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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

 AERODYNAMIC PERFORMANCE OF MAGNUS WIND TURBINE WITH 

TURBINE SUPPORTIVE STRUCTURE 

By 

AMER M. MGAIDI 

June 2019 

Chairman :   Associate Professor Azmin Shakrine Mohd Rafie, PhD 

Faculty :   Engineering 

After going through a detailed literature review, it is perceived that the Magnus wind 

Turbine (MWT) can be a viable option for off grid energy conversion in certain cases 

of confined space and low wind speed region, where the counterpart of MWT cannot 

operate efficiently, However, the existing design is yet a matter of research to make it 

more useful in particular situation. In view of this, the main aim of present study is to 

improve the aerodynamic performance of MWT through adding a support structure 

for reduce the impact of free end status of the rotary cylinders on their aerodynamic 

characterises, where free end status of the cylinders depletes consumed power that 

uses to spin the cylinders  through its impact in   reduce the  actual rate of cylinders 

rotation,  and hence their tip speed ratio whose low value causes a poor performance 

of rotary cylinders. To overcome the above undesirable condition, this study suggests 

modifying magnus rotor through surrounding magnus wheel with an outer ring 

supported in an analogously order by supporting arms. Currently many research 

studies have concentrated on improving the aerodynamic performance of wind turbine 

through numerical, analytical and experimental studies. Computational Fluid 

Dynamics (CFD) offers inexpensive tool to aerodynamic blade analysis problem. 

Furthermore, Blade Element Moment (BEM) represents the most simplified common 

way to predict the overall performance of wind turbines.  On the other hand, 

experimental studies represent the quickly assess of the computed predictive results. 

2D Ansys Fluent 17.0 as a code of CFD was selected to analysis the fluid flow around 

the aerodynamic surfaces of the new rotor in order to predict the effectiveness of new 

design in improving the aerodynamic performance of MWT, where 2D simulation can 

provide a good result features of the fluid flow with lesser computational cost. 

Thereafter, BEM was directed to predict the overall performance of new designed in 

terms of cut-in speed and generated torque. On the other hand, experimental tests were 

chosen to perform on a real model of new MWT. Computed results have expected of 

an increase in lift force by up to 14 % which demonstrated the effectiveness of new 

design to improve the performance.  Besides that, Analytic results of new MWT   was 



© C
OPYRIG

HT U
PM

 

ii 

indicated firstly to that, the cut-in velocity decreases as the λ2 increases in the specified 

range of λ2 ≤ 2.8. Also, the generated torque increases in effect of increasing both of 

wind speed and rotating rate of cylinders at delimited rang of 7.7 m/s and 2520RPM 

respectively. On other hand, experimental tests demonstrated the effect of tip speed 

ratio of cylinders (λ2) on the effectiveness and variation of produced torque. Finally, 

the obtained results have also achieved the performance of CP = 0.47 at λ1 of 0.17, as 

well as disappearance of exhibiting the spinning motion of the cylinders in bell shape.  
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Setelah melalui kajian literatur yang terperinci, dapat dinyatakan bahawa Turbin 

Angin Magnus (MWT) boleh dijadikan satu pilihan yang baik untuk penukaran tenaga 

luar grid bagi kes-kes tertentu seperti ruangan terhad dan kawasan halaju angin yang 

rendah, di mana turbin angin yang sejenis dengan MWT tidak dapat beroperasi dengan 

cekap. Namun, reka bentuk yang sedia ada masih lagi merupakan satu perkara 

penyelidikan untuk menjadikannya lebih berguna dalam keadaan tertentu. Oleh itu, 

matlamat utama kajian ini adalah untuk menyiasat prestasi aerodinamik MWT dengan 

penambahan struktur sokongan untuk mengurangkan kesan pergerakan bebas pada 

hujung silinder berputar terhadap ciri aerodinamik mereka, di mana daya aerodinamik 

telah dipengaruhi oleh gegaran silinder berputar yang disebabkan oleh tekanan turun 

naik yang besar. Untuk mengatasi keadaan yang tidak diingini di atas, kajian ini 

mencadangkan untuk mengubahsuai rotor Magnus melalui mengelilingi bulatan rotor 

Magnus dengan struktur luar yang bertindak sebagai menyokong lengan, di mana 

beberapa tenaga yang digunakan untuk memutarkan silinder itu habis kerana kesan 

akhir percuma, yang membawa kepada penurunan kadar pusing silinder sebenar, dan 

kemudian nisbah kelajuannya .Ketika ini banyak kajian penyelidikan tertumpu pada 

peningkatan prestasi aerodinamik turbin angin menerusi kajian berangka, analitikal 

dan eksperimen. Komputasi dinamik bendalir (CFD) menawarkan perkakasan yang 

murah untuk permasalahan analisis aerodinamik bilah. Manakala, momen unsur bilah 

(BEM) memperkenalkan cara umum yang paling mudah untuk menjangkakan prestasi 

keseluruhan turbin angin. Sebaliknya, kajian eksperimen mewakili cara paling cepat 

menilai hasil jangkaan yang dihitung. 2D Ansys Fluent 17.0 telah dipilih sebagai kod 

CFD untuk menganalisa aliran bendalir di sekeliling permukaan aerodinamik rotor 

yang baru untuk mengkaji keberkesanan reka bentuk tersebut dalam meningkatkan 

prestasi aerodinamik MWT, di mana simulasi 2D dapat memberikan hasil yang baik 

terhadap ciri-ciri aliran bendalir dengan kos pengiraan yang lebih rendah. Selepas itu, 

BEM digunakan untuk mengenalpasti prestasi keseluruhan reka bentuk yang baru dari 

segi halaju permulaan dan kilasan yang dihasilkan. Sebaliknya, ujian eksperimen telah 
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dipilih untuk melaksanakan analisis prestasi model sebenar MWT yang baru. Hasil 

keputusan yang dikira telah menunjukkan peningkatan daya angkat sebanyak 14% 

yang mana menunjukkan keberkesanan reka bentuk baru bagi meningkatkan prestasi 

turbin angin MWT. Selain itu, keputusan analitik bagi MWT yang baru ditunjukkan 

terlebih dahulu, di mana halaju permulaan menurun apabila λ2 meningkat dalam julat 

yang dinyatakan λ2 ≤ 2.8. Kilasan yang dijana meningkat berikutan peningkatan 

kedua-dua halaju angin dan kadar pusingan silinder pada julat batas masing-masing 

7.7 m/s dan 2520 RPM. Sebalik itu, ujian eksperimen menunjukkan kesan nisbah 

halaju hujung silinder (λ2) ke atas keberkesanan dan variasi kilasan yang dihasilkan. 

Akhir sekali hasil yang diperoleh juga telah mencapai prestasi CP = 0.47 pada λ1 = 

0.17, serta menunjukkan kehilangan pergerakan silinder berputar dalam bentuk 

loceng. 
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The extraction of energy from the wind defines one of the major sources of alternative 

energies. Wind energy as a source of the power is being favoured widely as an 

alternative to fossil fuels, as it is renewable, plentiful, clean, and so widely distributed. 

Wind turbine is a configuration, which transforms the kinetic energy from the wind 

into mechanical energy that can be used to generate electricity via a mechanical rotor, 

a drive train and a generator (Biadgo, 2017). Several types of wind turbines have been 

developed in some of categories such as the number of blades and rotating axis 

orientation, where horizontal axis wind turbines (HAWT) have been widely used due 

to the advantage of highly efficient in terms of extracted energy. Magnus rotor knows 

one of the main types that belong to HAWT kind. It distinct from other types by 

spinning cylinder that creates a whirlpool of fluid around itself and generates a lift 

force perpendicular to the flow direction as its boundary layer is influenced (Ramjatan 

and Fitz-coy, 2018), where the producing force defines the Magnus lift force, that has 

been much larger than streamlined airfoils (Gupta et al., 2017; Borg, 1986). This has 

motivated a large number of researchers and scientist to use the Magnus lift in 

aerospace, naval, and wind turbine industries.  

From its very inception, the beginning of  Magnus effect  goes back to the early of 

nineteen- century when it was used to propel a ship using the Magnus force  ( De 

Marco et al., 2016; Nuttall and Kaitu, 2016). Given the success it had by generating 

high values of lift forces on   spinning cylinders compared with airfoil. Flettner rotor 

was not commercialized due to low fuel prices at that time ( De Marco et al., 2016). 

The potential of generating high lift forces then attracted many researchers in 

engineering applications, where many patents on using of Magnus forces were 

appeared.  However, very few configurations were operated successfully. The renew 

interest in the Flettner device is becoming again a hot topic in naval engineering due 

to the increase in fuel costs and problems of environmental pollution.  

Continually to research in related areas, researchers have been compelled to study 

more about the application of this physical phenomenon. As a result, the Magnus wind 

turbine which follows the Magnus effect theory had gained proportionate popularity 

in recent years as a new method of harnessing and exploiting wind for power 

generation ( Bychkov and Dovgal, 2008). The technology actually solves the location-

constraint encountered by traditional wind turbines due to the idea that the 

configuration can operate even at low wind speeds, which is the case in urban areas. 

Due to these benefits, Magnus wind turbine offers great potential in producing power 

as an evolving renewable energy, especially in low wind speed countries like 

Malaysia. 



© C
OPYRIG

HT U
PM

2 

 In the broader scope, use of Magnus effect in wind turbine is appeared in Russia and 

Japan in past decade. Japanese Akita Magnus Association proved that a wind turbine 

could rotate in effect of the mentioned phenomena Magnus impact, their cylindrical 

blades were necessary to spin by electric motors ( Borg, 1986; Seifert, 2012). 

1.2 Problem Statement 

Compatible with development of modern life in all fields, the demand of energy has 

increased significantly.  An estimation data by the International Energy Agency IEA 

(2014) mentioned to that over 80 percent of the world’s total energy production results 

from the burning of fossil ( Tietenberg  and Lewis, 2016), and with the  huge 

increasing consumption of energy in the world today, the focus of reliable may hurt to 

risk depletion of this source, Fossil fuels besides is limited , also it takes millions of 

years to form. In addition to the risk of depletion of fossil fuel, the increase in fuel 

price is another factor of the problem of energy sources, and more importantly, the 

factor of environmental pollution; where studies have shown that exceeds the amount 

of 35 billion metric tonnes of carbon monoxide has been escalating into the 

atmosphere yearly as a result of fuel combustion ( Perera, 2017), that  could pose other 

risks to environment and the balance of nature. Therefore, all of the above are mainly 

reasons that have promoted the human populations to search for alternative sources of 

energies and encouraged them to develop through engineering applications in 

accordance with the applied research and specialized studies and be at the same time 

are not harmful to nature.    

Being one of the alternative energy sources, wind energy has therefore aroused a great 

deal of interest. Wind energy systems have been improved rapidly and advanced 

considerably to become an essential energy source.  There are still researches and 

projects in process aiming to improve the wind energy systems and make a more 

efficient use of the wind rotors which could define the most important part of the wind 

power stations. Consequently, a number of different wind rotors and configurations 

have been designed, tried and used during this period. Large amounts of research and 

resources have been spending in order to improve the performance of wind turbines 

through   determining of optimum specifications that should suite to certain operating 

conditions  (Gupta et al., 2017 ; Pujol et al., 2018; Sedaghat, 2014; Sedaghat et al., 

2014).  According to some of guidelines and specific restrictions of the researches on 

the Magnus rotor specifications as a configuration, it could classify through the factors 

that has effect on the amount of power extracted, Power generated through 

applications of wind turbines mainly dependent on the size of the turbine, the wind 

speed and wind direction.  This means that this source of renewable energy is not a 

stable supply of energy and requires creating some of modification to achieve the 

requests through special researches.  According to the above causes and effects with 

some of a brief detail, there was a comprehensive incentive in searching to provide a 

new source of energy. At the same time, a relative underperformance of spindle 

cylinders within the region of a low- speeds in effect of lift force and the negative 

impact of flow-induced vibrations in terms the risks of vibrations arising particularly 

on rotary cylinders, have highlighted to special importance to the field of 

aerodynamics. Both reasons have embodied an incentive encouraging for researchers 
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to contest the searching development for spindle cylinders and Magnus rotor through 

proceeding of some modifications to the geometrical configuration in order to achieve 

improved performance.  As the free end rotating cylinders is the main tool for 

generating lift and then producing torque in MWT, the free end status of magnus rotary 

cylinder is the cause of depletion in consumed power that used to spin the cylinders, 

which lead to reduce the available rotational speed of cylinders and thus their speed 

ratio that considers one of the main factors determining the effectiveness of the 

rotating cylinders and their aerodynamic characteristics. Besides that, each cylinder 

exhibit alternating vortex shedding causing large fluctuating pressure force that could 

lead to structural failure.  

Therefore, the present work is aimed to overcome the above deficiency through new 

design of surrounding magnus rotor with an outer ring supported in an analogously 

order by beams or supporting arms mounted on the hub of the rotor, in order to transfer 

the consumed power to spin the cylinders without depletion by preventing the 

emergence of each cylinder’s spinning motion  in bell shape  that refers to the issue of 

power depletion. As the damping amplitude arising, the aerodynamic characteristics 

of the rotary cylinders predicated to be directly influenced, where the fluctuation of 

the generator lift force has been increased and hence the quality of the generated torque 

and produced power.  Commonly there is no power generation without angular speed 

and a gyre torque, hence, there is no torque without aerodynamic forces. 

1.3 Aims and Objectives 

The main aim of this research work is to study the aerodynamic performance of the 

design of MWT through the implementation of numerical and analytic studies and 

then experimental, through which to investigate the effectiveness of new added 

support structure. Therefore, to achieve the above aim four objectives have to be 

achieved in the following sequence:  

 To design new MWT by adding the support structure in order to improve the 

performance through reducing the depletion of consumed power. 

 To investigate the aerodynamic characteristics of new MWT using 

computational method in terms of lift force generated on cylindrical blades and 

supporting arms.   

 To analyse the performance of new MWT using BEM method due to the 

complexity of the computational method.  

 To conduct the experimental work in order to validate the BEM method and 

obtain predictive results that can contribute for estimation of wind turbine 

performance. performance. 
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1.4 Scopes of Study 

The limitation of the research could be mainly summarized in  

 The specifications of both of chosen work section of Open Jet Wind tunnel at 

aerodynamic laboratory in University Putra Malaysia and used power supply 

to spin the rotating cylinder. Where the cross-section area of circular 

geometrical shape with diameter of 2.0 m and delimited range of wind speed 

of less than or equal 7.74m/s   were identified the specifications of mentioned 

work section. Besides that, the wind flow was assumed to be uniform in order 

to simplify analysing computed results and obtained experimental results, 

where the velocity inlet represents one of major input parameters in both of 

CFD code, BEM and experimental tests; as well the influence of some other 

relevant factors that included the drag force and the effect of the hub 

dimensions on the performance of the rotor was ignored. 

 As all modern electricity-generating wind turbines use the lift force derived 

from the blades to drive the rotor and generate the torque, of interest was 

directed to compute the lift force, where MWT mainly rotate due to exertion 

of lift force generated on the cylindrical blades when they rotate around a main 

horizontal shaft.  

 On the other hand, the maximum an available power to spinning the cylinders 

of 0.84W was represent the other major limitation source in this research work. 

Moreover, there were dependent limitations in some of performance 

parameters such as rotor tip speed ratio, tip speed ratio of cylinders and 

Reynolds number, where the mentioned limitation was on the range of results 

limitation and not on their effectiveness and importance 

 

 

1.5 Organization of the Thesis 

This thesis has been organized in five chapters, the details of which could be 

summarized following: 

Chapter 1: Introduction that includes background, problem statement, aims and 

Objectives, scopes of study and the organization of the thesis.  

Chapter 2: Literature review which chosen to present a brief on wind turbines, then 

moves to historical evolution of magnus wind turbine, and then displays the 

aerodynamic components of magnus rotor.   

Chapter 3: methodology, it includes calibration of wind flow speed at work section, 

3.3.Technical specification of new Magnus rotor, three chosen approaches of 

numerical, analytical and experimental. Where numerical approach includes 

Information about turbulence models, geometrical design using of work bench Ansys, 

domain details, the boundary conditions, grid independence test and parametric study 
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on Sn-airfoil, while analytical approach include Information about blade element 

theory and determine the aerodynamic performance of new magnus wind turbine.  On 

the other hand, the experimental approach covers the fabrication of new magnus 

turbine equipment setup and the experiment methods. 

Chapter 4: results and discussion: this chapter presents analysis and discussion of 

obtained results, and also the computed and experimental results were Compared. This 

chapter is important to validate the solver used and also to choose the most suitable 

turbulence model for further simulations. 

Chapter 5: conclusion and future work, where concluding remarks are stated and 

recommendations for future work are addressed. 
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