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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy. 
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Corneal Arcus (CA) is a sediment accumulation that occurs by the production of lipid 

(i.e. cholesterol) in the ocular eye. It is associated with hyperlipidemia caused by 

abnormal lipids present in the blood vessels. It occurs around the cornea with 0.3 - 1 

mm wide in the iris-sclera region. The appearance of it looks like a yellowish-white 

ring around the cornea. This condition often occurs among older people, but in the case 

with young people, it is risky which associated to heart problems or stroke. In a health 

examination, usually an ophthalmologist or doctor who finds the patient has a CA sign, 

will ask them to do further treatment such as blood test. This is to ensure cholesterol 

(lipid) in their blood is normal or not. This procedure requires a small amount of blood 

taken from the blood vessels in the patient's arms. It is slightly painful, requires cost 

and time, besides the patient should fast for 12 hours before the test can be done. 

 
 

The current work for CA’s classification only focusing in the entire area of iris 

segmentation. This research is focusing on better ROI for iris segmentation by reducing 

the unwanted area, in order to maximize the useful region contain the CA presence. 

The segmentation iris is transformed to rectangular shape using the Rubber Sheet 

method. In this research, two categories of eye’s images which are the normal, and the 

abnormal (i.e. CA) are used. The normal eye, dataset are taken from the eye database 

(i.e. UBIRIS, CASIA, and IITD). Meanwhile, the CA's eye images were acquired from 

the medical website and the reports (e.g. journals). For the abnormal eye, the images 

has been examined and confirmed by a doctor who checks the images for verified that 

the images are the cases of CA. 
 

 

The framework consists of three stages of implementation such as pre-processing, 

features extraction and classification. First stage (pre-processing stage) consists of 

segmentation and normalization of the region of interest (ROI). The second stage (i.e. 

feature extraction stage) extracts the features based on ROI using the grey-level co-

occurrence matrix (GLCM). The last stage is the classification, where it is used to 
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identify the presence or absence of the CA. To ensure the obtained classification results 

are robust and stable the cross validation (CV) technique is used. The random dataset 

are selected by CV in the classification process (i.e. training, testing and validation). 

The benchmark of the classification algorithm for CA is needed to analyze the optimal 

output of the algorithm. The classification algorithms such as the Lavenberg-Marquardt 

(LM), Bayesian regularization (BR), scaled conjugate gradient (SCG) and one model of 

bag-of-features (BoF) are used in this research. The elements extracted from the 

confusion matrix parameters (i.e. accuracy, specificity, sensitivity, AUC, precision and 

f-score) are used in benchmarking the optimal performance of classification algorithms. 

Among the three neural network classifier used, BR is the best classifier. The accuracy 
output can be tune up to 97.2%, sensitivity 96.56%, and specificity 97.45%. On the 

other hand, the BoF model produced better precision of 98.04%, sensitivity 96.23%, 

and specificity of 100%. Based on this result, the neural network's platform for CA 

classification is successfully developed using the proposed framework. The result had 

been improved with the classification of the CA images from another benchmarking. 

The system can classify between CA and normal eye with good significant results. 
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Corneal Arcus (CA) adalah pengumpulan sedimen yang terhasil daripada penghasilan 

lipid (iaitu kolesterol) di kawasan ocular mata. Ia dikaitkan dengan hiperlipidemia yang 

disebabkan oleh lipid yang tidak normal di dalam saluran darah. Ia berlaku di sekitar 

kornea dengan lebar 0.3 - 1 mm di rantau iris-sclera. Kemunculannya kelihatan seperti 

cincin kuning-putih di sekeliling kornea. Keadaan ini adalah kejadian biasa di kalangan 

orang tua, tetapi dalam kes orang muda, ia dikaitkan dengan masalah jantung atau 

strok. Dalam pemeriksaan kesihatan, apabila mendapati pesakit menunjukkan tanda-

tanda CA, pakar mata atau doktor biasanya mencadangkan penilaian selanjutnya seperti 

ujian darah. Ini untuk memastikan paras kolesterol (lipid) dalam darah mereka adalah 

normal atau sebaliknya. Prosedur ini memerlukan sejumlah kecil darah yang diperoleh 

dari pembuluh darah di lengan pesakit. Ia sedikit menyakitkan, dan kompleks seperti 

pesakit harus berpuasa selama 12 jam sebelum ujian boleh dilakukan.  
 

 

Amalan semasa untuk klasifikasi CA memberi tumpuan kepada keseluruhan kawasan 

segmentasi iris. Kajian ini akan memberi tumpuan kepada rantau yang lebih menarik 

(ROI) untuk segmentasi iris dengan mengurangkan kawasan yang tidak diingini, untuk 

memaksimumkan rantau yang berguna dengan kehadiran CA. Segmentasi iris diubah 

menjadi bentuk segi empat tepat menggunakan kaedah lembaran getah. Dua kategori 

imej mata, iaitu normal dan tidak normal (dengan CA), digunakan dalam kajian ini. Set 

data mata biasa diperoleh dari pangkalan data mata yang sedia ada (iaitu UBIRIS, 

CASIA, dan IITD) sementara itu, imej mata CA diperoleh dari laman web dan laporan 

perubatan (contohnya: Jurnal). Untuk kategori mata yang tidak normal, imej tersebut 
diperiksa dan disahkan oleh doktor bahawa imej itu adalah dari kes CA.  

 

 

Rangka kerja ini terdiri daripada tiga peringkat pelaksanaan, iaitu pra-pemprosesan, 

pengekstrakan ciri, dan klasifikasi. Peringkat pertama (tahap pra-pemprosesan) terdiri 

daripada segmentasi dan pernormalan kawasan minat (ROI). Tahap kedua (iaitu tahap 

pengekstrakan ciri) mengekstrak ciri-ciri berdasarkan ROI menggunakan matriks co-
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occurrence level kelabu (GLCM). Peringkat terakhir ialah klasifikasi, di mana ia 

digunakan untuk mengenal pasti kehadiran atau ketiadaan CA. Untuk memastikan 

keputusan klasifikasi yang diperolehi mantap dan stabil, teknik pengesahan silang (CV) 

digunakan. Set data rawak telah dipilih melalui CV semasa proses klasifikasi (iaitu 

latihan, ujian, dan pengesahan). Penanda aras algoritma pengklasan untuk CA 

diperlukan untuk menganalisis keluaran optimum algoritma pengelas. Algoritma 

pengklasifikasian seperti Levenberg-Marquardt (LM), penyesuaian Bayesian (BR), 

skala kecerunan konjugat (SCG) dan satu model ciri-ciri (BoF) digunakan dalam 

penyelidikan ini. Unsur-unsur yang diekstrak dari parameter matriks kekeliruan (iaitu 

ketepatan, kekhususan, kepekaan, AUC, ketepatan dan skor-f) digunakan dalam 
menanda aras prestasi optimum algoritma klasifikasi. Antara tiga pengeluar rangkaian 

neural, BR adalah pengelas terbaik. Ketepatan keluaran boleh mencapai sehingga 

97.2%; kepekaan, 96.56%; dan kekhususan, 97.45%. Sebaliknya, model BoF 

menghasilkan ketepatan yang lebih baik sebanyak 98.04%; kepekaan, 96.23%; dengan 

kekhususan pada 100%. Berdasarkan keputusan ini, platform rangkaian neural untuk 

klasifikasi CA berjaya dibangunkan menggunakan rangka kerja seperti yang 

dicadangkan. Keputusan menunjukkan penambahbaikan berbanding dengan klasifikasi 

imej CA dari platform penandaarasan yang lain. Pada asasnya, sistem boleh 

membezakan antara CA dan mata normal dengan hasil yang sangat baik. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 

1.1 Background 

 
 

Conventionally, cholesterol in the bloodstream is measured through lipid profile 

testing. To perform this procedure, the patient's blood sample should be taken after the 

patient is made to fast for 9 – 12 hours. This blood sample is expected to have 

undergone some of the enzyme response to obtain the presence of cholesterol. The 

procedures of lipid profile are performed in a medical laboratory using lab 

instrumentation. Nevertheless, lipid profile has its difficulties because it requires a 

laboratory facility for testing and storage of the samples. Moreover, the procedure is 

time-consuming as it involves particular procedural steps for measuring cholesterol 

levels. Due to these complications in conventional lipid profile, alternative cholesterol 

detection methods have been sought by researchers involving either invasive or non-
invasive techniques. The invasive method (Sarkar et al. 2012) exploits the dielectric 

properties in certain microwave frequencies to measure cholesterol in blood. Another 

cholesterol detection method utilises the infrared (IR) absorption properties in 

bloodstreams via the vein (Haq et al. 1991). Oncescu et al. (2014) proposed a 

system that measures blood cholesterol levels using a smart-phone application 

(Oncescu et al. 2014). The system requires blood droplets to be placed on test strips, of 

which filtering is also involved. The images of the resulting reaction of the blood with 

the enzymes are then stored in the phone's memory card. These images are then 

processed such that the HUE status is evaluated by referring to the amount of 

cholesterol in the blood. In contrast, the invasive methods require blood samples to be 

taken from the patient's body. This circumstance can impose discomfort on the patients, 

especially those with diabetes. Thus, non-invasive methods significantly reduce 
complexity and pain in measuring cholesterol levels, making it one of the viable 

alternatives for cholesterol detection. The method does not require penetration or 

piercing of the skin, hence eliminating pain and discomfort from the patients. 

Furthermore, non-invasive methods may even detect the presence of cholesterol using 

other mediums instead of blood samples. According to medical research, cholesterol 

detection can be ascertained from the presence of cholesterol that is deposited in the 

corneal region of the eye (Urbano 2001; Fernández et al. 2007; Panahi-Bazaz et al. 

2014; Reddy et al. 2015). Corneal arcus (CA) occurs in the ocular section when there 

are abnormalities in the human metabolism. These abnormalities include cholesterol, 

lecithin, and other lipids in the blood that will deposit in the cornea (Macchiaiolo et al. 

2014; Chang & Yuan 2016). Researchers have proposed a number of corneal arcus 
classification systems based on different extraction techniques and used a variety of 

algorithm classifiers (Rajendra et al. 2006; Acharya et al. 2007; Kumar & Gunasundari 

2018; Kumar et al. 2016; Mahesh & Gunasundari 2016). Several gaps in CA 

classification have been identified. These pertain to three issues: segmentation and 

ROI; feature’s extraction; and classification, training, testing, and evaluation. 
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Figure 1.1: The CA condition in the patient’s eye. 

 

 

The cornea is the outermost layer of the eye that serves as a transparent front layer to 

the eyeball, which allows light to be focused into the centre of the retina. Corneal 

problems occur when the cornea is prevented from receiving or allowing light to enter 

the retina, a condition which causes partial vision impairment and may lead to total 

ocular impairment or blindness. Examples of eye diseases related to corneal problems 
are corneal arcus (CA), corneal haze (Acharya et al. 2007), corneal abrasion (Khurana 

2007), corneal dystrophy (Bigar et al. 2001), pterygium (Abdani et al. 2016), glaucoma 

(Acharya et al. 2015), cataracts (Patwari 2011), and diabetic retinopathy (DR) (Akrama 

et al. 2013). Some of the aforementioned corneal problems was not only found to be 

associated with ocular health but may also be related to bodily health (Coady et al. 

2014). There are situations where a systemic disease is initially undetected but 

subsequently discovered through eye examinations that revealed the existence of 

abnormalities in the eye (cornea) or its surrounding area. These abnormalities indicate 

symptoms of a systemic disease or complications with other organs (Bigar et al. 2001; 

Panahi-Bazaz et al. 2014; American Optometric Association [APA] 2015; Coady et al. 

2014; Bronner 2015). Studies showed that a comprehensive eye examination can be 

used as a precursor to the detection of signs of more serious diseases (for example; 
acute diabetes, cancer and heart problems). Moreover, the detection of systemic 

diseases using eye examinations is inexpensive and reduces the cost of healthcare or 

rehabilitation, which would otherwise incur due to a delay in disease detection. There 

have been many studies on how classification is applied to medical images. Most 

studies on classification use a framework consisting of three elements; pre-processing, 

feature extraction, and classification. The differences between the studies are the image 

dataset, the segmentation, the technique of extracting and selecting features, and the 

classifier used in each study. The challenge when suggesting a framework is to produce 

the most accurate framework of classification for the findings using the proposed 

algorithm. Akram studied a micro-aneurysm image for early detection of diabetic 

retinopathy (Akrama et al. 2013). Researchers like Acharya et al. (2015), A.Rajan et al. 
(2014) have conducted studies on glaucomatous or glaucoma diseases. Acharya 

extracted features using PCA and made classification using support vector machine 

(SVM) (Acharya et al. 2015), while Rajan used a single level discrete wavelet 

transformed (DWT) for feature extraction and then classified the data using the k-

nearest neighbors (KNN) classifier  (A.Rajan et al. 2014). Iridology is a method used in 

complementary medicine. Iridology uses the eye as a medium for the diagnosis of 
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diseases associated with the health of the human body. Hussein et al. used adaptive 

Neuro-fuzzy inference system (ANFIS) in their studies (Hussein et al. 2013). They 

proposed a system to classify the eye that has features referring to kidney problems and 

eyes that show the patient is free from kidney problems. Nor’aini et al. (2013) 

investigated the use of the eye as a diagnostic medium for the study of the pelvis and 

the vagina (Nor’aini et al. 2013). The division of both positions was based on 

the iridology eye chart. They proposed the use of a support vector machine with radial 

basis function kernel (SVM-RBF) for image classification. 

 

 
1.2 Problem Statement 

 

 

The CA segmentation region is indeed a challenging aspect of classification. 

Consequentially, improper segmentation can cause misclassification of normal eyes to 

be falsely diagnosed with CA thus significantly diminishing the accuracy of the 

classification. Commonly affected area for CA is in fact the lower iris, which borders 

the limbus on the eyes. According to Urbano, CA is identified as a yellowish-white 

ring around the cornea, separated from the limbus area with a clear zone of 

approximately 0.3 to 1 mm in width (Urbano 2001). It is usually perceived at the 

bottom of the iris and does not cover the entire iris and pupil. The most common 
method to define the CA area is by pupil segmentation and iris circle (Acharya et al. 

2007; Kumar & Gunasundari 2018). However, considering the whole segmentation 

area into the CA region analysis does not necessarily benefit accuracy. This is because 

these areas also include sections that are unaffected by CA (i.e. pupil and part of the 

iris). In another work, CA segmentation is proposed using component fusion, union-

find algorithm, and colour quantitative analysis (Chang & Yuan 2016). Nevertheless, 

the work only pertains to the segmentation process and does not include 

any classification method. A state-of-the-art segmentation of ROI for CA is crucial for 

this research to ensure efficient analysis on the characteristics of the CA region. In 

addition, this effectively reduces the areas that are inapplicable to the analysis, which 

will benefit image processing by reducing overall time consumption and optimizing 

algorithm processing.  
 

 

Essentially, the focus of this research is to attain ROI that contains CA features by 

eliminating unwanted areas and maximizing useful areas. A proper segmentation is 

worthwhile and helpful for the following process in feature extraction. It can produce 

relevant texture features that can represent each image category. Binary classification is 

used in this research such that there are two categories of eye images (i.e. normal and 

CA). Feature extraction (FE) is another challenge that needs to be considered in this 

work. FE provides the input data to be processed by the classifier. One of 

the classic methods for FE is the statistical method (SM) that calculates operating 

statistics based on the pattern images. SM is the easiest method for texture extraction 
purposes as it has strong adaptability and robustness (Zhang et al. 2017). A first-order 

SM calculation was once used to gain texture features that was then fed into SVM for 

classification of CA (Mahesh & Gunasundari 2016). Another type of SM is the co-

occurrence level grey matrix (GLCM) which is widely used in texture descriptions 

(Haralick et al. 1973). In the study of other types of images, GLCM is used as feature 

extractor. It is reported to have good contribution towards classification results. Some 

of these studies include face recognition (Eleyan & Demirel 2011), x-ray images (Zare 
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et al. 2013), glaucoma (Karthikeyan & Rengarajan 2013), mammogram (Beura et al. 

2015), brain image (Veeramuthu et al. 2015), liver (Nusantara et al. 2015), and MRI 

(Brynolfsson et al. 2017). Other feature extraction methods for CA are statistical value 

(Rajendra et al. 2006), extract cluster centroid and k-means algorithm (Acharya et al. 

2007), grey level mean (GLM) (Kumar et al. 2016), first-order statistical and wavelet 

(Kumar & Gunasundari 2018), exact Legendre moment (ELM) and geometric moment 

(GM) (Nasution & Kusuma 2009).  

 

 

The selection of feature extraction is another challenge especially when it involves 
large numbers of features. The best features must be acquired from the feature 

extraction to be fed into the classifier. This includes feature ranking and feature 

selection in order to obtain only good features for the classification. The feature 

ranking is used (Kumar & Gunasundari 2018) such that five numbers from each feature 

extraction are of first-order statistical (FOS) and wavelet feature extraction. Most of the 

work involving CA studies did not clearly state the methods executed for feature 

ranking and feature selection. Thus, this is one of the gaps that can be studied and 

discussed in more detail especially on the methods for texture features. After 

the features have been decided, the next process is the CA classification.  

 

 
This process involves training, testing and validation using feature data as inputs. 

Establishing the best classifier for CA classification is also another challenge faced in 

this research. There are different types of classifiers that have been used by researchers 

in relation to CA studies such as neural network, fuzzy, adaptive neuro fuzzy inference 

system (ANFIS) (Rajendra et al. 2006), radial basis function network (RBF) (Acharya 

et al. 2007), and support vector machine (Kumar & Gunasundari 2018). In this 

research, three types of neural network were proposed (i.e., LM, BR, and SCG) with 

the addition of one of the bag-of-features (BoF) model, used in the classification 

process. The state-of-the-art classification techniques were experimentally evaluated 

within the context of CA studies. 

 

 
1.3 Objectives 

 

 

The main intent of this thesis is to identify an abnormal eye, specifically 

corneal arcus (CA), using image processing. The objectives of this study are 

listed below;  

 

i. To develop the algorithm for segmentation of the iris and obtain the 

region of interest (ROI). The aim is to reduce unwanted areas and 

maximize the information for classification. The rubber sheet method is 

applied for transforming the circle segmentation into a rectangular shape 
and perform area truncation encompassing the CA region.  

 

ii. To develop an algorithm for extracting features and accomplish feature 

selection with the image texture as input data to the classifier using 

GLCM in neural network and SURF features descriptor in the BoF 

model.  
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iii. To investigate the effectiveness of the classifiers for the CA images. 

Furthermore, comparisons were made based on the previous 

classifications used for benchmarking. 

 

 

1.4 Scope 

 

 

This research predominantly focuses on improving the classification of corneal arcus. 

Two categories of images are used in this research; the normal eye category images 
were acquired from publicly available datasets such as CASIA, UBIRIS and IITD; 

meanwhile, for the abnormal eye category, the images were collected from many 

sources i.e. medical and alternative medicine practitioners’ websites, journals, reports 

and articles. The verification from an eye specialist are as described in Appendix E, 

which confirms that the abnormal images indeed fall into the CA category. The 

experiment was conducted using four classifiers which were BR, SCG, LM, and BoF 

model. Several benchmark works (Acharya et al. 2007; Rajendra et al. 2006; Mahesh & 

Gunasundari 2016; Kumar & Gunasundari 2018) were chosen to be compared with the 

experiment findings. Performance evaluation based on confusion matrix was used to 

gain necessary parameters such as accuracy, sensitivity, specificity, precision, and f-

score. The AUC value was also presented based on the ROC. The experiment used 
neural network topology for the three classifiers (i.e. BR, SCG, and LM). The input 

of the neural network was the five statistical features calculated from GLCM matrix. 

The hidden layers (HL) were limited to ten with the output being the binary 

classifications, either normal or abnormal. 

 

 

1.5 Thesis Layout 

 

 

The following paragraph in this section comprises a summary of each chapter of this 

thesis.  

 
 

Chapter 2 contains the literature review of the related processes around corneal arcus 

(CA) from a medical perspective and a discussion regarding of the classification of the 

CA classification system. The objective of the chapter is to locate the gaps in research 

and to answer research questions such as about the CA, the importance of this study, 

problem statement and how to solve it. Relevant literature related to classification 

performance is discussed alongside possible causes and effects.  

 

 

Chapter 3 consists of a discussion the methodologies used for the entire work. An 

explanation is made of the process; from raw images, the localisation and segmentation 
the ROI, image extraction, selection features, and classifier process. For this process, 

an explanation has been made of the issue of narrowing on the grey level extraction 

feature using the grey level co-occurrence matrices (GLCM) and their statistical 

features. The technique for each of the stages is discussed in terms of establishing a 

mainstream for image processing technology.  
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Chapter 4 presents the results and the discussion. All techniques found in the literature 

are presented and implemented with example images obtained from each process. A 

detailed discussion is undertaken on the implementation of co-occurrence matrix 

statistical features from the images. The emphasis stage of ROI and selection of 

features proposes a novel implementation to demonstrate the meaning of successful CA 

classification. 

 

 

Chapter 5 concludes the entire work, summarises the contribution to research and 

suggests future work in this field.  
 

 

The Appendix F includes attachments such as the MATLAB script file, data image of 

the texture features, and eye images. 
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