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Joints in precast segmental bridge girders (PSBGs) are the locations of discontinuity 

and these parts are weaker than those of adjacent monolithic sections within the 

segment. During the service phase, the compression and shear forces are transmitted 

at this component. Generally, the keys in this region serve three purposes, namely, to 

align the segments during erection, to transfer shear force between the sections during 

service, and to protect the prestressing tendons against corrosion where the tendons 

pass through the joints. However, as revealed in this study, all the existing provisions 

tended to significantly over-estimate the ultimate shear capacity of the joint specimens 

and are developed for normal grade concretes which cannot be used in ultra-high 

performance fibre reinforced concrete (UHPFRC) joints of PSBGs. The literature 

review also highlighted that there was no available existing design provision model to 

calculate the first crack shear capacity of any type of concrete keyed joints. 

 

 

Therefore, the aim of this research was to investigate the shear capacity loads of 

typical joints (dry and epoxy) used in PSBGs using UHPFRC concrete and to develop 

the new design provision models for UHPFRC girders based on the failure criterion 

of Mohr circle theory. Twelve real full-scale shear key joints of UHPFRC specimens 

(6 dry keyed joint specimens, 6 epoxy keyed joint specimens) were tested 

experimentally to fail with three variable parameters namely, number of shear keys, 

confining stress, and the type of joint (dry or epoxy). Enabling shear was used in the 

test setup and applied across the shear plane with insignificant moment. The 

experimental results were also compared with five existing shear capacity design 

provision models, and a numerical FEM analysis model was developed to compare 

the results against the experimental data to further confirm the failure pattern of the 

specimens based on all the three variable parameters. 
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In all, the results of the study showed that the capacity of the UHPFRC key joints 

increased with increasing horizontal pressure applied across the joint (confining 

stress), number of shear keys and the epoxy layers applied on joints. The results of the 

new UHPFRC design provision model also compared well with the experimental 

results for both the dry and epoxy keyed joints at both stages (first crack and the 

ultimate shear capacity loads). The mean and the coefficient of variation (COV) values 

of the theory/experimental ratio for dry keyed joints were 0.87 and 7.71% at the first 

crack shear load stage and 0.7 and 9.96% at the ultimate shear load stage. Meanwhile 

the mean and the coefficient of variation (COV) values for epoxy keyed joints were 

0.95 and 5.31% at the first crack shear load stage and 0.87 and 6.12% at the ultimate 

shear load stage. 

 

 

In conclusion, this research confirmed that the existing shear capacity design provision 

models could not be used in the design of UHPFRC precast segmental bridge girder 

(PSBG) joints. Furthermore, by applying the new UHPFRC shear capacity design 

provision model in the design of UHPFRC PSBGs, it will ensure both private and 

governmental bodies that the UHPFRC structures are more affordable, economical, 

sustainable, and much easier to construct.  Lastly, this research will provide an 

essential contribution to the development of UHPFRC PSBG guidelines in future, 

particularly in the area of the UHPFRC joint. 

 

 

Keywords: UHPFRC, shear keys, precast, dry; epoxy; joints; shear strength, bridge. 
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Bahagian sendi pada mana-mana komponen segmen rasuk jambatan pra tuang 

(PSBGs) merupakan lokasi yang tidak bersambungan dalam satu komponen segmen 

rasuk, dan segala daya ricihan dan mampatan akan dipindahkan menerusi bahagian 

sendi ini. Pada dasarnya bahagian sendi ini merupakan bahagian yang paling lemah 

berbanding dengan bahagian-bahagian monolitik yang lain dalam segmen rasuk 

jambatan pra tuang. Bahagian kunci pada sendi rasuk memainkan tiga peranan yang 

penting dalam rasuk jambatan pra tuang , iaitu (i) selaraskan jajaran pemasangan rasuk 

semasa kerja-kerja pemasangan di tapak bina, (ii) memindahkan daya ricihan antara 

dua komponen rasuk jambatan semasa rasuk-rasuk tersebut mula digunakan oleh 

trafik, (iii) memastikan ketahanlasakan rasuk dengan melindungi komponen tendon 

pra tegang yang melintas bahagian sendi kunci rasuk daripada sebarang ancaman karat. 

Pada dasarnya, setakat ini hampir kesemua modal rekabentuk sediada yang digunakan 

dalam rekabentuk sendi kunci rasuk memberikan anggaran nilai kapasiti ricihan yang 

tinggi. Selain daripada itu, modal-modal rekabentuk sendi kunci sediada ini 

dibangunkan untuk konkrit jenis normal dan bukan untuk konkrit jenis berprestasi 

tinggi tetulang serat besi (UHPFRC) yang pesat digunakan dalam industri pembinaan 

rasuk jambatan pra tuang pada ketika ini.  

 

 

Objektif utama kajian ini adalah untuk mengkaji kapasiti daya ricihan sebenar yang 

dipindahkan pada bahagian sendi kunci (kering dan epoksi) dalam rasuk jambatan pra 

tuang yang meggunakan konkrit jenis berprestasi tinggi tetulang serat besi dan 

membangunkan satu modal rekabentuk atau formula baru untuk sendi kunci rasuk 

jambatan pra tuang yang menggunakan konkrit jenis UHPFRC. Asas pembangunan 

Modal rekabentuk bagi sendi kunci UHPFRC ini adalah berdasarkan pada kriteria 

kegagalan teori bulatan Mohr. Bagi tujuan ini, 12 spesimen berskala-penuh sendi 

kunci UHPFRC disediakan (6 spesimen sendi kering dan 6 spesimen sendi epoksi) 
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dan diuji sehingga gagal dengan tiga parameter pembolehubah iaitu, bilangan kunci 

ricihan, nilai daya pra tegangan, dan jenis sendi (kering atau epoksi). Susunatur ujian 

yang dicadangkan dalam kajian ini membenarkan ricihan dipindahkan merentasi 

bahagian sendi kunci dengan momen yang boleh diabaikan, dan output dari modal 

rekabentuk yang baru dibangunkan untuk sendi kunci UHPFRC dibandingkan dengan 

output yang diperolehi dari ujian makmal. Pada dasarnya, perbandingan kedua-dua 

keputusan output ini telah menunjukkan persamaan yang baik untuk kedua-dua 

kapasiti daya ricihan iaitu pada peringkat beban rekahan pertama dan pada peringkat 

beban ricihan puncak. Selain daripada itu, keputusan ujian makmal juga dibantingkan 

dengan nilai daya ricihan yang dianggarkan dari lima modal rekabentuk sediada dan 

keputusan/output dari Analisa FEM. Model FEM ini juga telah digunakan untuk 

pengesahan lanjut dari segi corak kegagalan spesimen-spesimen yang digunakan 

dalam ujian makmal berdasarkan pada tiga parameter pembolehubah yang dinyatakan 

sebelum ini.  

 

 

Keputusan-keputusan dalam kajian ini juga telah menunjukkan, kapasiti sendi kunci 

UHPFRC bertambah dengan pertambahan nilai daya pra tegangan yang dikenakan 

merentasi sendi kunci, pertambahan bilangan kunci ricihan, dan kewujudan lapisan 

epoksi pada bahagian sendi kunci. Menerusi kajian ini juga didapati, kesemua modal 

rekabentuk sediada menganggarkan nilai kapasiti ricihan puncak yang tinggi untuk 

jenis kunci ricihan UHPFRC dan sehingga kini tiada lagi satu model rekabentuk pun 

yang boleh digunakan untuk menganggarkan nilai kapasiti ricihan pada peringkat daya 

ricihan rekahan pertama untuk mana-mana jenis konkrit. Anggaran nilai kedua-dua 

nilai kapasiti ricihan (peringkat rekahan pertama dan peringkat puncak) dari model 

rekabentuk baru untuk sendi kekunci UHPFRC dalam kajian ini, telah menunjukkan 

persamaan yang baik dengan keputusan kapasiti ricihan yang diperolehi dalam ujian 

maklmal untuk kedua-dua jenis sendi kunci (kering dan epoksi) pada kedua-dua 

peringkat daya ricihan (rekahan pertama dan puncak). Nilai purata dan pemalar 

pembolehubah (COV) bagi nisbah teori/ujian untuk sendi kekunci kering adalah 0.92 

dan 7.1% pada peringkat kapasiti daya ricihian rekahan pertama, manakala 0.72 dan 

7.66% pada peringkat kapasiti daya ricihan puncak. Pada masa yang sama, nilai purata 

dan pemalar pembolehubah (COV) bagi nisbah teori/ujian untuk sendi kunci epoksi 

adalah 1.18 dan 8.23% pada peringkat kapasiti daya ricihian rekahan pertama, 

manakala 0.96 dan 8.22% pada peringkat kapasiti daya ricihan puncak. 

 

 

Oleh yang demikian, menerusi kajian ini, boleh dirumuskan bahawa model-model 

rekabentuk sediada tidak sesuai digunakan untuk rekabentuk bahagian sendi-sendi 

rasuk jambatan pra tuang jenis UHPFRC.  Dengan mengaplikasikan modal rekabentuk 

baru bagi menganggarkan nilai kapasiti ricihan (peringkat rekahan pertama dan 

puncak) untuk sendi rasuk jambatan pra tuang UHPFRC, kedua-dua badan kerajaan 

dan swasta akan memperolehi manfaat yang optimum dengan memastikan struktur 

rasuk jambatan UHPFRC yang direkabentuk adalah selamat, ekonomik, dan mudah 

untuk dibina. Pada masa yang sama, kajian ini juga akan memberikan sumbangan yang 

penting ke arah pembangunan garispanduan rasuk jambatan pra tuang UHPFRC, 

khususnya dalam konteks sendi kunci.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 General overview 

Throughout history, bridges have fascinated humanity as symbols of art and science, 

good architecture, trade, and engineering skill and have also symbolised links between 

people, culture, communities, and nations. In fact, strategic and tactical bridges have 

signified their importance towards exercising and displaying power. Bridge building 

has therefore been a high-ranked profession. The evolution of bridge deck technology 

can be divided into two major geological era. First, the Arch Earned run average, from 

2000 BC to the end of the 18th century, was dominated by the Roman print structures 

and were practically all stone archway during this period. Secondly, the Contemporary 

Era that followed and continues today flourished after brand was commercially 

available as a construction material in the mid-19th century. All Bodoni font bridge 

types including girder bridge deck , cable-stayed Bridges , abatement Harry Bridges 

and arch bridges, especially those with larger spans, have been made possible only 

due to the high enduringness of steel, both in compression and in tension (Tang, 2007). 
Since the beginning of the 20th century, concrete has become the most widely used 

construction material in bridge construction with Portland cement being the second 

most commonly used material, the first being water. According to the U.S. Geological 

Survey, in 2016, the world production of cement was about 4.35 billion tons (refer to 

Figure 1.1), compared to just 1.04 million tons in 1990 (Van Oss, 2014 and Van 

Ruijven et al., 2016).  

 
 

Figure 1.1 : World cement consumption (Van Ruijven et al., 2016) 
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Traditionally, concrete has been understood to be a mixture of cement, water and 

aggregate but in modern concrete other constituents may also be present such as 

mineral components (e.g. fly ash, slag, micro-silica and silica fume), chemical 

admixtures (e.g. air-entraining agent, superplasticiser, and retarder) and fibres (steel, 

carbon or synthetic). Figure 1.2 shows the development of concrete through the ages 

with normal strength concrete (NSC) and high strength concrete (HSC) developed in 

the early 1900s and 1950s, respectively while the development of ultra-high-

performance fibre reinforced concrete (UHPFRC) or reactive powder concrete (RPC) 

originated during the mid-1990’s. When compared with high-performance concrete 

(HPFRC), UHPFRC tends to exhibit superior properties such as advanced strength, 

durability, and long-term stability.
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Figure 1.2 : Evolution of Concrete Technology (Voo et al., 2012) 
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In brief compared to NSC, UHPFRC demonstrates exceptional structural durability 

characteristics such as high fracture energy, low permeability, limited shrinkage, 

increased corrosion resistance since it is this cementitious material contains a high 

quantity of cement and silica fume, , incorporates large amounts of steel fibres and 

low quantity of water. Notably, UHPFRC is characterised by its compression and 

flexural strengths, more than 150 MPa and 20 MPa respectively. Based on these 

supreme durability and structural qualities, UHPFRC has ended up commercially 

accessible in numerous nations, such as Canada, United States, China, Chez republic, 

Germany, Austria, Italy, Australia, New Zealand, Japan, Malaysia, Netherlands, 

Singapore, Slovenia, South Korea, Spain, Vietnam and other countries.  

The concept, improvement, and the around the world acknowledgment of segmental 

development within the field of precast segmental bridge girders (PSBGs) represents 

one of the foremost curiously and vital accomplishments in civil engineering (Poston 

and Wouters, 1998). Consequently, a large number and varying lengths of PSBGs of 

have been constructed around the world, due to the demand of safe design, quick, 

adaptable and practical construction, supreme serviceability and economical in term 

of cost (Wium and Buyukozturk, 1984). In fact, PSBGs are perceived as an 

arrangement to numerous bridge issues having superior durability, reasonable low cost 

cycle and quality control that is promptly accomplished. Generally, the integrity and 

behaviour of the joints between the segments determines the ultimate strength of 

segmental bridges. Prior shapes of these bridges ordinarily utilized the single key 

within the web section, and these can be reinforced are within the key region. However, 

in contrast with the past, unreinforced multiple keys are widely in use within the key 

zone, whereby these components would provide improved performance of 

interlocking (Buyukozturk et al., 1990). Generally, joints between the precast 

segments are weaker compared to adjacent solid sections within the segments, and 

during the service stage the compression and shear forces are transmitted through these 

key components. 

Accordingly, during the erection phase, the keys in these regions serve as an alignment 

tool to align the segments. Meanwhile during the service phase, these components are 

utilised to transfer shear and compression forces between the segments and to ensure 

durability of the segments by protecting the prestress tendons which are passing 

through the joints against corrosion. Nowadays, it is common that the segmental joints 

can be fabricated and erected either using an epoxy layer between the segments or in 

a dry condition. Depending on the countries, such as the UK, Australia, USA and 

Canada the use of a non-epoxied segmental joint is not allowed, whereas, in some 

countries such as Malaysia, a dry non-epoxied segmental joint is permitted. 

1.2 A brief review of earlier works 

Exploiting dry keyed joints in the precast segmental bridge girders (PSBGs) are one 

of the commonly used technique in segmental girders industries. This technique is 

more suitable than using epoxy joints due to the excellent contribution in accelerating 

the erection process, and the lack of dependency on weather atmospheric condition 
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during construction. Although, the capacity of the joints increases by applying epoxy 

layers. 

Even though the precast segmental box girder bridges have been extensively used, 

there is relatively scant knowledge of facts available on the behaviour and design of 

such bridge structures, especially related to the joints between the segments. The 

investigation on the behaviour of precast segmental girders with external tendons and 

dry joints was conducted earlier by MacGregor et al., (1989), Sowlat and Rabbat (1987) 

and Bu and Wu (2018). More recently researchers who investigated the shear 

behaviour of the joints included Koseki and Breen (1983), Buyukozturk et al., (1990), 

Zhou et al., (2005), Han et al., (2017), Jang et al., (2017) and Tawadrous and Morcous 

(2018). It has been noticed that, all of these previous studies pertaining to PSBG joints 

are on normal strength concrete (NSC) and most of these works are likely limited to 

single-keyed joints and are different in detail from the actual use in construction where 

multiple-keyed joints are dominant. 

In a similar vein, Rombach (2004) examined the conduct of NSC multiple-keyed joints 

in a finite element model while, Zhou et al., (2005), performed a arrangement of 

experimental tests and examined the conduct of NSC dry single keyed joints and three-

keyed joints. Whereas, Turmo et al., (2006a) checked the diverse joint shear capacity 

details between the distributed experimental data (NSC data) within the published 

writings and estimated outputs from the ATEP formula (Spanish Design Code) and 

the AASHTO (American Design Code) equation (both developed for NSC material), 

and eventually proposed a new formula to be a part of the Eurocode (Turmo etal., 

(2006b)). 

A Finite Element Method (FEM) study investigating the structural behaviour of 

segmental concrete structures with external prestressing, focusing on the response of 

these structures under the combined shear and flexure was presented by Turmo et al., 

(2006c). In this study, they simplified the modelling of interlocking geometry of the 

keys by not replicating it. Alcalde et al., (2013) examined the fracture characteristic 

of NSC dry keyed joints under the influence of shear loading, centring on the impact 

of the number of keys on the joint capacity and its average shear stress. In this study, 

they summarised that the different design code formulations did not agree to the 

behaviour of NSC multiple-keyed joints. In a separate study by Hu and Xia (2016), 

some structural strengthen suggestions on shear keys were suggested, after they 

investigated and simulated the bending and twisting working conditions between the 

NSC shear keys and segments. 

1.3 Identified gaps 

An extensive review of the writing distinguished more than 300 completed bridges 

(pedestrian and motorway bridges combined) developed around the world utilising 

UHPFRC in one or more components (Voo et al., 2014 and 2017). The review 

recognised that both private and legislative bodies are expending consideration and 
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activities toward using UHPFRC as future construction material given the conviction 

that UHPFRC innovation grasps are the total arrangement for economic developments 

and sustainable constructions. In Malaysia alone, until 2018 a total of 133 UHPFRC 

bridge projects (source: Dura Technology Sdn. Bhd.), have been bulided and opened 

for service. Among these, about 75% of these bridges are made from UHPFRC girders 

which are assembled or connected using precast segmental bridge girder (PSBG) 

techniques. 

Nowadays, compared with normal strength concrete (NSC), the investigation about 

the structures and structural components constructed with UHPFRC as a bridge 

building material in many countries, is still in its early stage. Over the last decade, 

many experimental studies have been conducted and published on the structural 

behaviour of UHPFRC structural members subjected to different loadings. However, 

the focus of the experimental studies regarding shear strength response at the keyed 

joints of the actual completed UHPFRC bridges is almost non-existent. Further, the 

existing provisions of shear capacity are all for NSC prestressed bridge girders, and 

based on the literatures, all these provisions tend to significantly over-estimate the 

ultimate shear capacity of the joint specimens. Therefore, there is no design provision 

model available to calculate the first crack shear capacity loads of any kind of concrete 

keyed joints, and to estimate ultimate shear capacity loads of UHPFRC shear keyed 

joints (dry and epoxy). Accordingly, this research study aims to close these gaps 

regarding the lack of or non-existence of data on such connections for this ultra-high 

performance fibre reinforced concrete (UHPFRC) material. 

1.4 Problem statements 

The growing use and application of precast segmental bridges as a solution to bridge 

problems has resulted in the need to increase the current knowledge of the behaviour 

of joints in PSBGs. This is because, in PSBGs, shear and compression forces are 

passed hrough the joints, and generally, these parts are weaker than those of the 

adjacent monolithic sections.  

In spite of the fact that UHPFRC has gotten to be commercially accessible in numerous 

nations,  there has been no comprehensive and detailed international or even European 

standardisation work on the design of UHPFRC structures. In early 2016, the first 

UHPFRC standard, (i.e. French standard NF P18-710) was published which can be 

considered as a national extra feature to Eurocode 2 in the design of UHPFRC 

structures. Nonetheless, there is no mathematical formula or design provision model 

to estimate the strength and shear capacity of dry and epoxy UHPFRC joints in this 

recently released French code. 

Therefore, based on the extensive review of the literature, it is observed that there are 

crucial unresolved gaps in the understanding and assessment of UHPFRC PSBGs 

including: 
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i. All the experimental tests available in the literatures, investigated the 

behaviour of normal strength concrete (NSC) keyed joints. Therefore, there 

is no comprehensive and full-scale experimental test data available to 

investigate the shear capacities of the dry and epoxy UHPFRC keyed joints. 

ii. All the existing mathematical models and empirical formulae from different 

researchers and design standard codes for calculating the ultimate shear 

capacity of dry keyed joints are only dedicated to normal strength concrete 

(NSC) precast segmental bridges which lead to different and uncertain values 

(Tawadrous et al. (2018) and Zhou et al. (2005). Hence, there are no 

mathematical and empirical design provision models, to estimate the failure 

shear capacities (first crack and ultimate) of the dry and epoxy UHPFRC 

keyed joints. 

iii. In the technical review of the literatures, there are some exploratory studies, 

FE models and numerical models are accessible to explore the characteristic 

of NSC dry keyed joints. Be that as it may, a reasonable comparative analysis 

is troublesome to realise, since the setups of both the experimental studies, 

numerical models and FE models are exceptionally distinctive.  

iv. There is no numerical or FE model yet to simulate the failure pattern of the 

UHPFRC shear key joint specimens under different variable parameters (i.e. 

number of shear keys, confining stress (prestressed strength), and kinds of 

joint keys (dry and epoxy). 

v. It can be observed from undertaking literature reviews that, particularly at 

low confining stress condition, the ultimate shear capacity of the multiple-

dry keyed joints are overestimated. This is due to, the formulation proposed 

by AASHTO was inferred from the single-keyed joints exploratory data. 

This equation does not consider the diminished capacity in multiple-keyed 

joints due to consecutive failure.  

vi. Most of the existing design provision models are created to calculate the 

ultimate shear capacity of NSC dry keyed joints. It was found that all the 

existing provisions tend to greatly over-estimate the ultimate shear capacity 

of the dry keyed joint of Precast Segmental Bridge Girders (PSBGs). 

Therefore, there are no comparison studies between: 

 

a) Existing design provision data and experimental results for UHPFRC 

keyed joints (dry and epoxy). 

b) FEM model and experimental data on UHPFRC keyed joints (dry and 

epoxy). 

 

 

1.5 Objective of the study 

The primary objective of this study is to investigate the shear strength and behaviour 

of typical joints used in PSBGs using UHPFRC without conventional steel 

reinforcement in the shear key zones. In addition, this research will check the 

applicability of the available shear design provisions for structural members that have 

been used in the design for PSBGs. Therefore, the objectives of this research are 

summarised as: 
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1. To conduct experimental tests on twelve UHPFRC real full-scale shear joint 

key specimens up to failure with three variable parameters namely, number 

of shear joint keys, amount of prestress strengths or confining stresses, and 

types of joint keys (dry or epoxy). 

2. To develop new design provision models for dry and epoxy keyed joints of 

UHPFRC segmental girders based on the Mohr-Circle theory. 

3. To develop a new numerical and finite element model (FEM) to compare the 

shear capacity load values against the experimental data and confirm the 

failure pattern of the UHPFRC shear keyed joint specimens based on all three 

variable parameters. 

4. To perform a comparison study between existing shear capacity design 

provision models and the newly developed UHPFRC shear capacity design 

provision models with the UHPFRC experimental shear joint experimental 

results. 

 

 

1.6 Scope and limitation of the work 

To ensure that the above objectives are achieved, the present study is organised as 

follows: 

1. Twelve real full-scale shear joint key specimens are casted and tested 

experimentally up to failure with three variable parameters namely, number 

of shear joint keys, amount of confining stress, and the type of joint keys (dry 

or epoxy)  

2. New design provision models are developed for UHPFRC dry and epoxy 

joints. The reliability of the new design provision models is established 

through comparison with experimental results.  

3. A finite element model (FEM) is developed to compare the validity of the 

experimental data against the FEM outputs, and simulate the failure pattern.  

4. Comparison study is performed between the outputs of existing shear 

capacity design provision models against the experimental data.  

 

 

Furthermore, the limitations of the present study are presented as follows: 

1. The effects of prestress losses are not considered in finite element 

formulations. 

2. Further investigations are needed to determine the effect of epoxy layer on 

residual frictional shear capacities ( 𝑉𝑗,𝑓𝑟𝑖𝑐,𝑒𝑥𝑝 ) and the static friction 

coefficients (𝜇) of the UHPFRC keyed joints. 

3. A comprehensive investigation on overall behaviour of the dry or epoxy 

keyed joints on actual PSBGs are yet to be conducted.  
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1.7 Organisation of the thesis 

The thesis comprises five chapters, of which are summarised below.  

In Chapter 1, the significance and definition of the problem statement of the present 

investigation have been highlighted, along with the overall objective and scope of the 

study. 

In Chapter 2, the existing knowledge on the application of PSBGs and the design 

models of conventional segmental bridges is reviewed. Subsequently, the shear 

transfer mechanism of the segmental joints is also presented. The literature review will 

also cover the overview on the background of UHPFRC and case studies or projects 

where UHPFRC has been used in segmental bridge construction.  

In Chapter 3, the detailed methodology of this study will be discussed. A new 

provision design model for UHPFRC precast segmental girders is developed and 

presented in this chapter. This model is used to calibrate against the experimental data 

on the full-scale UHPFRC specimens in this study on both non-epoxied (dry) 

segmental joints and the epoxied segmental joints. Notably, this model is also used as 

the design tool mainly for the design of UHPFRC precast segmental prestressed girder 

in shear. The procedure for development of the FE shear keyed joint models is also 

explained. This chapter further reports on the experimental program of this study 

which includes (i) the mix design and mechanical properties of UHPFRC and 

fabrication of full-scale shear joint keys specimens, and (ii) experimental setup and 

testing methodology for the material testing program and the shear joint specimens. 

In Chapter 4, the mechanical property results of the UHPFRC used in the experimental 

test program are presented. Subsequently, the experimental test results and 

observations of the shear joint strength tests are reported. Furthermore, the 

experimental results on the tested UHPFRC specimens are compared to both the 

existing design models and a shear joint model as proposed in Chapter 3. 

Lastly, Chapter 5, presents the major conclusions from the experimental and numerical 

results of this study. The scope of future work and recommendations are also 

discussed. 
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