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Controlling the flow and river bed morphology in the confluence and branching 

junctions are important in rivers training and navigation works. The flow in a river 

junction is highly complex, due to rapid changes associated with flow dynamics, 

sediment transport, and geomorphology. Erosion and deposition zones are considered 

as the main critical features that appear at the river junction and causing many 

problems such as increasing the possibility of flood risks at the river confluence, on 

the other hand, a shortcoming of the inflow discharge at the river branching which 

effects different water supply projects. In this study, two cases have been selected 

owing to their suffering from hydro-morpho dynamics issues. The first case is a 

confluence of Kurau and Ara rivers located at tropical region Perak, Malaysia, while 

the second case is a branching of Tigris river located at temperate region Missan, Iraq. 

The aim of this study is to control the hydro-morpho dynamics features at the junction 

of a confluence and branching rivers. Measured and acquired data were used to 

investigate the scour hole that usually formed in the erosion zone and bar formed in 

the deposition zone. The data of the confluence junction was acquired while for the 

branching junction was measured. Garmin echoMap 50s device was used to measure 

the bathymetry survey, while Son Tek River Surveyor device M9 was used to collect 

discharge, velocity distribution, and cross-section geometry. In addition, Van Veen 

Grab sampler was used to collect bed material sampling of the Tigris branching 

junction. The results of data collection for the confluence of Kurau and Ara rivers 

show that the velocity was ranged between 0.8 and 1.1 m/s at the location of the 

maximum scour zone and between 0.1 and 0.3 m/s at the location of deposition zone, 

while for the branching of the Tigris river the velocity was around 0.5 m/s at the 

location of the scour zone and 0.1 m/s at the deposition zone. A 2D numerical model 

of Mflow_02 solver was used to build, calibrate and validate the numerical models 

using field data to simulate the selected river junctions before simulating various 

arrangements of unsubmerged vanes as control structures. This solver was able to 

calculate two-dimensional plane unsteady flow, river bed morphology and sediment 
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transport by unstructured meshes of finite element method. The error of the model 

output was found to be less than 20% in both cases. The simulations with different 

arrangements of unsubmerged vanes were proposed as control structures to mitigate 

scouring and deposition zones that usually occurred at natural river junctions. The 

results revealed that the most effective size and location of unsubmerged vanes mainly 

depend on their performance in deposition and scouring zones. For both cases, 

simulation results show that a single unsubmerged vane can successfully control the 

scouring and deposition zones. In the confluence junction, the third scenario of 

installing a single unsubmerged vane with 10 m length at an angle of 30° gave the best 

solution for diminishing the maximum scour zone and minimizing the deposition zone. 

In branching junction, the results of the fourth scenario by introducing a single 

unsubmerged vane with 50 m length, placed perpendicular to the flow direction of the 

main branching river, show that the deposition zone was reduced to 82% when 

compared with the simulation without vane. In summary, this study addresses the 

applicability of using the 2D numerical model in complex riverine system for 

predicting hydro-morpho-dynamics changes in junctions with and without vanes as 

training structures. The significance of this study is attributed to the simulation of 

various scenarios for controlling scour and deposition zones by using unsubmerged 

vanes and recommended the best solution that provides minimum scouring and 

deposition zones and thus may enhance river flow dynamics.  
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Pengawalan aliran dan morfologi dasar sungai dalam pertemuan dan persimpangan 

cabang adalah penting dalam pengawalan sungai dan kerja pelayaran. Aliran di 

perismpangan sungai adalah sangat kompleks, disebabkan oleh perubahan pantas yang 

berkaitan dengan dinamik aliran, pengangkutan sedimen, dan geomorfologi. Zon 

hakisan dan pengenapan dianggap sebagai ciri kritikal utama yang terdapat di 

persimpangan sungai dan menyebabkan banyak masalah seperti meningkatkan risiko 

banjir di persimpangan sungai, sebaliknya, kelemahan aliran masuk di cabang sungai 

yang mana memberi kesan terhadap projek bekalan air yang berbeza. Dalam kajian 

ini, dua kes telah dipilih yang mana kes-kes ini mengalami masalah hidro-morfo 

dinamik. Kes pertama adalah pertemuan Sungai Kurau dan Sungai Ara yang terletak 

di rantau tropika Perak, Malaysia, manakala kes kedua adalah cabang Sungai Tigris 

yang terletak di rantau sederhana Missan, Iraq. 

 

 

Tujuan kajian ini adalah untuk mengawal ciri-ciri hidro-morfo dinamik di 

persimpangan pertemuan dan cabang sungai. Data yang diukur dan diperolehi telah 

digunakan untuk menyiasat lubang keruk yang biasanya terbentuk di zon hakisan dan 

beting yang terbentuk di zon pengendapan. Data persimpangan pertemuan telah 

diperoleh manakala data untuk persimpangan cabang telah diukur. Peranti Gechin 

echoMap 50s telah digunakan untuk mengukur ukur batimetri, sementara alat 

Pengukur Sungai Son Tek M9 telah digunakan untuk mencerap kadar alir, pengagihan 

halaju, dan geometri keratan rentas. Selain itu, pensampel Van Veen Grab telah 

digunakan untuk mengumpul sampel bahan dasar sungai di persimpangan cabang 

Tigris. 

 

 

Hasil pengumpulan data untuk pertemuan Sungai Kurau dan Sungai Ara menunjukkan 

bahawa halaju adalah antara 0.8 dan 1.1 m/s di lokasi zon keruk maksimum dan antara 
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0.1 dan 0.3 m/s di lokasi zon pengendapan, sementara untuk cabang Sungai Tigris 

halaju adalah sekitar 0.5 m/s di lokasi zon keruk dan 0.1 m/  di zon pengendapan.  

 

 

Model 2D berangka  Mflow_02 solver telah digunakan untuk membina, menentukur 

dan mengesahkan model berangka dengan menggunakan data lapangan untuk 

mensimulasikan persimpangan sungai yang dipilih sebelum mensimulasikan pelbagai 

bentuk susunan struktur bilah sebagai struktur kawalan. Model ini dapat mengira 

aliran tidak stabil satah dua dimensi, morfologi dasar sungai dan pengangkutan 

sedimen oleh jejaring tidak terstruktur menggunakan kaedah unsur terhingga. 

 

 

Ralat hasil model didapati kurang daripada 20% bagi kedua-dua kes. Simulasi dengan 

susunan struktur bilah tidak tenggelam yang berbeza  telah dicadangkan sebagai 

struktur kawalan untuk mengurangkan zon kerukan dan pemendapan yang biasanya 

terjadi di persimpangan sungai semulajadi. Hasilnya menunjukkan bahawa saiz dan 

lokasi yang paling berkesan bagi struktur bilah tunggal tidak tenggelam adalah 

bergantung kepada prestasi stuktur bilah di zon pengendapan dan hakisan. Bagi kedua-

dua kes, keputusan simulasi menunjukkan bahawa struktur bilah tunggal tidak 

tenggelam berjaya mengawal zon pengerukan dan pengendapan. Di pertemuan 

persimpangan, senario ketiga dengan memasang struktur bilah tunggal tidak 

tenggelam dengan panjang 10 m pada sudut 30 ° memberikan penyelesaian yang 

terbaik untuk mengurangkan zon keruk maksimum dan zon pengendapan. Pada 

persimpangan cabang, hasil keputusan bagi senario keempat dengan memperkenalkan 

struktur bilah tunggal tidak tenggelam dengan panjang 50 m yang diletakkan 

berserenjang dengan arah aliran cabang utama sungai, menunjukkan bahawa zon 

pengendapan  telah dikurangkan kepada  82% jika dibandingkan dengan simulasi 

tanpa struktur bilah. 

 

 

Kesimpulannya, kajian ini membahas kebolehupayaan penggunaan model berangka 

2D bagi sistem sungai yang kompleks untuk meramal perubahan hidro-morfo dinamik 

di persimpangan dengan dan tanpa menggunakan struktur bilah sebagai struktur 

kawalan. Kepentingan kajian ini adalah dikaitkan dengan simulasi pelbagai senario 

untuk mengawal zon keruk dan zon pengendapan dengan menggunakan struktur bilah 

tidak tenggelam dan mengesyorkan penyelesaian terbaik yang dapat menyediakan zon 

pengendapan dan kerukan minimum dan seterusnya meningkatkan dinamik aliran 

sungai. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General  

The flow in river junctions whether confluence or branching in irrigation and drainage 

systems are essential components, referring to the fluvial systems which produce a 

complex hydro-morpho dynamic environment (Al Omari et al., 2018; Riley et al., 

2014). There are two important aspects associated with the flow in river junctions, and 

these are erosion and deposition zones. Erosion zone is a morphological process that 

usually occurs at the beds and outer banks of confluence and branching rivers and 

known as scouring hole, while the deposition zone usually occurs at the inner banks 

(opposite to the location of erosion) and recognized as points bars or islands caused 

by sediment deposition. The scour hole zone is a region formed in the bed sediment 

erosion and considered as one of the major morphological features of channel junction 

(Guillén-Ludeña et al., 2016; Alomari et al., 2018). The scour hole is associated with 

sediment transport caused by the increased flow turbulence and velocity intensities, 

which led to creating secondary vortexes. These vortexes play a significant role in 

changing the bed morphology at the junctions (Herrero et al., 2015; Leite Ribeiro et 

al., 2012; Rhoads et al., 2009). In contrast, the deposition can be recognized explicitly 

in the separation zone created under low pressure and flow recirculation. The 

separation zone at channel junctions exerts a direct influence on the flow dynamics 

and also morphological features (Birjukova et al., 2014; Thanh et al., 2010; Best and 

Rhoads, 2008; Ramamurthy et al., 2007). The separation zone has a direct effect on 

loss of capacity in irrigation channels or threatens mechanical elements of power 

plants water circuits.  

The size and location of the scour hole and the separation zone mainly depend on the 

junction angle and discharge ratio (Goudarzizadeh et al., 2010; Rhoads et al.,2009; 

Best., 1988; Best and Reid., 1984). In which the recent experimental work shows that 

the minimum scour hole and separation zone occurred at a 30˚ of junction angle 

(Alomari et al., 2018). Early studies have been focused on hydrodynamics features 

with rigid boundaries means that their experimental works were without sediment 

transport and movable bed (Taylor,1944; Grace and Priest, 1958). This approach still 

received attention for a vast explanation with different parameters and geometry forms 

(Ramamurthy et al., 2007; Mignot et al., 2013; Seyedian et al., 2014; Herrero et al., 

2016). Also, there are studies under the natural conditions to assess the flow with the 

morphological process (Szupiany et al., 2009; Riley et al., 2014; Casas, 2013; Redolfi 

et al., 2016; Yuill et al., 2016). There are many examples of natural river junctions 

that suffering from hydro-morpho dynamic issues, and one of the published examples 

is the confluence of Wahei and Xianjiapu rivers in southwest China. This confluence 

is exposed to flooding due to the sedimentation issue that reduces the capacity of the 

main river (Wang et al., 2016). 
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Another published example is the branching channel of the Ohio River that supply 

water to the electric power project. The flow in this case clearly shows the effect of 

the sediment deposition that create a sand bar at the entrance of the branching channel, 

which reduce the water supply to a side project (Neary et al., 1999).  

Flooding and sedimentation that recognized at the channels junctions may founded at 

many other locations worldwide, and as a summary from the related studies show that 

the topic is important due to having relevance to real life problems. More 

investigations are required to mitigate and control the problems that occurred in 

channel junctions.  

1.2 Problem Statement  

River junctions such as branching and confluence are usually exist in a natural river 

system.  Scouring and deposition are the main natural processes that usually occur at 

river junctions. The above processes are considered as complex hydro-morphological 

dynamics phenomenon that occurs due to rapid changes in the mechanism of water 

and sediment flow. The erosion and deposition at the river junctions are considered as 

critical issues (Alomari et al., 2018; Moradinejad et al., 2017; Best, 1988; Mosley, 

1976). The scouring and deposition zones located in river junctions are continuously 

reduce the hydraulic capacity of rivers. The main consequences of the scouring and 

deposition are restriction in navigation, flooding and the effect on safety of structures 

constructed near river banks.   

On the other hand, the dimensions, arrangement and inclination angle of the 

rehabilitation structures that can be used to control the deposition and scouring zones 

at the river junctions were proposed by Odgaard and Wang (1991); Mirzaei et al. 

(2014); Wuppukondur and Chandra (2017a; b) and others. But there were lack of 

studies on the best effective dimensions, arrangement and inclination angle. 

Alternatively, rehabilitation works can be used, but these works are costly since 

dredging equipment should be used to remove and maintain sediment accumulation 

repeatedly from time to time. Thus, managing hydro-morpho dynamic at the channel 

junction is still considered as challenging (Kalathil et al., 2018; Wuppukondur and 

Chandra, 2017a). 

The related studies were mainly parametric type for predicting, characterization and 

simulation of scouring and deposition zones. Only few studies on controlling and 

managing these morphological features were focused on using submerged vanes in 

different strategies (Odgaard and Wang, 1991; Neill et al., 1997; Michell et al., 2006; 

Beygipoor et al., 2013; Wuppukondur and Chandra, 2017a; b). Disadvantages of using 

submerged vanes are limited to discharge ratio, producing non-uniform of velocity 

distribution due to its numbers (Barkdoll et al., 1999), and affect the navigation in 

rivers. 
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The hydraulic performance of the rehabilitation structures depends mainly on its 

location, angles, dimensions, and morphological conditions (Karmaker and Dutta, 

2016; USACE, 2012). For this reason, no specific criteria are used for designing an 

obstacle in a river system. Thus, in this study, unsubmerged vanes were used as a 

control structure in the confluence and branching junctions. Physical or numerical 

simulation was required to optimize the design of the unsubmerged vane. However, 

using physical models entails several limitations, such as high cost, steady flow 

(hydraulic similarity), and scale effect. By contrast, numerical models are low-cost 

and can be used efficiently for unsteady mobile bed conditions. 

1.3 Objectives 

The purpose of this research work was to study hydro-morpho dynamics of confluence 

and branching rivers with the consideration of introducing different arrangements of 

unsubmerged vanes at suitable location of these river junctions in order to minimize 

erosion and deposition zones. While the specific objectives are: 

1. To characterize the features of hydro-morpho dynamics in confluence and 

branching rivers using data obtained from the field measurements  

2. To simulate the hydro-morpho dynamics patterns at the confluence and 

branching rivers using the 2D Mflow_02 solver 

3. To determine the best location, dimension, and inclination angle of the 

unsubmerged vanes to mitigate the erosion and deposition zones. 

 

 

1.4 Scope and Limitation of the Study 

The scope of the present study covers the examination of the hydro-morpho dynamics 

of river junctions based on field measurments and numerical simulation under various 

flow conditions with and without control structures, while the limitations of the study 

are  

1. Two real cases of river junctions were numerically examined, and these cases 

include a river confluence at the tropical region and under uncontrolled flow 

condition (confluence of Kurau and Ara rivers, Perak, Malaysia) and a 

branching river at the temperate region and under controlled flow condition 

(branching of Tigris river at Missan, Iraq).    

2. The confluence between Kurau and Ara rivers are with an angle of 135°, range 

of discharges between 9 to 43 m3/s and average median particle diameter (d50) 

of 1.1 mm (Sirdari 2013; DID 2009; Teo et al., 2017)  

3. The branching of the Tigris river is with an angle of 50°. The field data was 

measured during high and low flow seasons. The discharges were found to be 

247.239 m3/s and 119.298 m3/s for high and low seasons respectively, and 

average median particle of bed material (d50) was 0.055 mm  

4. Available DEM data were used for mapping the scouring and deposition zones 

at river junctions  
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5. A 2D numerical solver of Mflow_02 for both hydrodynamics and morphology 

simulation was used in this study. The solver is limited to three equations for 

calculating sediment transport, and these equations are Meyer-Peter and 

Müller formula (1948), Ashida and Michiue formula (1972) and Engelund-

Hansen formula (1974). 

6. Also, the solver is limited to three methods for calculating the turbulence field 

(flow with large and small eddies) and these methods are zero-equation model, 

k-ε model, and direct input kinematic eddy viscosity 

7. For accurate simulation, fine unstructured grids consisted of 6136 nodes were 

created to cover the area of the river confluence, and 4511 nodes to cover the 

area of branching river  

8. The calibration of the solver is conducted by adjusting nodes number, time 

step, turbulence model, and Manning roughness. The nodes number, time step, 

and turbulence model are determined by trial and error while the initial 

Manning roughness is recommended by Sirdari (2013) and Teo et al. (2017) 

for the case of a river confluence and by the Ministry of Water Resources, Iraq 

and Ali (2016) for the branching river case.  

9. The geometry, location, and angle of the vanes were arbitrarily selected and 

used in the numerical investigation 

 

 

1.5 The significance of the study  

A 2D of hydro-morpho dynamic model was used to simulate two different river 

junctions which include uncontrolled river confluence at a tropical region and 

controlled river branching at a temperate region. A combined field measurement and 

acquired data were used in the model calibration and validation before simulating the 

hydro-morpho dynamic at the selected river junctions with and without control 

structures. The simulation included various scenarios for controlling scour and 

deposition zones at the river junctions. The scenarios also included introducing vanes 

with different arrangements for minimizing scouring and deposition zones and 

enhancing river flow regime. The most significant solution which gives minimum 

scouring and deposition zones was included in the simulations of this study. 

1.6 Thesis Layout  

The thesis was composed of five chapters. Chapter One, presents a general description 

of the flow in river junctions with the main critical features that found in river 

junctions, the problem statement, the objectives of the study, the scope and limitations 

and the significance of the study.  

In Chapter Two, relevant literatures of hydro-morpho dynamics features and sediment 

transport at the confluence and branching rivers are reviewed extensively. This chapter 

reviews recent works done in laboratories, field sites, and numerical simulations. 

Finally, a summary of the literature review including research gap was cleared and 

listed.  
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Chapter Three illustrates the methodology of this study, starting with the explanation 

of the selected case studies, which includes the demonstration of fieldwork and data 

acquisition for the first case, the confluence of Kurau and Ara rivers and the second 

case, the branching of the Tigris River. The data of water discharge, bed material 

samples, and calculations of the critical velocity of sediment inception motion are 

displayed. Model background, structure, characteristics and the governing equations 

are also illustrated.  Model implementation and boundary conditions for the selected 

river junctions as well as the simulation procedures without and with vanes were 

explained, and then four statistical error indices were explained to assess the accuracy 

of the model prediction. 

Chapter Four displays the results of the study, which characterized the main features 

for the confluence and branching cases based on the field measurements. Models 

calibration, validation and simulation results of different scenarios were presented as 

figures, tables and discussed based on each objective of the study individually. Finally, 

Chapter Five presents a conclusion and novelty of the study, as well as 

recommendations for future studies.    
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