AN EXAMINATION OF EMBRYOGENIC AND NON-EMBRYOGENIC CULTURES OF OIL PALM (ELAEIS GUINEENSIS JACQ.)

ONG LI MEI

FSMB 2001 11
AN EXAMINATION OF EMBRYOGENIC AND NON-EMBRYOGENIC CULTURES OF OIL PALM (ELAEIS GUINEENSIS JACQ.)

By

ONG LI MEI

Thesis is submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Food Science and Biotechnology Universiti Putra Malaysia

March 2001
Specially Dedicated
To the
ONGs and ALWIs
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

AN EXAMINATION OF EMBRYOGENIC AND NON-EMBRYOGENIC CULTURES OF OIL PALM (ELAEIS GUINEENSIS JACQ.)

By

ONG LI MEI

March 2001

Chairman : Associate Professor Dr. K. Harikrishna, Ph.D

Faculty : Food Science and Biotechnology

Somatic embryogenesis of crop plants such as oil palm has generated considerable research interest. However, the main obstacle that hinders the development of an economically viable propagation system is the low frequency of embryogenesis. Currently, most local tissue culture laboratories are reporting embryogenesis rates of approximately 6%. Due to the lack of knowledge about oil palm somatic embryogenesis, it would be difficult to understand or even to attempt to improve the process. Hence, this study has been tailored to understand the fundamental processes that could occur during embryogenesis by analyzing differences between embryogenic (EC) and non-embryogenic (NEC) in vitro cultures of oil palm.

The initial studies concentrated on elucidating the differences found between EC and NEC at the microscopical level. Proembryo (PE) structures were predominantly found in ECs. The phenomenon of isolation of cells, as a prerequisite to embryogenesis, was observed in the formation of PEs. It was hypothesized that the surrounding cells at the periphery of each PE structure could have gone through programmed cell death (PCD) hence creating the condition of ‘isolation of cells’.
The hypothesis that PCD could play an important role in the embryogenesis process was further supported by studies carried out at the physiological and molecular level. ECs were found to be metabolically more active than NECs, thus indicating that ECs would need an efficient system to overcome the accumulation of reactive oxygen species (ROS), a toxic byproduct of aerobic metabolism. With the isolation of the embryogenic tissue specific OPEm1, which encodes for an antioxidant known as peroxiredoxin, it is believed that it functions by protecting the proembryos from being damaged by the ROS but killing the cells surrounding them.

OPEm1 represents the first peroxiredoxin to be isolated from a palm and has potential to be exploited as a molecular marker for embryogenic potential of *in vitro* cultures. In addition to this, with the knowledge of the physiological state of embryogenic and non-embryogenic cultures, a non-destructive method for the detection of embryogenic potential can now be devised by taking advantage of the reaction mechanism of oxidative dyes in culture media.

Besides this, attempts were also made to isolate other embryogenic related genes by means of a rapid cloning method for differentially expressed cDNAs. This technique is better known as Suppression Subtractive Hybridization. Out of a total 595 clones screened, only 66 were found to be embryogenic specific. Amongst these clones, one of them was characterized and shown to be closely related to a class IV chitinase EP3. This clone was designated as OPSSH1. There is some evidence to suggest from the northern analysis study, that different subsets of class IV endochitinase EP3 were being detected, as two differently sized transcripts were observed. It is possible that they encode proteins that have differing functions. However, due to the
generally short fragments being produced through this technique, it is still too early to propose a functional role for endochitinase(s) in the oil palm system.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

KAJIAN KE ATAS KULTUR EMBRIOGENIK DAN TAK-EMBRIOGENIK KELAPA SAWIT (ELAEIS GUINEENSIS JACQ.)

Oleh

ONG LI MEI

Mac 2001

Pengerusi : Profesor Madya Dr. K. Harikrishna, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Embriogenesis somatik tumbuh-tumbuhan, seperti kelapa sawit, telah menjana minat yang mendalam terhadap penyelidikan. Walau bagaimanapun, batu penghalang bagi perkembangan sesuatu sistem pembiakan yang berdaya maju dari sudut ekonomi ialah kadar embriogenik yang rendah.

Pada masa ini, kebanyakan makmal kultur tisu tempatan melaporkan kadar embriogenesis dalam lingkungan 6%. Oleh kerana pengetahuan yang terhad mengenai embriogenesis somatik kelapa sawit, maka proses tersebut sukar difahami, apatah lagi untuk memperbaiki tarafnya. Justru itu, kajian ini telah disesuaikan untuk memahami proses-proses asas yang mungkin berlaku semasa embriogenesis dengan menganalisa perbezaan di antara kultur in vitro kelapa sawit yang embriogenik (EC) dan tak-embriogenik (NEC).

Kajian awalan menumpukan kepada penjelasan tentang perbezaan antara EC dan

OPEm1 merupakan ‘peroxiredoxin’ yang pertama yang telah dipencilkan daripada palma dan ia berupaya untuk dieksploitasi sebagai petanda molekular untuk mengesan keupayaan embriogenik dalam kultur in vitro. Tambahan pula, dengan pengetahuan keadaan fisiologi kultur embriogenik dan tak-embriogenik, satu kaedah untuk mengesan keupayaan embriogenik tanpa mengorbankan kultur dapat diperkembangkan dengan menggunakan mekanisme tindakbalas pewarna oksidatif dalam kultur media.
ACKNOWLEDGEMENTS

No words will be able to describe my heartfelt gratitude and appreciation to Assoc. Prof. K. Harikrishna for his constant guidance, invaluable advise, stimulating discussions and ideas throughout the course of this project although it may not have been his ‘pet-project’. There has never been a time that he is without an encouraging word when in need. He has been not only a supervisor but also a mentor and friend. Special thanks are extended to other members of my committee, Drs. Tan Siang Hee and Ruslan Abdullah for their advice, comments and guidance whenever sought.

To Ms. Girlie Wong (Applied Agricultural Research Sdn. Bhd.), En. Azman (Oil Palm Research Station, Golden Hope Plantation) and Mr. Aw Khoo Teng (FELDA Agricultural Services Sdn. Bhd.), the deepest appreciation for their constant supply of tissue culture materials, fruit bunches and vegetative tissues of oil palm, without which the project would not have made it this far. My appreciation is also extended to Prof. Mat Awang (Deputy Vice Chancellor, Universiti Putra Malaysia) and his group for helping me get started with the physiological analysis and also to Mr. Chandran and Prof. Helen Nair for the use of the gas chromatograph at the Post Harvest Laboratory, UM.

I wish to thank the Ministry of Science and Technology for the IRPA grant that funded this project. My deepest appreciation also goes to my employer, the Malaysian Palm Oil Board, for financially supporting my studies and for granting some time off for me to complete the project.
Life as a working student is full of challenges, with its fair share of ups and downs. However, with the presence of this wonderful group of people whom I call friends and with whom I share most of my days with, life has been bearable and the journey enjoyable. To Shari, Pam (Parames), Siew Eng, Ayu, Zaidah, Chin Ching, Sugu and Komala, thanks a million for the friendship, care and assistance you have all shown me. Thanks also to Rogayah, Adrian, Choong, Pick Kuen, Jason, Li Yen, Au, Lee, Siaw San, Wan Ching, Mr. Ong, Fadilah and Yooni for all their help and support. Special thanks go to Kak Zah, Kak Ros, Rajini, Feshah, Shamsul, Hj. Samsul and Roslan for their assistance and support too.

Lastly, I wish to express my deepest gratitude and appreciate to my family and in-laws for their constant support throughout my study. To my loving husband, Ahmad, thank you for your support, understanding, unconditional love and the occasional constructive criticisms of my work. And to my late Papa, this one’s for you!
I certify that an Examination Committee met on 23rd March 2001 to conduct the final examination of Ong Li Mei on her Doctor of Philosophy thesis entitled “An Examination of Embryogenic and Non-Embryogenic Cultures of Oil Palm (\textit{Elaies guineensis} Jacq.)” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Norihan Salleh, Ph.D.
Department of Biotechnology,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Chairperson)

Harikrishna Kulaveerasingam, Ph.D.
Associate Professor,
Genome Centre,
Institute of Bioscience,
Universiti Putra Malaysia
(Member)

Tan Siang Hee, Ph.D.
Genome Centre,
Institute of Bioscience,
Universiti Putra Malaysia
(Member)

Ruslan bin Abdullah, Ph.D.
Associate Professor,
School of Bioscience and Biotechnology,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia
(Member)

Keith Lindsey, Ph.D.
Professor,
Department of Biological Sciences,
University of Durham DH1 3LE,
United Kingdom
(Independent Examiner)

Mohd. GhaZali MohamYidin, Ph.D.
Professor/Deputy Dean of Graduate School
Universiti Putra Malaysia

Date: 04 April 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

MOHD. GHAZALI MOHAYIDIN, Ph.D.
Professor
Deputy Dean of Graduate School
Universiti Putra Malaysia

Date:
I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

(ONG LI MEI)

Date: 4/4/2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION.. 1

2. LITERATURE REVIEW... 4
 2.1 Significance of Clonal Propagation... 4
 2.2 Tissue Culture of the Oil Palm... 5
 2.3 Embryogenesis... 8
 2.3.1 The Oil Palm Embryo.. 12
 2.3.2 Cell Division and Pattern Formation in Embryogenesis........................ 13
 2.3.3 Patterning of the Embryo Body.. 16
 2.4 Zygotic Embryogenesis versus Somatic Embryogenesis................................ 18
 2.5 Embryogenesis versus Organogenesis.. 23
 2.6 Embryogenic Calli (EC) versus Non-embryogenic Calli (NEC)........................ 25
 2.7 Mechanisms of Somatic Embryogenesis.. 29
 2.7.1 Physiological and Biochemical Aspects... 30
 2.7.2 Molecular Biology of Embryogenesis.. 37

3. MATERIALS AND METHODS... 43
 3.1 Plant Materials... 43
 3.1.1 Tissue Cultured Materials.. 43
 3.1.2 Zygotic Embryos.. 44
 3.1.3 Gaseous Study of Oil Palm in vitro Cultures................................... 44
 3.2 Microscopy Experiments.. 46
 3.2.1 Histology... 46
 3.2.2 Scanning Electron Microscopy... 46
 3.2.3 Transmission Electron Microscopy... 46
 3.3 Physiological Experiment.. 48
 3.4 Analysis of Proteins... 51
 3.4.1 Isolation of Total Proteins... 51
 3.4.2 Protein Quantification... 52
 3.4.3 SDS-PAGE Gel Electrophoresis... 53
 3.4.4 Staining of Polyacrylamide Gels... 56
3.5 Molecular Experiments .. 58
 3.5.1 Extraction of Total and Poly A⁺ RNA .. 58
 3.5.2 Construction of the 15-week Zygotic Embryo cDNA Library 61
 3.5.3 Screening of the Library... 64
 3.5.4 Construction of an Embryogenic Enriched Library 69
 3.5.5 Reverse Transcription PCR (RT-PCR)... 74
 3.5.6 Blotting Procedure.. 75
 3.5.7 Sequence Analysis... 78

4 RESULTS ... 80
 4.1 Microscopical Analyses of Embryogenic (EC) and Non-embryogenic (NEC) Cultures ... 80
 4.1.1 Histological Examination .. 80
 4.1.2 Scanning Electron Microscopical Examination................................. 82
 4.1.3 Ultrastructural Examination with the Transmission Electron Microscope ... 82
 4.2 Physiological and Protein Analyses: EC versus NEC 87
 4.2.1 Physiological Examination of the Cultures.. 87
 4.2.2 Comparison of Protein Profiles Between EC and NEC 92
 4.3 Isolation of cDNA Clones from the Libraries Constructed 95
 4.3.1 Screening of the Zygotic Embryo cDNA Library with Heterologous Probes .. 95
 4.3.2 Isolation of Embryogenic Related Genes via Suppression Subtractive Hybridization (SSH) ... 96
 4.4 The Identification of OPEm1: A Member of a Novel Class of Peroxidase 97

5 DISCUSSION... 110
 5.1 What are the Differences Observed Between EC and NEC? 110
 5.2 Hormonal Regulation During Embryogenesis .. 119
 5.3 Is Cell Isolation Caused by Programmed Cell Death (PCD)? 127
 5.4 Isolation of Clones of Interest from Libraries .. 130
 5.5 OPEm1, a Potential Embryogenic Marker for Oil Palm in vitro Cultures 137

6 CONCLUSION.. 142

BIBLIOGRAPHY .. 145
APPENDICES ... 170
Appendix A: Basal Medium for M9 and M11 ... 170
Appendix B: Physiological Examination Data of the Cultures 172
Appendix C: Formulation for Media and Solutions ... 173
Appendix D: Preparation of Host Strains... 174

xv
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>A summarized result of a pairwise comparison between EC 9, EC 11, NEC 9, NEC 11 and SC</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The oil palm tissue culture process</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>An overview of plant embryogenesis</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>A schematic representation of the oil palm seed and growth of seedling with examples of oil palm fruits and seed</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The cell cycle and its interconnection with the growth control pathway.</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of the set-up for physiological analysis of \textit{in vitro} cultures</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Oil palm cultures derived from leaf explants (le) grown on solidified callus initiation medium</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Histological sections of embryogenic and non-embryogenic materials</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Scanning electron micrographs of embryogenic, non-embryogenic and zygotic embryo materials</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Ultrastructures of embryogenic and non-embryogenic cultures</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>Ultrastructures of embryogenic materials</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Transmission electron micrograph of cells in embryogenic calli</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>Carbon biochemistry of growth and respiration</td>
<td>89</td>
</tr>
<tr>
<td>4.8</td>
<td>Graph depicting the production of CO$_2$ (ml) through respiration against fresh weight of the cultures ($\times 10^{-4}$kg)</td>
<td>92</td>
</tr>
<tr>
<td>4.9</td>
<td>Protein analysis of embryogenic and non-embryogenic cultures</td>
<td>94</td>
</tr>
<tr>
<td>4.10</td>
<td>Analysis of OPSSH1</td>
<td>98</td>
</tr>
<tr>
<td>4.11</td>
<td>Sequence alignment of OPSSH1 with other members of the endochitinase proteins</td>
<td>99</td>
</tr>
<tr>
<td>4.12</td>
<td>Reverse transcription of zygotic embryo total RNA with AGL15AtF and AGL15AtR</td>
<td>100</td>
</tr>
<tr>
<td>4.13</td>
<td>Nucleotide and deduced amino acids sequences of OPEm1</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

α alpha
β beta
λ lambda
% percentage
°C degree centigrade
A angstrom
Arg arginine
2-BE ethyleneglycolmonobutylether
bp base pair
BDMA n-benzyl dimethyl amine
BLAST Basic Local Alignment Search Tool
BSA bovine serum albumin
Ci curie
CO₂ carbon dioxide
C-terminal carboxyl terminal
Cys cysteine
1-D one dimensional
2-D two dimensional
2,4-D 2,4- dichlorophenoxy acetic acid
DDSA dodecenyl succinic anhydride
DNA deoxyribonucleic acid
DNase 1 deoxyribonuclease 1
cDNA complementary DNA
dNTPs Deoxynucleotides
dATP 2'-deoxy-adenosine-5'-triphosphate
dCTP 2'-deoxy-cytidine-5'-triphosphate
dGTP 2'-deoxy-guanosine-5'-triphosphate
dTTP thymidine-5'-triphosphate
dH₂O distilled water
DEPC diethyl pyrocarbonate
DMF dimethyl fluoride
DMSO dimethylsulphonyl oxide
DTT dithiothreitol
DXP *dura x pisifera*
EtBr ethidium bromide
EDTA ethylenediaminetetraacetic acid
EGTA ethylene glycol bis- (β-aminoethyle ether)
g gram
HCl hydrochloric acid
His histidine
H₂O₂ hydrogen peroxide
hr hours
IPTG isopropyl-β-D-thiogalactoside
Jacq. Jacquin
LB luria-bertani
k kilo

xxi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOAc</td>
<td>sodium acetate</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NO</td>
<td>nitrite oxide</td>
</tr>
<tr>
<td>N-terminal</td>
<td>amino terminal</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>OPZE</td>
<td>oil palm zygotic embryo</td>
</tr>
<tr>
<td>OPEm</td>
<td>oil palm embryogenic</td>
</tr>
<tr>
<td>OPSSH</td>
<td>oil palm suppression subtractive hybridization</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pfu</td>
<td>plaque forming unit</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>Poly A⁺RNA</td>
<td>polyadenylated RNA</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>PVPP</td>
<td>Polypolyvinylpyrrolidone</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcriptase</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>TAE</td>
<td>tris acetate EDTA</td>
</tr>
<tr>
<td>TBE</td>
<td>tris borate EDTA</td>
</tr>
</tbody>
</table>
TEMED: N,N,N',N'-tetramethylethylenediamine

μg: microgram

μl: microliter

μm: micrometer

UPM: Universiti Putra Malaysia

UV: ultraviolet

v/v: volume per volume

WAA: weeks after anthesis

w/v: weight per volume

X-gal: 5-bromo-4-chloro-3-indolyl-β-D-galactopyranose