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A jet engine is commonly used in aeronautical applications such as civilian airplanes, 

armed fighters, and helicopters, as it is one of the types of the gas turbine engine. Air 

enters through the compressor and injected into the combustion chamber to be mixed 

with fuel under pressure for combustion. This releases the energy of the heat to expand 

the volume of hot fluids and impact to the turbine wheel and generate the power of the 

hot gases. Such engines require tremendous amount of biodiesle. The ultrasonic 

atomization has been applied in different areas and shows positive potential 

performance. However, this promising atomizer technology has not yet applied in the 

micro jet engine to use biodiesel blends fuels. This gap in previous studies gave the 

motivation to investigates the potential of using ultrasonic atomization technology to 

assist the combustion process as a contribution for promising an alternative to the 

normal fuel atomization system. Firstly the new combustion equation is developed and 

validated, followed by determination of optimum conditions for combustion 

performance including optimum size of ultrasonic droplets. An experimental rig was 

set up to determine the performance of jet engine using ultrasonic droplets. The four-

component set of ultrasonic atomizer devices delivers the fuel through the jet engine 

intake area, each device can deliver a 5 liter/ hour. The air mass flow was measured 

using a hot wire anemometer with speed limit 30 m/s fixed in front of the intake area. 

A load cell was installed to measure the actual thrust from the engine in units kg f. A 

gas analyzer was used to measure oxygen percentage, carbon monoxide, carbon 

dioxide and unburned hydrocarbons (uHC), nitrogen monoxide and nitrogen dioxide 

of the exhaust gas. The performance of the engine was tested under three levels of load 

(high, medium, low) starting from 10-psi at steady state to the minimum value. A 

significant result has been tested for a low value of nitrogen monoxide at the three 

levels of load, a specific result has been tested for efficiency value of 2% at the three 

levels of load,  carbon dioxide is decreasing at the low level of load. The use of the 

ultrasonic atomization device to assist in the combustion process was useful in 
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achieving engine efficiency of  1% of the micro jet performance and the reduce the 

emission of carbon dioxide exhaust gas to almost 25%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

  

 

iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PENYIASATAN ATOMISASI ULTRASONIK UNTUK MENINGKATKAN 

PRESTASI ENJIN JET MIKRO MENGGUNAKAN BAHAN API 

 

 

Oleh 

 

 

 AMER E. S. E. TH. ALAJMI 

 

 

Julai 2019 

 

 

Pengerusi :   Profesor Nor Mariah Adam, PhD 

Fakulti :   Kejuruteraan 

 

 

Enjin jet biasanya digunakan dalam aplikasi aeronautik seperti kapal terbang awam, 

pejuang bersenjata, dan helikopter, kerana ia adalah salah satu jenis enjin turbin gas. 

Udara memasuki melalui pemampat dan disuntik ke dalam ruang pembakaran untuk 

dicampur dengan bahan api di bawah tekanan untuk pembakaran. Ini melepaskan 

tenaga haba untuk mengembangkan jumlah cecair panas dan kesan roda roda turbin 

dan menghasilkan kuasa gas panas. Enjin sedemikian memerlukan sejumlah besar 

biodiesel. Pengisaran ultrasonik telah digunakan di kawasan yang berbeza dan 

menunjukkan kaedah berpotensi positif. Walau bagaimanapun, teknologi pengaburan 

yang menjanjikan ini belum lagi digunakan dalam enjin jet mikro untuk menggunakan 

bahan bakar biodiesel. Jurang dalam kajian terdahulu memberikan motivasi untuk 

menyiasat potensi menggunakan teknologi pengabusan ultrasonik untuk membantu 

proses pembakaran sebagai sumbangan untuk menjanjikan alternatif kepada sistem 

pengabusan bahan api biasa. Pertama persamaan pembakaran baru dikembangkan dan 

disahkan, diikuti dengan penentuan syarat-syarat optimum untuk prestasi pembakaran 

termasuk ukuran optik ultrasonik yang optimum. Rig eksperimen telah bangunkan 

untuk menentukan prestasi enjin jet menggunakan titisan ultrasonik. Set komponen 

empat alat pengabut ultrasonik menyampaikan bahan api melalui kawasan 

pengambilan enjin jet, setiap peranti boleh menyampaikan 5 liter/jam. Aliran jisim 

udara diukur dengan menggunakan anemometer dawai panas dengan had kelajuan 

tetap 30 m/s di hadapan kawasan pengambilan. Sel beban dipasang untuk mengukur 

tujah sebenar dari enjin dalam unit kgf. Penganalisis gas digunakan untuk mengukur 

peratusan oksigen, karbon monoksida, karbon dioksida dan hidrokarbon tidak terbakar 

(uHC), nitrogen monoksida dan nitrogen dioksida gas ekzos. Prestasi enjin diuji di 

bawah tiga tahap beban (tinggi, sederhana, rendah) bermula dari 10-psi pada keadaan 

mantap hingga nilai minimum. Hasil yang signifikan telah diuji untuk nilai nitrogen 

monoksida yang rendah pada tiga tahap beban, satu keputusan spesifik telah diuji 

untuk nilai kecekapan 2% pada tiga peringkat beban, karbon dioksida menurun pada 

tahap rendah beban. Penggunaan peranti pengabut ultrasonik untuk membantu dalam 
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proses pembakaran adalah berguna dalam mencapai kecekapan enjin sebanyak 1% 

daripada prestasi jet mikro dan mengurangkan pelepasan gas ekzos karbon dioksida 

hingga hampir 25%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

A gas turbine is a type of internal combustion engine that is used to generate power. 

It consists of an upstream rotating compressor coupled to the downstream turbine and 

a  combustion chamber (Máša et al., 2016). All gas turbines generate thrust by 

providing a change in momentum to the air that enters and leaves the gas turbine 

(Badeer, 2000; Habib et al., 2010; Langston et al., 1997).  The higher the difference 

in momentum, the greater the thrust that the gas turbine produces (Tanbay and 

Durmayaz, 2015).  

For combustion to occur, the gas turbine requires a combustor. The combustor is a 

vital component of the gas turbine (Figure 1.1). Unlike automobiles, gas turbines have 

a  continuous flame inside the combustor,  which is lit for as long as the engine is 

running (Domen et al., 2015).  Once ignited, the flame is maintained by constantly 

mixing fuel to the high pressure compressed air from the compressor, using a fuel 

nozzle. The primary purposed of every fuel nozzle is to atomize the fuel into small 

droplets,  in order to speed up the mixing process of fuel and air (Jiang et al., 2015).  

The differences between various fuel nozzle technologies lie in how exactly the 

droplets are produced. Thus, the size d ≥ 15 µm of the droplets affects the effeteness 

of atomization of fuel in a gas turbine (Zahmatkesh et al., 2015; James et al., 2016). 

 
 

Figure 1.1 : Simple cycle gas turbine block diagram  

(Mayank Maheshwari et al, 2019) 
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Atomization is the breakup of bulk liquid into small droplets using an atomizer or 

spray (Som et al., 2010).  Atomizers are generally classified into pressure atomizer, 

pressure swirl atomizer, air-blast atomizer, air-assist atomizers, twin-fluid atomizer, 

and rotary atomizer, ultrasonic atomizers, whistle atomizers and electrostatic atomizer 

(Ma et al., 2014; Gemci and Chigier, 2016). Different types of atomizers determined 

the efficacy of the atomization process which adversely affects the combustion 

efficiency in a gas turbine engine. 

The atomization of fuel is crucial in the combustion and emission of a gas turbine. 

Because through atomization the surface area of fuel is increased 40,000 times to 

hasten combustion. For this system, the combustion is continuous (Chong and 

Hochgreb, 2015), so the atomization in a gas turbine is continuous without any cycles 

or strokes. However, in order to achieve the desired amount of combustion during this 

continuous process, the fuel must be added and mixed with the high-pressure air 

exiting the compressor in the proper proportions. The constraint to make the engine as 

small and light-weight as possible requires that the injection, mixing, and combustion 

of the fuel occur within the smallest volume possible. This is inefficient and in most 

cases, less practicable. Furthermore, in the case of pressure atomizers, a major 

drawback is the requirement of high injection pressure with a relatively small increase 

in the flow rate. Thus, the need for non-pressurize alternative means of atomization. 

Generally, adequate atomization enhances mixing and complete combustion in a direct 

injection (DI) engine and therefore it is an important factor in engine emission and 

efficiency. In the case of biodiesel, which exhibits difficulty during cold start due to 

its crystallizing property at low temperatures, the need for atomization as an option to 

overcome some of these challenges cannot be overemphasized. These techniques are 

having many drawbacks which lead to poor liquid atomization at a low flow rate and 

low efficient atomization of fuel in gas turbines operations. Therefore, investigating 

in alternative methods to have adaptable and efficient way of enhancing atomization 

becomes imperative.  

Ultrasonic technique has been used in many applications, such as medical sprays, 

surface coatings, liquid fuel spray, metal powders and jet ink printing (Deepu et al., 

2018). The vibrations in an ultrasonic nozzle are created by the piezo-ceramic element, 

which converts electrical energy being fed into the nozzle into mechanical energy in 

the form of vibrations. The capillary wave design consists of a vibrating surface, which 

basically replaces the two transducers in the previous design. The vibrations in the 

liquid will increase surface tension forces, and small, uniform droplets will eject one 

by one from the liquid stream to relieve the stream from the surface tension. This 

process will continue as long as the surface below keeps vibrating. The energy source 

from which the vibrations originate is usually electricity, much like the standing wave 

design. 

Feasibility of biodiesel as a renewable fossil fuel replacement for gas turbine 

operations is currently been research on due to an earlier report on some oxides of 

nitrogen, oxides of sulfur, carbon monoxide (CO), emission levels. Ultrasonic as an 
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atomization approach for environmentally preferred alternative fuels like biodiesel 

have yet to be fully optimized for emissions. As a result, the feasibility of using 

ultrasonic technology with biodiesel as a low emission alternative fuel option is still 

being evaluated. With improved atomization, gas turbines operations can realize 

improved emissions as compared to those using conventional diesel (Senda et al.,  

2008; Lefebvre and McDonell, 2017).   

1.2 Problem Statement  

Most atomization techniques, though with lots of merits, have shown inadequacies in 

the atomization of both diesel and biodiesel in the operation of gas turbines (Ferreira 

et al., 2011; Anwar et al., 2013; Tan et al., 2013; Bayvel, 2019). This is due to a relative 

increase in dynamic viscosity and surface tension, especially for biodiesel. Both of 

these fluid properties are heavily tied to atomization behavior in that the increased 

viscosity and surface tension limit droplet breakup and lead to larger average droplet 

sizes which in turn increase residence time and nitrogen oxides (NOx) formation. 

Although there are other modes of improving emissions by using fuel injector design 

and fuel additive (Nieman et al., 2012; Imtenan et al., 2014; Imdadul et al., 2015). 

However, the use of the additive for atomization increased HC emission at larger 

particle size, and also increased smoke opacity when compared to conventional 

method (Javed et al., 2016). Other researchers have tried to improve the atomization 

of fuel using different designs of atomizers (Arghode et al., 2012; Khalil et al., 2012; 

Mlkvik et al., 2015). The result of their studies showed that depending on the gas-to-

liquid ratios, the flow rate was enhanced leading to improve combustion. However, 

this method is far from efficient because it depends on complex designs and cannot be 

used for most engines.  

The conventional techniques used to improve the atomization are pressure burners and 

spray heads (Guillaume et al 2019). These techniques are affected by varying either 

the pressure under which to deliver supply liquid or the area of the nozzle outlet 

opening. These lead to poor liquid atomization at a low flow rate (under a low 

pressure). In order to overcome the drawbacks to the efficient atomization of fuel in 

gas turbines operations, adaptable and efficient way of enhancing atomization 

becomes imperative.  

Recently, more attempts have been made to impart ultrasonic waves to the liquid 

material as it is injected out through the jet of the injection nozzle under pressure. This 

technique has shown high results and led to a good performance in the applications 

used in. However, many applications of ultrasonic decomposition waves for many 

industrial processes such as medical sprays, surface coatings, liquid fuel spray, metal 

powders and jet ink printing (Deepu et al., 2018). There is no known study on the 

development of new ultrasonic assisted atomization designs to accommodate and 

optimize the performance of micro gas turbines, for both diesel and biodiesel, with a 

view to enhance the combustion efficiency, by generating fuel fog, with particular 
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focus on flow rate, engine performance, spraying capacity, and emissions level. There 

is also no known study on the effect of ultrasonic intensity and dosage on atomization. 

Therefore, the current study attempts to fill these gaps, while providing a comparison 

between ultrasonic assisted gas turbine atomization, and conventional method of 

atomization. 

1.3 Hypothesis 

Null hypothesis Ho : µo = µ1 use of ultrasonic device does not improve jet engine 

performance. 

Alternative hypothesis H1 : µo ≠ µ1 use of ultrasonic device dose improve jet engine 

performance. 

1.4 Research Questions 

Can the ultrasonic atomization increase the efficiency of the micro gas turbine? 

 

It is expected that the ultrasonic technology is the main driver for small droplets size. 

It is known that the atomization is generally used to have a very efficient performance 

of combustion in the gas turbine. Ultrasonic uses high-frequency sound energy to 

create wide vibrating waves. It has been stated that ultrasonic atomizers produced fuel 

sprays with small droplets sizes while consuming small quantities of power. The spray 

from such atomizers carries low momentum and penetrates less, resulting in reduced 

wall wetting. This enables operation of the engine with lean mixtures, due to the 

absence of the capacitance effect which is usually caused by wall films, especially 

during transients. This leads to the high performance of micro gas turbine due to the 

better mixture of fuels and air and this leads to high efficiency.  

How does the ultrasonic atomization can be used in biodiesel fuels? 

The ultrasonic atomization in the micro gas turbine can perform very well using 

biodiesel fuels. This can be explained due to the capability of ultrasonic to work with 

any kinds of liquids regardless of their viscosity, density, cloud point, pour point, 

temperature and pressure. It just needs to change in the operating frequency to have 

significant results as requested. While the other conventional atomization techniques 

used in gas turbines, they just design for one type of liquid. Thus, if it needs to use for 

different liquids or fuels, it has to redesign. For this, ultrasonic is the potential 

alternative novelty method in the application of using biodiesel in a micro gas turbine. 
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1.5 Objectives   

The goal of this research is to establish the viability of ultrasonic technique as a more 

efficient by the use of ultrasonic wave to break up fuel droplets and generate 

atomization that applied to gas turbine engine operation. This novel technique will be 

used to break up fuel particle into small drops in the small scale gas turbine.  Based 

on the available research gap existing in regards to the atomization of gas turbines, 

and the goal of this research, the specific objectives of achieving this goal are: 

1. To determine the pertinent parameter that used atomization diameter, for both 

ultrasonic and conventional optimum atomizer system using morphology 

chart.  

2. To fabricate micro jet engine test rig that accommodates the atomizer system. 

3. To evaluate the engine in fuel atomization for both modes (ultrasonic and 

conventional) in terms of emissions with fuel types through measurements of 

carbon monoxide, carbon dioxide, nitrogen oxide and nitrogen dioxide. 

 

 

1.6 Scope and Limitations 

To achieve the goal and objectives set out as described above, this study exclusively 

involved the use of ultrasonic atomization of fuel droplet diameter between 6𝜇𝑚 to 

20𝜇𝑚 Burak Tanyeri et al (2014), this study use four single ultrasonic device 

atomizaer the total capacity of producing atomization is (18 kg/hour total), for safety 

and reasons, a quantity that using in this study between 1-2% of the total amount of 

fuel used is assumed, fuel that using ultrasonic atomization is kerosene and the main 

injector used kerosene, diesel and biodiesel blends. Set up micro jet engine was used 

to run this technology in a special gas turbine laboratory in the State of Kuwait. The 

turbine wheel used is 96 mm, air pressure ratio is 1.32, and compressor wheel is 71 

mm, airflow rate is 0.468 kg/s. The engine has selected is jet engine, rotational speed 

start from 43000 rpm to 82000 rpm (Appendix A4) 

1.7 Significance of the Study 

In this study, the applicability of utilizing the atomization of fuel in micro gas turbines 

was investigated. Unlike previous work, this technique was able to atomize the fuels, 

by using the ultrasonic technology, which provides an alternative method that can be 

used to improve fuel combustion, reduce CO2 and NOx emissions and increase the 

overall efficiency of jet engines. The conventional diesel fuel is costly and results in 

high level of greenhouse emissions. The biodiesel in gas turbine presents the cleaner 

energy for engine operations. This will not only reduce greenhouse emissions by 

reducing climate change, but also will reduce the overall cost of energy supply. In 

addition, the use of ultrasonic atomization helps in improving the mixing ratio of 

different fuel blends. 
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1.8 Organization of the Thesis  

This thesis consists of five chapters, and each chapter was divided into several sub-

sections. The thesis starts with Chapter One gave information about the background 

of the research, problem statement, specific objectives and the scope of the study. The 

first part of Chapter Two covered the literature review of gas turbine. Then, this 

chapter discussed different types of gas turbines and also the component of the gas 

turbine. Later, fuel types and more focused on atomization technology were also 

discussed in Chapter Two. Chapter Three focused on methodology used in the 

investigation of gas turbine engines, including setup discussion, ultrasonic atomization 

systems, data collection system, engine performance and experimental summarize. 

Meanwhile, Chapter Four presented the findings of the research with some discussion 

explaining the results. Finally, the conclusions and recommendations are presented in 

Chapter Five.  
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