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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Science  

 

MECHANICS BASED SOLUTION FOR PREDICTING DEFLECTION AND 

ULTIMATE LOAD OF ORDINARY AND PLATED-REINFORCED CONCRETE 

BEAMS  

 

By 

EL-ZEADANI MOHAMED HASSAN HAMAD  

July 2019 

Chair  : Assoc. Prof. Ir. Raizal Saifulnaz Muhammad Rashid, PhD  

Faculty  : Engineering 

 

 

Most design codes available today use full-interaction moment-curvature analysis to 

determine the deflection and moment capacity of reinforced concrete (RC) beams. This 

has been achieved by calibrating design equations with hundreds of lab tests to ensure 
their validity. While this has worked well for steel reinforced RC structures, the derived 

design equations cannot be used for RC structures with different types of reinforcement 

material. Alternatively, mechanics-based methods that take into consideration the partial-

interaction behavior between the reinforcement and adjacent concrete, and also the size 

and shape effect of the concrete in compression can be used. The main objective of this 

study was to develop mechanics-based solutions for RC beams and CFRP plated RC 

beams to determine their deflection and ultimate load carrying capacity. The results from 

the mechanics-based methods were compared with the experimental results of three RC 

beams and three CFRP plated RC beams that were subjected to a point load at mid-span. 

A comparison between the analytical results and experimental results showed a good 

agreement between the deflection and ultimate load results for the RC beams. For 
instance, the difference between the theoretical and experimental ultimate loads for the 

RC beams considered was merely 0.92%. Good agreement was also observed in the 

recorded strains in the reinforcement steel at the center of the beam. However, for the 

CFRP plated beams, the results derived from the mechanics-based solution indicated an 

early yielding of the reinforcement steel which caused poor correlation of the results at 

higher applied loads. For example, the theoretical and experimental ultimate loads varied 

by about 34%. This was attributed to the fact that the strain in the CFRP plate was 

assumed to remain constant once the intermediate crack (IC) debonding strain was 

achieved; however, in reality the strain in the plate kept building up until debonding of 

the plate took place. A parametric study that allowed for shear stresses to develop in the 

plate after the IC debonding strain was achieved showed a better correlation with the 

experimental results at higher applied loads for the deflection and ultimate load carrying 
capacity (difference in ultimate load being less than 5%). 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

SOLUSI BERASASKAN MEKANIK DALAM MERAMALKAN PESONGAN 

DAN BEBAN MUKTAMAD RASUK KONKRIT BERTELULANG BIASA DAN 

BERSALUT 

 

Oleh 

EL-ZEADANI MOHAMED HASSAN HAMAD  

Julai 2019 

Pengerusi : Prof. Madya Ir. Raizal Saifulnaz Muhammad Rashid, PhD 

Fakulti  : Kejuruteraan 

 
 

Kebanyakan kod reka bentuk yang terdapat pada hari ini menggunakan analisa momen-

lengkungan momen interaksi penuh dalam menentukan kapasiti pesongan dan momen 

rasuk konkrit bertetulang (RC). Ini telah dicapai dengan membuat persamaan reka 

bentuk kalibrasi dengan beratus-ratus ujian makmal untuk memastikan kesahihannya. 

Walaupun ini telah berfungsi dengan baik untuk struktur RC bertetulang keluli, 

persamaan rekabentuk yang diperolehi tidak boleh digunakan untuk struktur RC 

dengan jenis bahan tetulang yang lain. Selain itu, kaedah berasaskan mekanik yang 

mengambil kira tingkah laku separa interaksi antara tetulang dan konkrit bersebelahan, 

dan juga kesan saiz dan bentuk konkrit dalam mampatan boleh digunakan. Objektif 

utama kajian ini ialah untuk membangunkan penyelesaian berasaskan mekanik untuk 
rasuk RC dan CFRP bersalut RC rasuk untuk menentukan pesongan mereka dan 

keupayaan membawa beban muktamad. Hasil daripada kaedah berasaskan mekanik 

dibandingkan dengan hasil eksperimen yang diperoleh daripada tiga rasuk RC dan tiga 

CFRP rasuk RC bersalut yang tertakluk kepada beban titik pada jarak pertengahan. 

Perbandingan antara keputusan analisis dan keputusan eksperimen menunjukkan 

persetujuan yang baik antara pesongan dan keputusan beban akhir bagi rasuk RC. 

Contohnya, perbezaan antara eksperimen dan teori untuk rasuk RC diangarkan hanya 

0.92 %. Persetujuan yang baik juga diperhatikan dalam tegangan yang direkodkan 

dalam keluli tetulang di pusat rasuk. Walaubagaimanapun, bagi rasuk bersalut CFRP, 

keputusan yang diperoleh daripada penyelesaian berasaskan mekanik menunjukkan 

keluaran awal keluli tetulang yang menyebabkan hasil korelasi yang lemah pada beban 
yang lebih tinggi. Sebagai contohnya, eksperimen dan teori beban muktamad berubah-

rubah kira-kira 34 %. Hal ini disebabkan oleh fakta bahawa ketegangan dalam plat 

CFRP diandaikan kekal berterusan sebaik sahaja ketegangan peleraian ikatan (IC) 

dicapai; namun, pada hakikatnya ketegangan dalam plat terus membina sehingga 

peleraian ikatan plat berlaku. Kajian parametric yang dilakukan membenar tegasan 

ricih untuk berkembang di dalam plat selepas ketegangan peleraian ikatan (IC) dicapai 
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menunjukkan kolerasi yang lebih baik dengan hasil eksperimen pada beban yang lebih 

tinggi untuk pesongan dan beban muatan muktamad (perbezaan beban muktamad 

adalah kurang dari 5 %). 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Oftentimes, engineers are called upon to design structures that fall outside the safety 

net of most design codes; for example, they might be asked to design a concrete 
structure with new type of reinforcement material or to develop new design rules that 

are more accurate in estimating the behavior of reinforced concrete structures. Anyhow, 

to be able to do so and work outside the bounds of design codes, mechanical models 

that simulate the actual behavior of reinforced concrete structures need to be developed. 

These mechanical models can be used to determine the deflection of reinforced 

concrete (RC) structures or moment capacity by simulating the local and global 

behaviors observed in practice. 

 

 

Much of the research on predicting the deflection of RC members (Alwis, 1990; Al-

Zaid, Abu-Hussien & Al-Shaikh, 1991; Bazant & Oh, 1984; Bischoff, 2007; Branson, 
1965; Castel, Vidal & Francois, 2006; Gilbert, 2007) is founded on the assumption that 

there is full interaction between the reinforcement steel and the adjacent concrete; this 

is generally known as Branson’s approach (Branson, 1965). Using full-interaction, 

designers would derive cracked and uncracked flexural rigidities that are calibrated 

from lab data to obtain effective flexural rigidities used to determine the member’s 

deflection. 

 

 

The full-interaction method for measuring the deflection of RC structures is heavily 

dependent on test data derived from the laboratory and does not incorporate the slip 

between the reinforcement and the bordering concrete surface at a crack; thereby, it 

does not directly simulate the deflection associated with crack widening.  
 

 

In 1970, Bachmann published a research paper proposing a new method for quantifying 

the deflection of RC structures (Bachmann, 1970). In his paper, he explained that the 

rotation of each individual crack contributes to the overall deflection of the beam; 

moreover, he also mentioned that the beam should be divided into a cracked region and 

an uncracked region, and the contribution to deflection of each region should be 

calculated separately and totaled up to give the final deflection of the beam. 

 

 

Using Bachmann’s approach, numerous researchers (Muhamad, Oehlers & Mohamed 
Ali, 2013; Oehlers, Muhamad & Mohamed Ali, 2013; Visintin, Oehlers, Muhamad & 

Wu, 2013; Visintin, Oehlers & Sturm, 2016) have used mechanics-based methods to 
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incorporate the slip between the reinforcement and adjacent concrete and eventually 

measure the deflection of the RC structure. However, in all of these methods, the 

concrete in compression was taken to be linearly-elastic and the deflection of the RC 

structures was measured at service loads only; that is, before to the softening of the 

concrete in compression. 

 
 

In addition to measuring the deflection, structural engineers have long recognized the 

significance of ductility in the design of RC structures. According to Oehlers and 

Seracino (2004), the ductility of a structure is as important as its strength. The 

quantification of ductility in reinforced concrete structures relies predominantly on the 

limit of concrete crushing; therefore, making the procedure more or less 

straightforward. However, as adhesively plating RC structures using fibre reinforced 

polymer (FRP) plates has become a well-established strengthening technique, the 

quantification of the ductility of these strengthened structures is more complex. For 

instance, using a strain-based moment-curvature design technique, the rotational limit 

of an FRP adhesively plated RC beam depends on either: (1) the concrete crushing 

strain 𝜀crush; (2) the plate intermediate crack (IC) deboning strain 𝜀IC; (3) the plate 

fracture strain 𝜀fract. Using this traditional method of design, it is often found that the 

FRP plate debonds before the yielding of the tension reinforcement; hence, making the 

entire structure very brittle (Oehlers, Visintin & Lucas, 2015). 

 

 

Therefore, a displacement-based design could be employed to which partial-interaction 

theory is at the heart of it. For instance, according to Oehlers et al. (2015), higher 

ductility, and consequently, higher strength can be achieved using a displacement-

based design instead of a strain-based moment-curvature design. 

 
 
1.2 Problem Statement 

 
Structural engineering design codes available today (e.g. Eurocodes and ACI) rely on 

full-interaction assumptions, that is no sliding between the reinforcement and the 

bordering concrete surface, to predict the ultimate strength of the structural member as 

well as the deflection and crack width. This is possible by carrying out hundreds of 

laboratory tests for the steel reinforced concrete and later calibrating the test results 

with the design equations in the code. However, due to their empirical nature, these 

design equations can only be applied within the bounds of the tests from which they 

were calibrated (Haskett, Oehlers, Mohamed Ali & Wu, 2009a; Visintin, Oehlers, Wu 

& Haskett, 2012; Panagiotakos & Fardis, 2001). This has worked well for steel bars 

due to their high and constant elastic modulus and their good bond with the adjacent 

concrete (Oehlers et al., 2017). 
 

 

However, structural engineers today are frequently asked to find solutions to structural 

members that make use of new reinforcing materials such as fibre reinforced polymer. 

This would not be possible by using the design codes available today as that falls 

outside the safety net of most codes. Furthermore, unlike steel reinforcing bars, FRP 

bars or plates have a wide range of elastic modulus, typically ranging from 40 GPa to 

140 GPa depending on the density of the fibre (Oehlers et al., 2013; Oehlers et al., 
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2017). In addition, different types of fibre such as glass fibre reinforced polymer 

(GFRP), carbon fibre reinforced polymer (CFRP), and aluminum fibre reinforced 

polymer (AFRP) add to the complexity of the problem (Oehlers et al., 2013). Not only 

that but FRP reinforcing bars and plates also have a wide range of bond characteristics 

depending on the manufacturing process. Therefore, to carry out laboratory tests to 

determine the properties of each type of fibre would not be economical and feasible. 
 

 

Furthermore, much of the research on determining the deflection of RC structures using 

mechanic-based methods that simulate the slip between the reinforcement and adjacent 

concrete have focused on measuring the deflection under low loads and prior to the 

softening of the concrete in compression. However, it is well known that with increased 

loading, the stress-strain curve of concrete begins to deviate from the linear-elastic line 

indicating some softening as it ascends to the maximum compressive stress and later a 

large amount of softening as the stress decreases with increasing strains (descending 

branch). Furthermore, it is well known that the concrete material property relies heavily 

on the size and shape of the test specimen (Chen, Visintin, Oehlers & Alengaram, 
2014; Chen, Visintin & Oehlers, 2015). 

 

 

In addition to that, it has become common to strengthen RC beams and slabs by 

adhesively bonding FRP plates to their tension faces using a strain-based moment-

curvature design technique. In this approach, failure often occurs when the IC 

debonding strain is first achieved in the plate. This sometimes makes plating the RC 

beam ineffective at the ultimate limit state with the plate often reaching its IC 

debonding strain prior to yielding of the reinforcement. 

 

 

Therefore, it becomes important to develop a mechanics-based solution that takes into 
consideration not only the slip between the reinforcement and adjacent concrete, but 

also the softening of the concrete in compression, and the size and shape of the concrete 

specimen. Additionally, using a displacement-based approach, the mechanics-based 

solution for determining the moment of an adhesively plated beam should take into 

consideration the member debonding mechanism and the propagation of IC debonding 

instead of halting the analysis when the IC debonding strains are first achieved in the 

plate. 

 

 

1.3 Objectives 

 
This research aims to explore the use of mechanical models for RC structures that 

simulate the behavior that is seen and measured in practice. Also, the work of this 

research tries to promote the design of ordinary RC beams and CFRP plated RC beams 

through partial-interaction analysis rather than the commonly used and well understood 

full-interaction techniques. Henceforth, the objectives of this research can be 

summarized as follows: 

 

(i) To develop a mechanics-based solution for predicting the deflection and 

ultimate load carrying capacity of RC beams by taking into consideration 

the slip between the reinforcement and adjacent concrete, the softening of 
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the concrete in compression, and the size and shape effect of concrete in 

compression. 

(ii) To develop a mechanics-based solution for determining the deflection and 

ultimate load carrying capacity of a carbon fibre reinforced polymer 

(CFRP) plated RC beams while at the same time considering the 

reinforcement and plate slip, the softening and size effect of the concrete 
in compression and the IC debonding mechanism of the plated structure. 

(iii) To validate the results of the mechanical models developed in (i) and (ii) 

above with the experimental results determined in the laboratory. 

 

 
1.4 Scope of Research 

 

This research focuses on the development of mechanics-based solutions for RC beams 

and CFRP plated RC beams. This basically entails the development of mechanical 

models for the prediction of the short-term deflection and ultimate load carrying 

capacity of the RC structures while at the same time simulating the behavior that is 
seen and measured in practice (e.g. slip between the steel reinforcement and adjacent 

concrete, softening of the concrete in compression and the size effect of concrete in 

compression). The results obtained analytically were compared with the experimental 

results determined in the labortory to verify the accuracy of the models proposed. The 

experimental program consisted of three ordinary RC beams and three CFRP plated RC 

beams that were tested under three point bending. Furthermore, from the experimental 

testing, the midspan reinforcement steel and plate strains, flexural crack spacing, 

midspan deflection and ultimate load carrying capacity were recorded and compared to 

those derived from the mechanics-based solution.  

 

 

1.5 Significance of Research 

 

This research tries to pave the way for the acceptance of the design of reinforced 

concrete structures using partial-interaction analysis. This is mainly achieved through 

the development of mechanical models that simulate the slip between the reinforcement 

and adjacent concrete and takes into consideration the softening of the concrete in 

compression. With such models that simulate what is actually seen and measured in 

practice, testing at the member level can be eliminated and the only testing that would 

be required will be that of a material property such as the stress-strain relationship or 

bondstress-slip properties. Thereby, this will allow for the rapid development of 

construction materials as hundreds of lab tests would no longer required. In other 
words, using mechanics-based solutions; the cost of accepting new materials for design 

will be reduced immensely. 

 
 
1.6 Thesis Outline 

 

The thesis starts with an introductory chapter (Chapter 1) stating the background of the 

project, problem statement, objectives and significance to the discipline. After that, a 

brief review of the relevant literature is presented in Chapter 2. This includes the 

concept of slip in reinforced concrete, tension stiffening, shear friction, moment-

rotation analysis and discrete rotation deflection. 
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The methodology used in this study is given in Chapter 3. The experimental setup and 

testing method are discussed first. After that, the mechanical modeling methodology 

used to form the analytical solution is explained in detail for both the RC beams and the 

CFRP plated RC beams. 
 

 

Moving on, the first part of Chapter 4 covers the experimental results in detail. For 

instance, the concrete compressive cube and cylinder strengths are presented first. After 

that, the results from the tensile test on the steel reinforcement are given. The strains in 

the reinforcement, concrete surface adjacent to the reinforcement and CFRP plate as the 

test proceeded were recorded and presented accordingly. Also, the load versus midspan 

deflection response and ultimate load results are given. As for the second part of 

Chapter 4, it presents the theoretical results derived from the mechanics-based solution, 

which include the midspan reinforcement steel and CFRP plate strains, crack spacing, 

midspan deflection and ultimate load carrying capacity of the beams considered in this 
study. 

 

 

Chapter 5 covers a comparison between the analytical and experimental results, 

accompanied with relevant discussion on the results. In addition to that, Chapter 5 also 

presents the results of a parametric study that was performed on the CFRP plated beam 

in which the bondstress-slip model was varied to allow for a frictional component.  

Finally, Chapter 6 covers the conclusion and recommendations for future research. 
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