
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

INVESTIGATION OF LIGHTNING DAMAGES IN GLASS FIBRE-
REINFORCED PREPREG COMPOSITES 

 

 
 
 
   
 
 
 
 
 

GAN CHIA SHENG 
 
 
 
 
 
 
 
 
 
 
 

 
FK 2019 113 



© C
OPYRIG

HT U
PM

INVESTIGATION OF LIGHTNING DAMAGES IN GLASS 
FIBRE-REINFORCED PREPREG COMPOSITES 

By 

GAN CHIA SHENG 

Thesis Submitted to the School of Graduate Studies, Universiti 
Putra Malaysia, in Fulfilment of the Requirements for the Degree of 

Master of Science 

March 2019 



© C
OPYRIG

HT U
PM

 

 

All material contained within the thesis, including without limitation text, logos, 
icons, photographs and all other artwork, is copyright material of Universiti Putra 
Malaysia unless otherwise stated. Use may be made of any material contained 
within the thesis for non-commercial purposes from the copyright holder. 
Commercial use of material may only be made with the express, prior, written 
permission of Universiti Putra Malaysia. 
 
Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

  



© C
OPYRIG

HT U
PM

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science. 

 

INVESTIGATION OF LIGHTNING DAMAGES IN GLASS FIBRE-REINFORCED  
PREPREG COMPOSITES 

By 

GAN CHIA SHENG 

March 2019 

Chair  : Chia Chen Ciang, PhD 
Faculty  : Engineering 
 
 
Glass fibre reinforced polymers (GFRP) are typically used in aircraft parts where 
lightning strikes the most. Recent studies had been focusing on lightning damage 
on carbon fibre reinforced polymers (CFRP) instead of GFRP. Besides that, the 
main nondestructive evaluation (NDE) technique used to detect lightning 
damage in these studies is water immersion ultrasonic c-scan instead of 
Ultrasound Propagation Imaging (UPI). Thus, it can be seen that the detection 
and evaluation of lightning damages on GFRP using UPI is not well investigated. 
This study aims to accurately and statistically detect, define the shape and size, 
and evaluate the severity of lightning damages in GFRP using UPI. Four 1-layer 
and two 3-layer GFRP specimens had been manufactured and struck using 
various breakdown voltages, which are 6kV, 7kV, and 16kV 1.2/50µs impulse 
voltages, for three of the 1-layer specimens respectively, and 18kV 1.2/50µs 
impulse voltage for the rest of the specimens. The lightning simulation standards 
used in this study are IEC 60060-1 (2010), IEC 60060-2 (2010), and IEC 60060-
3 (2006). Ultrasonic data were obtained using a UPI system and were 
subsequently processed using the Statistically Thresholded Anomaly Mapping 
(STAM) technique that was developed in this study. The results show that the 
damage size increases proportionally with the increase of breakdown voltage, 
which are 27.75mm2, 29.72mm2, and 38.5mm2 for 6kV, 7kV and 16kV 
breakdown voltages respectively for the 1-layer specimens. A significant 
increase in damage size (847.25mm2) was detected on Specimen 4 due to an 
unexpected surface flashover event. 3-layer specimens suffered greater 
damages, measuring 597.25mm2 and 573.5mm2 respectively, compared to 1-
layer specimens due to 3-layer specimens being susceptible to delaminations. 
The results proved that lightning damage in GFRP could be detected using the 
UPI system. The STAM technique developed in this project could distinct 
damage from the noise based on a statistical threshold, hence could provide 
higher reliability and accuracy in evaluating the size of lightning damage. Lastly, 
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it was found that the size of lightning damages increases when breakdown 
voltage increases, subjected to further investigations.  
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Komposit prapreg diperkuat gentian kaca (GFRP) biasanya digunakan untuk 
membuat komponen-komponen kapal terbang yang sering dipanah kilat. Walau 
bagaimanapun, kajian-kajian akhir-akhir ini hanya menumpukan perhatian 
kepada kerosakan kilat pada komposit prapreg diperkuat gentian karbon (CFRP) 
manakala kerosakan kilat pada GFRP telah diabaikan. Sementelahan itu, teknik 
uji tanpa musnah (NDE) yang digunakan oleh kajian-kajian tersebut ialah 
ultrasonik imbas-C jenis rendaman air, bukan Pengimejan Rambatan Ultrabunyi 
(UPI). Oleh itu, hal ini bolehlah dikatakan bahawa pengesanan and penilaian 
kerosakan kilat pada GFRP dengan menggunakan sistem UPI tidak dikaji 
dengan secukupnya. Pengajian ini bertujuan untuk mengesan dan mengimej 
bentuk dan saiz kerosakan kilat secara tepat dan berstatistik, di samping menilai 
keterukannya dengan menggunakan UPI. Empat keping GFRP 1-lapis dan dua 
keping GFRP 3-lapis telah dibuat dan disambar dengan voltan dedenyut 
1.2/50µs 6kV, 7kV, dan 16kV, bagi tiga daripada empat GFRP 1-lapis masing-
masing, dan voltan dedenyut 1.2/50µs 18kV bagi spesimen-spesimen yang lain. 
Standard-standard penyelakuan panahan kilat yang digunakan dalam kajian ini 
ialah IEC 60060-1 (2010), IEC 60060-2 (2010), dan IEC 60060-3 (2006). Data 
ultrabunyi telah diperolehkan dengan menggunakan sistem UPI dan seterusnya 
diproses dengan teknik Pemetaan Anomali Berambang Statistik (STAM) yang 
telah diperkenalkan dalam kajian ini. Keputusan kajian ini menunjukkan bahawa 
saiz kerosakan bertambah secara berkadar dengan peningkatan voltan pecah 
tebat, iaitu 27.75mm2, 29.72mm2, dan 38.5mm2 bagi 6kV, 7kV, dan 16kV voltan 
pecah tebat masing-masing untuk spesimen-spesimen 1-lapis. Spesimen 4 telah 
mengalami peningkatan saiz kerosakan yang ketara berbanding dengan 
spesimen 1-lapis yang lain akibat daripada sambaran kilat yang berlaku pada 
permukaan spesimen sahaja. Spesimen-spesimen 3-lapis telah mengalami 
kerosakan yang teruk berbanding dengan spesimen-spesimen 1-lapis, iaitu 
597.25mm2 dan 573.5mm2 masing-masing. Hal ini adalah kerana spesimen 3-
layer boleh mengalami pelekangan manakala spesimen 1-lapis tidak akan 
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mengalami kerosakan jenis tersebut. Keputusan-keputusan kajian ini 
membuktikan bahawa kerosakan kilat pada GFRP dapat dikesan dengan 
menggunakan sistem UPI. Teknik STAM yang diperkenalkan dalam projek ini 
dapat membezakan kerosakan dan hingar dengan menggunakan ambang 
statistik. Oleh itu, STAM dapat meningkatkan keutuhan dan ketepatan penilaian 
kerosakan kilat. Akhirnya, kajian ini telah mendapati bahawa saiz kerosakan kilat 
meningkat apabila voltan pecah tebat meningkat. Dapatan ini adalah di bawah 
penyelidikan yang akan datang. 
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CHAPTER 1  

INTRODUCTION 

This thesis explains the investigation of lightning damage of aerospace-grade 
glass fibre reinforced polymer (GFRP) using an Ultrasonic Propagation Imaging 
(UPI) technique called Statistically Thresholded Anomaly Mapping (STAM) 
developed in this study. The imaging technique was developed as functionality 
extension for a nondestructive evaluation system known as scanning laser 
ultrasonic wavefield propagation imager. In this chapter, the background of the 
problem is described in Subchapter 1.1 Problem Background. The problem 
statement is discussed in Subchapter 1.2 Problem Statement, followed by the 
objectives and aim of this study in Subchapter 1.3 Aim and Objectives. 
Subchapter 1.4 Scope of Work defines the scope and limitations of this study. 
Other than that, the outline of the thesis is also stated in Subchapter 1.5 Thesis 
Layout, and contents of each following chapter are briefly explained. 

1.1 Problem Background 

Composites used in aircraft structural applications have greater mechanical 
properties compared to aluminium alloy such as high specific stiffness and 
strength (Hirano, Katsumata, Iwahori, & Todoroki, 2010). The fact that these 
composites are much superior to their aluminium counterparts in aircrafts have 
drawn wide interest in the aircraft manufacturing industry. Among the types of 
composites used for aircrafts, there exists a composite called Glass Fibre 
Reinforced Polymer (GFRP), which is mainly used in the making of radomes 
(Dutton, Kelly, & Baker, 2004). Due to its location on the tip of a plane, also 
known as the nose, it is more likely to suffer lightning damage than other aircraft 
parts since the nose of an aircraft is the most common lightning attachment point 
(Sweers, Birch, & Gokcen, 2012), as shown in Figure 1.1. Compared to 
aluminium alloy, GFRP has a much lower electrical (Kawakami & Feraboli, 2011) 
and thermal conductivities (Scott & Scala, 1982), which make them highly 
susceptible to lightning damages. Combining the fact that the highly lightning 
damage susceptible GFRP is very likely to be hit by lightning and the fact that it 
is mainly used for the construction of radomes which houses important radar and 
communication instruments, it can clearly be seen that the relationship between 
lightning damages and GFRP should be well studied.  
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Figure 1.1: Lightning Entry and Exit Points on an Airplane. Source: (Sweers 
et al., 2012) 

There are a few types of lightning damage on GFRP, such as fibre breakages, 
delaminations, and charring at the lightning attachment point. Lightning damages 
on GFRP are typically caused by acoustic shock or through resistive heating 
during a lightning strike. Acoustic shocks from lightning strikes are caused by the 
rapid heating of air in a short span of time, normally only lasting tens of 
nanoseconds to a second (Dwyer & Uman, 2014), when lightning travels through 
an ionized channel of air which guides the lightning current to its destination. This 
in turn causes a rapid expansion of air at supersonic speeds that further results 
in shockwaves (Dwyer & Uman, 2014; Feraboli & Miller, 2009; Kawakami & 
Feraboli, 2011; Rupke, 2002). Damages are inflicted on GFRP when these 
shockwaves come into contact with it, which causes a pressure rise on the 
surface of GFRP, causing fragmentation, delamination, and cracks to the 
composite.  

Damages through resistive heating are caused by the rise in temperature as 
lightning current travels through GFRP, also known as Joule Heating or Ohmic 
Heating. The power (energy per second) of resistive can be calculated using 
Joule's first law, which states that the power of the heat generated when current 
travels through a conductor is proportional to the product of the conductor's 
resistance and the current squared, shown in Equation 1.1.  

 P ∝  I2 ∙ R  (1.1) 

Due to high temperatures caused by the lightning current, the resin/fibre interface 
of GFRP breaks down through pyrolysis and burning (Kawakami & Feraboli, 
2011). Other than that, the resin in GFRP releases gases during pyrolysis 
(Schulte-Fischedick, Seiz, Lützenburger, Wanner, & Voggenreiter, 2007), which 
will form an air bubble if the gases are trapped within the interlaminar layer of 

Initial entry Final entry

Initial exit Final exit
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the GFRP and thus causing the GFRP to delaminate. Furthermore, explosive 
fractures occur (Hirano et al., 2010) when these air bubbles are struck with the 
aforementioned acoustic shocks. 

In order to detect these damages, nondestructive testings (NDE) are carried out. 
Due to ultrasound's sensitivity towards physical properties such as volume, 
thickness, temperature (Kouche & Hassanein, 2012), and most importantly, 
damages or anomalies present on the surface or within a material, such as 
delaminations and fibre breakages, ultrasound can be used to detect and 
evaluate damages on GFRP through various Ultrasonic Propagation Imaging 
(UPI) techniques, such as the local wavenumber technique (Juarez & Leckey, 
2015) and the Anomalous Wave Propagation Imaging (AWPI) technique (Lee, 
Chia, Park, & Jeong, 2012). In its base form, UPI is often presented in the form 
of a video, where the indications of any damage are highly likely to be hidden 
within the incident waves. Other than that, UPI base videos are highly complex 
such that even with trained eyes, the result is most likely undecipherable. The 
situation worsens the more complex the object or structure being evaluated is. 
This is due to incident waves being reflected off native components such as bolts 
and nuts, mixing into the already complicated wavefield consisting of incident 
waves and anomalous waves. Figure 1.2 shows an example of the complexity 
of ultrasonic wavefields, where it is clear that the wave components overlap each 
other.  
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Figure 1.2: Incident wave and reflected waves from the sides, where (a) 
represents the original ultrasonic wavefield and (b) represents the 
ultrasonic wavefield with visual guide for each of its wave components 
where red lines are the incident waves, black lines are the reflected waves 
from the left side and yellow lines represent the reflected waves from the 
right side 

In spite of UPI techniques being sensitive to damages, such as impact damages, 
without a statistical technique to process the UPI results, hazardous 
misinterpretations may occur. As aforementioned, UPI results is often highly 
complex due to high amplitude incident waves masking the highly sought after 
anomalous waves, which indicate the presence of damages. Even when 
suppressed, these incident waves tend to leave behind some noises that often 
cause the evaluation of the results, which are often images generated from the 
ultrasonic wavefield data, to be indecisive and inaccurate. Since it depends on 
the perspective of an inspector to evaluate the damages in the final result, the 
final judgement will differ from person to person, thus making it prone to doubts 
and human errors. To reliably analyze a lightning damaged GFRP, such as the 
determination of the damage shape and size, a statistical technique that only 
highlights damaged regions should be introduced. 

1.2 Problem Statement 

Although GFRP is used to build the radome of an aircraft, where lightning is most 
likely to attach to, the studies regarding the analysis of lightning damage on 
GFRP using UPI are lacking. The radome houses the radar antenna and other 
communication instruments for an aircraft and it is usually installed on aircraft 
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parts where lightning strikes the most, such as an aircraft’s nose cone. Thus, 
lightning damage to the radome or its material, GFRP, should be well studied for 
fairly new nondestructive evaluation (NDE) techniques such as UPI to find out 
its efficacy in the detection of lightning damage. As such, investigations should 
be carried out to know the extent of UPI in the detection of lightning damages on 
GFRP. 

Secondly, a statistical technique to determine the shape, size, and location of 
lightning damage is also currently not available for UPI techniques. Currently, 
UPI techniques require manual interpretations of final results in order to 
determine the presence of lightning damage in the inspected area. Such 
interpretations are prone to errors as perspectives differ from one inspector to 
another. However, with the use of a statistical technique to interpret the results, 
damaged areas will be clearly defined and the final conclusion made by any 
inspector on the presence of damage and its characteristics will be identical. 

Thirdly, the relationship between the voltage of a lightning strike and GFRP is 
also not explored thoroughly. Although it is common knowledge that GFRP is 
used in the making of aircrafts, studies recently had only been focusing on the 
effects of lightning strikes on Carbon Fibre Reinforced Polymers (CFRP). Even 
though GFRP is only used in small quantities compared to CFRP, lightning 
damage to GFRP should not be ignored since it is more likely to be struck by 
lightning due to its position on an aircraft. As such, it is important to understand 
the relationship between the voltage of a lightning strike and the subsequent 
damage that it causes onto GFRP. 
  



© C
OPYRIG

HT U
PM

6 

 

1.3 Aim and Objectives 

The aim of this study is to accurately and statistically detect, define the shape 
and size, and evaluate the severity of lightning damages in aerospace-grade 
glass fibre reinforced polymers (GFRP) through Ultrasonic Propagation Imaging 
(UPI) by using frequency-wavenumber analysis of ultrasonic wavefields. This 
aim will be achieved through the following objectives: 

1. To analyze lightning damage on aerospace-grade glass fibre reinforced 
polymer using Ultrasonic Propagation Imaging 

2. To develop a reliable statistical damage threshold to accurately determine 
the size of the lightning damage. 

3. To investigate the relationship between the voltage of a lightning strike and 
the severity of the lightning damage. 

1.4 Scope of Work 

This study focuses on the development of a technique that involves the use of 
the frequency-wavenumber domain that is able to statistically and accurately 
determine the location, shape and size of lightning damages on lightning struck 
aerospace-grade GFRP. Only four 1-layer and two 3-layer (0/90) type-E GFRP 
specimens were used due to the shortage of resources. These GFRP specimens 
were struck under IEC 60060-1 (2010), IEC 60060-2 (2010), and IEC 60060-3 
(2006) standards by using a combination wave generator under various 
breakdown voltages with a fixed current since we are interested in the 
relationship between the voltage of a lightning strike and the severity of the 
damage caused by the lightning strike. Due to the time constraint, the 
relationship between current amplitudes and their effects on GFRP is not studied. 
The severity of the damages inflicted upon the specimens obtained using the 
proposed technique were compared with visual inspections with backlight 
illumination. This technique was proposed and accepted as an appropriate 
technique in the past so it is suitable to be used in this study. Aluminium 
aerospace materials are not of concern in this study as well because we are only 
interested on the effects of lightning strikes on composites since aluminium 
aerospace materials are much less susceptible to lightning damages. 
Optimization of the technique is also not included in the study as we are currently 
only focusing on developing the technique. 

1.5 Thesis Layout 

This thesis is divided into five chapters. Chapter 1 Introduction briefs the reader 
about the background of the problem as well as the aim and objective of this 
study. Chapter 2 Literature Review discusses and reviews the recent researches 
conducted by other researchers, such as recent UPI techniques used to detect 
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damages. Chapter 3 Research Methodology discusses the methodology used to 
prepare the specimens to ensure that they are of aerospace-grade quality, such 
as the curing method used and the way the specimens were cut. This chapter 
also provides detailed explanation on the Statistically Thresholded Anomaly 
Mapping (STAM) technique developed in this study which was used to solve the 
problems stated in Chapter 1. Chapter 4 Results and Discussions displays the 
results of the experiments while stating logical explanations to each of the results. 
Chapter 5 Conclusions concludes the findings of this research and states the 
research yet to be done and which should be conducted in the future.  
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