materials in commercial aircraft 

structures had increased by 10.7% (Mazumdar, 2015) and it was estimated that there will 

be a rapid increase of 290% of aerospace demand for Carbon Fibre Reinforced Polymer 

Composite, CFRP in between 2012 to 2020 (Mazumdar et al., 2018). To make sure that 

these FRP materials are safe as the aircraft structures, these materials must fulfil the 

design specifications given by the Federal Aviation Administration (FAA). Based on the 

material qualification for composite materials given in the technical report (Tomblin et 

al., 2003), the composite materials’ reliability for aircraft structures must be determined 

by running several material characterization tests to make sure that its mechanical 

properties meet the aircrafts’ design specifications. In addition, the design also must 

minimize the thermal effects and ensure that each points of stress concentration are at 

low risk of any catastrophic fatigue failure during operating. Thus, mechanical 

characterization test like static and compression test, impact test and fatigue test done in 

various environmental conditions are crucial in developing the FRP composite materials 

for aeronautics and astronautics applications.  
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1.2 Carbon/Kevlar hybrid composite materials 

 

FRP composites known to be superior in strength and lightweight compared to metal. 

However, its drawbacks in several aspects limited it applications in the industry. For 

examples, composites with glass (GFRP) and Kevlar (KFRP) as reinforcements with 

epoxy matrix have low strength and low maximum temperature regardless of its high 

flexibility. The most commonly used carbon fibres reinforced composite (CFRP) also 

has its weakness, which is its superiority in stiffness makes it too sensitive to impact. In 

addition, as carbon fibre is a very good heat and electric conductor, its susceptibility to 

lightning makes CFRP not suitable to be used in aircrafts’ radome structure. 

 

To make use of these fibres to its fullest potential in each application, researchers came 

up with hybridization in the CFRP composite materials. Through hybridization, 

improvement doable on the material’s properties that do not reach specific requirements 

by only using a single type of fibres/matrices. Hybridizing in the composite materials 

can be done in two ways, which are hybridizing the fibres or hybridizing the matrix. For 

hybridizing fibre in composites, Low Elongation fibres (LE) will be used together with 

High Elongation Fibre (HE) in one matrix. Addition of high strength LE fibres will 

increase the hybrid composites’ load sustaining capability and LE fibres can be delaying 

its strain failure, thus improves the impact resistance of the homogeneous FRP without 

reducing too much of its strength.  

 

To get the best positive hybrid effect (i.e. increase in failure strain, increase in tensile 

strength), several configurations were applied in hybridizing different fibres in these 

composite materials. The most common methods are shown in figure 1.1, which are 

interlayer/interply, intralayer/intraply and intrayarn. Interply configuration is the method 

where different fibre sheets were stacked onto one another and fabricated into composite. 

Fibre cloth used in interply method can be in form of chopped strand mat (CSM), 

unidirectional (UD) or woven types. On the other hand, intraply configuration is where 

two or more different fibre yarns were weaved together in one cloth and in intrayarn, all 

the fibres were mixed in one bundle of yarn. Intraply fibres or also known as woven fibre 

fabrics are also much easier to manufacture and lower cost compared with the UD fibres 

(Karaduman et al., 2017). In addition, there are also not much of difference in terms of 

cost between the homogeneous fibres and the woven hybrid fibres found in the market. 

Woven fibre composites were already exploited in the aircraft industries like in Boeing 

737-300, woven (twill) carbon fibre composite were used as its winglets structures (Liu 

et al., 2016). However, even though hybrid composites were reported to be already used 

in the aircraft industry, the fibres structures were not publicly mentioned. 
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Figure 1.1: Methods of Hybridizing Fibres in Composite Materials 

  

 

For hybridized CFRP composites, carbon fibres used usually referred as the low 

elongation fibre (LE) and hybridized with high elongation fibre (HE) like glass, Kevlar 

and natural fibres. In one of the earliest work on hybridizing CFRP composites (Dorey 

et al., 1978), it was reported that hybrid of carbon/glass FRP composites could not resist 

high impact load due to the large gap of modulus between carbon and glass fibres. Other 

work (Richardson and Weisheart, 1996) also reported that hybridized fibres with bigger 

modulus mismatch are much more complex to be designed. Thus, this work suggested 

that hybridizing carbon fibres with aramid (Kevlar) fibres, which have higher modulus 

than glass fibres were seen to be better in improving CFRP impact resistance. In addition, 

hybridizing Kevlar with carbon fibres will cost lesser than producing the homogeneous 

Kevlar fibres composite. The positive hybrid effect of carbon/Kevlar hybrid composite 

on its compression strength and impact resistance were already proven in the previous 

works (Gustin et al., 2005; Muhammad et al., 2015; Kartal and Demirer, 2017). Until 

recent, carbon/Kevlar hybrid composites had been used widely in the commercial aircraft 

structures such as pylon fairing access panel of Airbus A380. In figure 1.2, it showed 

that carbon/Kevlar hybrid composites were used as the structures of the tail components 

the Airbus A310 aircraft.  

 

 

 
Figure 1.2: Applications of Carbon/Kevlar Hybrid Composite in Components of 

Airbus A310 (Gay and Hoa, 2007) 
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1.3  Fatigue of composite materials 

 

Fatigue damage is failure that occurs when the properties of the material changes due to 

the repeating stresses applied under its Ultimate Tensile Strength (UTS). Fatigue 

performance and its damage failure mechanism rely on the knowledge of composite 

materials, as it is very important in designing structures. In addition, it has been widely 

used these days as the main materials of gigantic and critical structures like bridges, wind 

turbine blades and aircraft. Despite the improving manufacturing processes, accidents 

that caused by fatigue phenomenon in aircrafts are still occurring. Previously, it was 

predicted that within period of ten years, major aircraft accident due to fatigue damage 

will likely to occur every week (Bathias and Pineau, 2013). According to (Findlay and 

Harrison, 2002), based on the assessment of failure modes, it was also found that the 

incidence of fatigue failure has the highest distribution with 25% in aircraft and 55% 

failures on the engineering and aircraft components, respectively. 

 

Fatigue test is one of the conservative methods for predicting the life of a material and 

its behaviour during experiencing cyclic loading. Generally, fatigue test can be 

categorized into three categories such as mechanical fatigue test, thermo-mechanical 

fatigue test and thermal fatigue test (Mall and Ermer, 1991). A mechanical fatigue test is 

the most common test that works by applying cyclic loading to a specimen in ambient 

temperature with constant pressure and constant amplitude. The mechanical fatigue test 

also be conducted at constant non-ambient temperature (isothermal). Meanwhile, 

thermo-mechanical fatigue test is conducted with both cyclic loading and cyclic 

temperature that varies from sub-zero temperatures until extremely high temperatures 

and rely on the application of the materials. On the other hand, a thermal fatigue is a test 

in which there is no load applied onto the specimens. Fatigue failure that occurs during 

this test initiated and propagated by the thermal stresses occurs due to the temperature 

changes for the material experienced (Gabb et al., 1990) 

 

Characteristics of fibre reinforced composite (FRP) is different from metallic materials 

because it is generally consisting of fibres and matrix. Several parameters like fibre 

volume used, resin types, fabricating methods and fibre-stacking sequences contribute to 

the multitude of material characteristics of the composite materials. Therefore, its fatigue 

behaviour is also different from the common metallic materials, which the brittle 

composite materials will not deform plastically, and its fatigue failure usually occurs 

abruptly with combinations of several failures like delamination, matrix failure and fibre 

failure (Vassilopoulos and Keller, 2011). As the load applied during the fatigue test is 

also in cyclic pattern, this process will naturally generate excess energy in a form of heat. 

For low thermal conductivity composite materials, the heat generated usually will 

accumulate inside the structures and resulted with self-heating phenomenon (Katunin et 

al., 2010). Thus, the effect of generated heat also must be taken into careful 

considerations when conducting fatigue test on composite materials. 
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1.4 Problem statement 

 

From a review work on hybrid composites in (Swolfs et al., 2014), extensive research on 

the tensile properties of hybrid composites had been done by many researchers and well 

understood. However, most of the works done on the behaviour of hybrid composites 

under several loading condition, such as in flexural, impact and fatigue tests were found 

to have several contradictions and unclear patterns results. This review also reported that 

even though there are many works that had been extensively investigated the mechanical 

properties of hybrid composite materials, there are still limited studies done on the 

fatigue resistance. 

 

Investigations on fatigue behaviour of several types of hybrid composite in ambient 

temperature were already reported in several literatures reviewed. Most of the studies 

conducted the fatigue tests to investigate the effect of layup sequences of different fibres 

in carbon/glass hybrid composites (Dickson et al., 1989; Shan and Liao, 2002; Belingardi 

et al., 2006; Wu et al., 2010; Pandya et al., 2011; Murugan et al., 2014; Poyyathappan et 

al., 2014) Carbon/aramid hybrid composites were also had been studied in these works 

(Fernando et al., 1988; Marom et al., 1989). Most of these works used interply fibre 

sequences in their hybrid composites but detailed investigation on the hybrid composites 

with woven(intraply) fibre sequences are still lacking. In addition, in woven structures, 

where the fibres arrangement is closer and dominant fibres are different at 0° and 90° 

directions, very limited works had reported the mechanical properties and fatigue 

behaviour at each fibre loading respectively. 

 

On the other hand, mechanical properties and impact resistance on the interply and 

intraply carbon/Kevlar fibres hybrid composite was proved to have positive hybrid effect 

in these works (Gustin et al., 2005; Salehi-khojin and Mahinfalah, 2007; Wan et al., 

2007; Kartal and Demirer, 2017). However, it was clear that there was an absence of 

research work done on the fatigue behaviour of carbon/Kevlar hybrid composite in both 

ambient and non-ambient temperature. In addition, most of the previous investigations, 

(Botelho et al., 2009; De Baere et al., 2011) were only considering the fatigue behaviour 

of its respective homogeneous composites. Other types of hybrid composites, which is 

carbon/glass hybrid also investigated in (Gururaja and Harirao, 2013) and Kevlar fibres 

with hybrid matrix in (Ferreira et al., 2013). Surprisingly, the only fatigue study done on 

carbon/Kevlar hybrid composites was done in (Fernando et al., 1988), which was only 

focusing on its fatigue properties at unidirectional direction. This work reported that 

Kevlar does not affect the fatigue strength of unidirectional carbon/Kevlar composites at 

a certain percentage of volume ratios. There was still no extensive investigation on the 

fatigue behaviour of hybrid composites with woven structures of both carbon and Kevlar 

fibres. Its fatigue behaviour with woven fibre structures might have similar pattern or 

different results compared to what had been reported before. 

 

In addition, the literatures reviewed also showed that there are still lack of study on how 

the environmental changes affect the self-heating process and the damage progression 

on hybrid composites. FRP composites applied in aircraft structure will generally 

experiencing large range of temperature changes during its operation due to weather 

conditions and engines’ operation (Gay and Hoa, 2007; Administration, 2008). As 
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aircrafts’ skin experience high temperature rise due to the friction during operating 

(Council, 1996), it will also experience low temperature environment, which ranges 

between ambient to -15°C during the cold weather on the ground. Therefore, to ensure 

that this type of hybrid composite is reliable to be exploited in aircraft structure, extensive 

ambient and below ambient fatigue testing at different fibre directions are required to 

establish the useful life of the woven carbon/Kevlar hybrid composites.   

 

Other than heat applied from the environmental condition, some works in (Mortazavian 

et al., 2015; Katunin, 2017) reported that at certain frequency and stress level, self-

generated heat also accelerated the damage progression in composite structures. From 

the experimental results done in these works (Shah and Tarfaoui, 2014; Peyrac et al., 

2015; Katunin, 2017; Katunin et al., 2017), self-heating in homogeneous composites was 

found to have significant effect to its fatigue behaviour. However, no work can be found 

on reporting the self-heating effect to hybrid composites’ fatigue behaviour. In 

hybridized fibre composites, different Coefficient of Thermal Expansion (CTE) of fibres 

might give different effect to the hybrid composites’ properties during the self-heating 

process. Moreover, there is also no work can be found on investigating the environmental 

temperature effect to the self-heating process. Thus, effect of temperature increase by the 

generated heat during cyclic loading on the fatigue behaviour of hybrid composites also 

needed to be investigated. 

 

1.5 Research objectives 

 

This research work will contribute on analysing the fatigue behaviour of the hybrid 

composite with reinforcement of woven intraply carbon/Kevlar fabrics and epoxy matrix 

and both ambient and below ambient temperature. Through this work, the tensile and 

fatigue behaviour of the hybrid composites will be established not only one but at three 

different fibre directions, where different fibre types play the dominant role. Through the 

analysis done on its fatigue behaviour at ambient temperature, we can learn and 

understand on how the hybrid composites degrades and estimate its life cycles when 

applied to repeated tensile load under its maximum tensile strength. In addition, by 

conducting the fatigue tests at lower temperature, how temperature changes affect its life 

degradation pattern, life cycles and material properties can be understood. 

 

In addition, analysis on the self-heating process also will help us on understanding what 

parameters that significantly caused the phenomenon. It also will help us on 

understanding how the extra heat generated during the fatigue loading process can affect 

the hybrid composite materials’ degradation process at both ambient and low temperature. 
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The objectives of this research work are as follows 

 To establish the tensile properties of woven carbon-Kevlar fibres 

reinforced epoxy hybrid composites at different loading directions at 

ambient temperature.  

 To investigate the tension-tension fatigue behaviour of hybrid composite 

at different fibre directions in ambient temperature environment. 

 To analyse the effect of below ambient temperature environment to the 

hybrid composite’s tensile properties and fatigue properties. 

 To assess the effect of stress level and loading direction to the self-heating 

process during fatigue loading. 

 To investigate the effect of self-heating process to the fatigue behaviour 

of hybrid composites at ambient and below ambient temperature 

environment. 

 

1.6 Scope of research 

 

The current work mainly investigated the fatigue behaviour of plain-woven 

carbon/Kevlar reinforced epoxy hybrid composites. Hybrid composites were first tested 

under tensile loading and the ultimate tensile strength value obtained from the tests will 

determine the stress level applied during fatigue loading. Tensile tests and fatigue tests 

at ambient temperature were done at three different loading direction, which at carbon 

direction (0°), Kevlar direction (90°) and 45° direction. Fatigue tests were conducted at 

constant frequency, which is 10 Hz and constant amplitude, R = 0.1. Fatigue test mode 

was in tension-tension mode as subjecting the materials with compression force might 

require extra fixtures to prevent buckling. For tensile and fatigue tests at low temperature, 

hybrid composites were only tested at carbon fibre direction. This was because hybrid 

composites showed some stiffening effect during fatigue tests at both Kevlar and 45° 

direction. As this work will only focus on the influence of environmental temperature to 

the hybrid composite’s fatigue behaviour, fatigue tests at low temperature were only done 

at carbon fibre direction to avoid the influence of stiffening effect to the hybrid 

composites. For tests done at low temperature level, small temperature ranges were 

chosen, which is from 0°C, -5°C and -10°C. This temperature range was chosen based 

on two factors. The first factor is because of the nonlinearity of modulus changes and 

CTE in matrix and fibres at very low temperature. The second factor is because of the 

cooling chamber capability where it can only operate at constant temperature and at long 

time at minimum of -10°C. 
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