EFFECT OF STORAGE ON FLAVOUR, COLOUR AND OTHER SENSORY QUALITIES OF SUGARCANE JUICE (SACCHARUM OFFICINARUM) YELLOW CANE

KHALEEL ABDUL FATTAH MAHMOUD AL-HASAN

FSMB 2000 17
EFFECT OF STORAGE ON FLAVOUR, COLOUR AND OTHER SENSORY QUALITIES OF SUGARCANE JUICE (SACCHARUM OFFICINARUM) YELLOW CANE

By

KHALEEL ABDUL FATTAH MAHMOUD AL-HASAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Food Science and Biotechnology Universiti Putra Malaysia

November 2000
DEDICATION

To those who are proud of my success

my mother
and my
father
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

EFFECT OF STORAGE ON FLAVOUR, COLOUR AND OTHER SENSORY QUALITIES OF SUGARCANE JUICE (SACCHARUM OFFICINARUM) YELLOW CANE

By

KHALEEL ABDUL FATTAH MAHMOUD AL-HASAN

November 2000

Chairman: Associate Professor Salmah Yusof, Ph.D.

Faculty: Food Science and Biotechnology

A study was conducted to determine the effects of storage on the flavour and sensory attributes of sugarcane juice. Freshly extracted sugarcane juice was stored at 25 ± 2°C and 5 ± 2°C for 15-days. The parameters measured were colour, acidity (pH and TA), acidic phenolics and flavour. The sensory attributes tested were colour, viscosity, sweetness, sharpness, appearance, jaggery and fresh flavour. Phenolic compounds were separated using solid phase extraction technique and HPLC method was used for isolation and identification. Major volatiles were extracted using vacuum steam distillation (VSD) technique. Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) were used for separation of the volatiles and identification of their molecular weights.

Results indicated that sugarcane juice stored at 5 ± 2°C retained its colour and acidity until 10-days meanwhile, a drastic change occurred on the colour and acidity of juice stored at 25 ± 2°C. The sensory results showed that no remarkable changes occurred on the quality (colour, viscosity, sweetness, sharpness, appearance,
jaggery and fresh flavour) of samples stored at 5 ± 2°C up to 10-days. There were no significant differences (P>0.05) observed between samples stored for 5 and 10-days. However, at the end of the 15-days, there were significant differences (P<0.05) in terms of colour, sweetness, sharpness, jaggery and freshness compared to the fresh, the 5 and the 10-days stored juices (except for appearance and viscosity).

Six types of phenolic compounds were identified in sugarcane juice namely 3,4-dihydroxybenzoic, chlorogenic, p-hydroxybenzoic, caffeic, p-coumaric and 2,3-dihydroxybenzoic acids. Changes in the phenolics contents were observed in samples stored at both temperatures (5 ± 2°C and 25 ± 2°C). Changes in the phenolics' concentrations were more noticeable in the juice stored at 25±2°C. This occurred despite the fact that the polyphenol oxidase (PPO) was deactivated at the beginning before juice extraction. At the same time, there seemed to be increases and decreases in their concentrations. This may indicate that not only enzymatic reaction, which consumed the phenolics but also autoxidation reaction, may have occurred. Sugarcane juice was found to consist of about 17 major volatile compounds. Upon storage at 5 ± 2°C the major volatiles were retained until 10-days; after that some compounds were lost and others were evolved. After two days of storage at 25 ± 2°C the major volatiles were lost and many other new compounds were evolved.

A strong relationship (R^2≥0.90) was observed between some of the phenolics and the sensory attributes (colour, appearance, viscosity, sweetness, sharpness, jaggery and fresh flavour). The changes in colour (ΔE) was also correlated well (R^2=0.90) with the sensory evaluation results.
In general, sugarcane juice stored at 5 ± 2°C retained its quality until 10-days. However, undesirable colour, flavour and the change in taste from sweet to sour occurred after the end of the 15-days at 5 ± 2°C. Significant changes in acidity, colour, flavour and phenolics were observed at 25 ± 2°C compared to 5 ± 2°C. In fact, the flavour of the sample stored at 25 ± 2°C changed significantly after 2 days. This indicated that the juice will lose its quality if kept at 25 ± 2°C and deterioration of the juice stored at 5 ± 2°C was only noticeable after the end of the 15-days.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

KESAN PENYIMPANAN KEATAS CITARASA, WARNA DAN KUALITI DERIA JUS TEBU (SACCHARUM OFFICINARUM) TEBU KUNING

Oleh

KHALEEL ABDUL FATTAH MAHMOUD AL-HASAN

November 2000

Pengerusi: Profesor Madya Salmah Yusof, Ph.D.

Fakulti: Sains Makanan dan Bioteknologi

Keputusan yang diperolehi menunjukkan jus tebu yang disimpan pada suhu 5 ± 2°C dapat mengekalkan warna dan keasidannya sehingga 10 hari. Pada masa yang sama, perubahan yang ketara berlaku ke atas warna dan asiditi jus yang disimpan pada 25 ± 2°C. Keputusan ujian deria dari sampel yang disimpan pada suhu 5 ± 2°C hingga 10 hari menunjukkan tiada perubahan yang ketara berlaku ke atas kualiti (warna, kelikatan, kemanisan, ketajaman, rasa “jaggery” dan kesegaran). Tiada perbezaan yang ketara (p>0.05) antara jus yang disimpan selama 5 hari dan 10 hari pada suhu 5 ± 2°C. Walau bagaimanapun selepas 15 hari, terdapat perbezaan yang ketara (p<0.05) di antara kualiti warna, kemanisan, ketajaman, rasa “jaggery” dan kesegaran berbanding jus segar dan jus yang disimpan selama 5 hingga 10 hari (kecuali dari segi rupa dan kelikatan).

Enam jenis bahan fenolik telah dikenalpasti di dalam jus tebu iaitu 3,4-dihydroxybenzoic, chlorogenic, p-hydroxybenzoic, caffeic, p-coumaric dan 2,3-dihydroxybenzoic asid. Perubahan pada bahan fenolik telah diperhatikan pada sampel yang telah disimpan pada kedua-dua suhu 25 ± 2°C dan 5 ± 2°C. Perubahan pada kepekaan kandungan fenolik didapati lebih nyata bagi sampel jus yang disimpan pada suhu 25 ± 2°C. Ini berlaku meskipun polifenoloksidase (PPO) telah dinyahaktikan sebelum jus dikestrak. Terdapat juga pengurangan dan penambahan pada
sesetengah bahan pada masa yang sama. Ini mungkin bererti bahawa bukan sahaja tindakbalas enzimatik yang menggunakan bahan fenolik telah berlaku tetapi tindakbalas auto pengoksidaan mungkin juga turut terlibat. Jus tebu didapati mengandungi lebih kurang 17 jenis bahan meruap yang utama. Penyimpanan pada 5 ± 2°C dapat mengekalkan, bahan meruap ini selama 10 hari; selepas tempoh tersebut kemerosotan berlaku. Disamping itu bagi sampel yang disimpan pada 25 ± 2°C, bahan meruap yang utama didapati hilang manakala banyak sebatian baru lain didapati wujud.

Terdapat pertalian yang kuat (R≥0.90) diantara sesetengah fenolik dengan sifat-sifat deria (warna, rupa, kelikatan, kemanisan, ketajaman, rasa “jaggery” and kesegaran). Perubahan di dalam warna (ΔE) juga turut berkait rapat (R2>0.90) dengan keputusan penilaian deria.

Secara amnya, jus tebu yang disimpan pada 5 ± 2°C berupaya mengekalkan kualiti sehingga 10 hari. Walau bagaimanapun, perubahan warna, rasa dan perubahan rasa dari manis ke masam berlaku hanya selepas 15 hari pada suhu 5 ± 2°C. Perubahan pada keasidan, warna, rasa dan bahan fenolik didapati lebih ketara bagi jus yang disimpan pada suhu 25 ± 2°C jika dibandingkan dengan
jus pada 5 ± 2°C. Citarasa jus tersebut didapati berubah dengan
etara selepas 2 hari. Ini menunjukkan bahawa jus tebu akan
kehilangan kualitinya dengan cepat jika disimpan pada 25 ± 2°C
manakala jus yang disimpan pada suhu 5 ± 2°C, perubahan
kualiti hanya ketara selepas 15 hari.
ACKNOWLEDGEMENTS

All praise due to Allah, the Most Gracious and Merciful, for giving me the strength, and the determination to complete my study.

Then, I would like to express my deepest gratitude, and sincere appreciation to my supervisor Assoc. Prof. Dr. Salmah Yusof for her invaluable guidance, encouragement, constructive suggestions throughout the study period, and for giving me total freedom to explore my research. Her enthusiasm and patience have left a feeling of indebtedness that cannot be fully expressed.

My heartfelt appreciation and gratitude goes to the members of my supervisory committee, Prof. Dr. Jinap Selamat and Assoc. Prof. Dr. Sharifah Kharidah for their generous guidance and valuable comments during the study.

My deep appreciation is accorded to the Dean, staff members, technicians and my colleagues, for their support and cooperation. Special thanks to Mr. Chan Tin Wan and Mr. Rusli Aslim for their assistance in the HPLC work and to Mr. Rocky Tan for his assistance in the GC work.
Last but not least, my heartfelt appreciation goes to the government of Malaysia and Universiti Putra Malaysia for providing the financial support for this study through the IRPA program (01-02-1246) awarded to Assoc. Prof. Dr. Salmah Yusof.
I certify that an Examination Committee met on 13th November 2000 to conduct the final examination of Khaleel Abdul Fattah Mahmoud Al-Hasan on his Master of Science thesis entitled “Effect of Storage on Flavour, Colour and Other Sensory Qualities of Sugarcane Juice (Saccharum officinarum) Yellow Cane” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohammad Yusof Abu, Ph.D,
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

Salmah Yusof, Ph.D,
Associate Professor,
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Jinap Selamat, Ph.D,
Professor,
Taman Penyelidikan Universiti
Universiti Putra Malaysia
(Member)

Sharifah Kharidah, Ph.D,
Associate Professor,
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

MOHD GHAZALI MOHAYIDIN, Ph.D,
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia

Date: 30 Nov 2000
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

KAMIS AWANG, Ph.D,
Associate Professor
Dean of Graduate School,
Universiti Putra Malaysia

Date: 11 JAN 2001
I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHALEEL ABDUL FATTAH MAHMOUD AL-HASAN

Date: 29/11/2000
TABLES OF CONTENTS

DEDICATION... ii
ABSTRACT.. iii
ABSTRAK.. vi
ACKNOWLEDGEMENTS... x
APPROVAL SHEET.. xii
DECLARATION FORM... xiv
LIST OF TABLES.. xvii
LIST OF FIGURES... xix
LIST OF PLATES... xxiii
LIST OF ABBREVIATION.. xxiv

CHAPTER

I INTRODUCTION... 1

II LITERATURE REVIEW... 7
 Composition of Sugarcane Juice............................... 7
 Nitrogenous Constituents of Sugarcane Juice............... 12
 Organic Acids in Sugarcane Juice............................ 13
 Microorganisms in Sugarcane Juice......................... 13
 Dextrans and Gums in Sugarcane Juice..................... 15
 Viscosity of Sugarcane Juice................................ 15
 Browning.. 16
 Blanching.. 19
 pH of Sugarcane Juice... 23
 Titratable Acidity of Sugarcane Juice (TA)................. 23
 Non-volatile Constituents of Sugarcane Juice
 (Phenolics).. 24
 Common Plant Phenols.. 24
 Copigmentation.. 28
 Volatile Constituents of Sugarcane Juice.................. 29
 Flavour.. 35
 Flavour Components.. 35
 Beverage Flavour.. 37
 Chemical Changes in Flavour Components.................. 39
 Chemistry of Flavour.. 39
 Flavour Changes during Storage............................ 40
 Flavour Changes during Processing....................... 41
 Lipids and Flavour.. 42
 Proteins and Flavour... 42
 Carbohydrates and Flavour.................................... 43
 Minor Food Components and Flavour....................... 44
 Perceived Flavour.. 44
 Sensory Evaluation... 45
III EFFECT OF STORAGE ON THE PHYSICAL, CHEMICAL AND SENSORY QUALITIES OF SUGARCANE JUICE
Introduction ... 49
Materials and Methods.. 50
 Materials... 50
 Methods.. 51
Results and Discussion.. 56
 Colour... 56
 pH and TA.. 60
 Sensory Evaluation.. 62
Conclusion... 65

IV EFFECT OF STORAGE ON THE NON-VOLATILE CONSTITUENTS OF SUGARCANE JUICE (ACIDIC PHENOLICS)
Introduction ... 66
Materials and Methods.. 67
 Materials.. 67
 Methods.. 68
Results and Discussion.. 74
 Non-Volatile Constituents of Fresh Sugarcane Juice (Acidic Phenolics)................. 74
 Non-Volatile Constituents of Stored Sugarcane Juice (Acidic Phenolics)................. 76
Conclusion... 88

V EFFECT OF STORAGE ON THE MAJOR VOLATILE CONSTITUENTS OF SUGARCANE JUICE
Introduction ... 90
Materials and Methods.. 91
 Materials.. 91
 Methods.. 92
Results and Discussion.. 97
Conclusion... 105

VI CONCLUSIONS AND RECOMMENDATIONS 107

BIBLIOGRAPHY.. 111
APPENDICES... 128
APPENDIX A1.. 129
APPENDIX A2.. 130
APPENDIX A3.. 132
APPENDIX B... 133
APPENDIX C... 135
BIO DATA OF THE AUTHOR.. 186

xvi
LIST OF TABLES

Table	Page
2.1 Composition of sugarcane and juice solids | 8
2.2 Carboxylic acid in raw sugarcane juice (dry solids (%)) | 13
2.3 Phenolic acids identified in cane juice and sugars | 28
2.4 Sweet-aroma components identified in refinery final molasses | 30
2.5 Some identified volatile constituents in sugarcane molasses | 32
2.6 Identified compounds in the trapped fractions of sugarcane molasses | 34
2.7 Typical components of juice volatiles | 36
3.1 Values of “L”, “a” and “b” for sugarcane juice stored at 5 ± 2°C | 57
3.2 Values of “L”, “a” and “b” for sugarcane juice stored at 25 ± 2°C | 58
3.3 Colour change (ΔE) of sugarcane juice stored at 5 ± 2°C and 25 ± 2°C | 59
3.4 Values of pH and TA for sugarcane juice stored at 5 ± 2°C and 25 ± 2°C | 61
4.1 Phenolic acids concentrations of sugarcane juice stored at 5 ± 2°C | 75
4.2 Phenolic acids concentrations of sugarcane juice stored at 5 ± 2°C | 77
4.3 Relationship between physical (ΔE), chemical (chlorogenic, caffeic, p-coumaric acids) and sensory parameters (colour, appearance, viscosity, sweetness, sharpness, jaggery and fresh flavours) of sugarcane juice stored at 5 ± 2°C | 86
5.1 Retention time (min) of the major volatile compounds | xvii
in fresh and stored sugarcane juice at 5 ± 2°C and 25 ± 2°C.. 98

5.2 Probable volatile compounds present in fresh and stored sugarcane juice at 5 ± 2°C and 25 ± 2°C.. 100

1 Relationship between physical (TA, ΔE and colour), chemical (3,4-dihydroxy, p-hydroxy, 2,3-dihydroxy benzoic acids, chlorogenic, caffeic, p-coumaric acids) and sensory parameters (colour, appearance, viscosity, sweetness, sharpness, jaggery and fresh flavours) of sugarcane juice stored at 5 ± 2°C........ 130

2 Mean scores for colour, appearance, viscosity, sweetness, sharpness, jaggery and fresh flavours of sugarcane juice stored at 5 ± 2°C by qualitative descriptive analysis test (QDA)................................. 132
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some common phenolic compounds that occur widely in plants</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Cobweb configuration of sugarcane juice colour, appearance, viscosity,</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>sweetness, sharpness, jaggery and fresh flavours.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Changes in chlorogenic acid and ΔE for the juice stored at 5 ± 2°C.</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Changes in p-coumaric acid and ΔE for the juice stored at 5 ± 2°C.</td>
<td>81</td>
</tr>
<tr>
<td>1</td>
<td>GC chromatogram of fresh sugarcane juice.</td>
<td>136</td>
</tr>
<tr>
<td>2</td>
<td>GC chromatogram of 5 days stored sugarcane juice at 5 ± 2°C.</td>
<td>137</td>
</tr>
<tr>
<td>3</td>
<td>GC chromatogram of 10 days stored sugarcane juice at 5 ± 2°C.</td>
<td>138</td>
</tr>
<tr>
<td>4</td>
<td>GC chromatogram of 15 days stored sugarcane juice at 5 ± 2°C.</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>GC chromatogram of 2 days stored sugarcane juice at 25 ± 2°C.</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>MS chromatogram of compound eluted at 3.73 min.</td>
<td>141</td>
</tr>
<tr>
<td>7</td>
<td>MS chromatogram of compound eluted at 4.16 min.</td>
<td>142</td>
</tr>
<tr>
<td>8</td>
<td>MS chromatogram of compound eluted at 4.20 min.</td>
<td>143</td>
</tr>
<tr>
<td>9</td>
<td>MS chromatogram of compound eluted at 4.95 min.</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>MS chromatogram of compound eluted at 8.49 min.</td>
<td>145</td>
</tr>
<tr>
<td>11</td>
<td>MS chromatogram of compound eluted at 12.62 min.</td>
<td>146</td>
</tr>
<tr>
<td>12</td>
<td>MS chromatogram of compound eluted at 12.75 min.</td>
<td>147</td>
</tr>
</tbody>
</table>
29 MS chromatogram of compound eluted at 40.57 min.......................... 164

30 MS chromatogram of compound eluted at 41.93 min.......................... 165

31 MS chromatogram of compound eluted at 43.24 min.......................... 166

32 HPLC chromatogram of fresh sugarcane juice.................. 167

33 HPLC chromatogram of 5 days stored sugarcane juice at 5 ± 2°C.................. 168

34 HPLC chromatogram of 10 days stored sugarcane juice at 5 ± 2°C.................. 169

35 HPLC chromatogram of 15 days stored sugarcane juice at 5 ± 2°C.................. 170

36 HPLC chromatogram of 5 days stored sugarcane juice at 25 ± 2°C.................. 171

37 HPLC chromatogram of 10 days stored sugarcane juice at 25 ± 2°C.................. 172

38 HPLC chromatogram of 15 days stored sugarcane juice at 25 ± 2°C.................. 173

39 Calibration graph of area Vs concentration (µg) of 3,4-dihydroxybenzoic acid.................. 174

40 Calibration graph of area Vs concentration (µg) of p-hydroxybenzoic acid.................. 174

41 Calibration graph of area Vs concentration (µg) of 2,3-dihydroxybenzoic acid.................. 175

42 Calibration graph of area Vs concentration (µg) of chlorogenic acid.................. 175

43 Calibration graph of area Vs concentration (µg) of caffeic acid.................. 176

44 Calibration graph of area Vs concentration (µg) of p-coumaric acid.................. 176
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Changes in 3,4-dihydroxybenzoic acid concentration upon storage at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>177</td>
</tr>
<tr>
<td>46</td>
<td>Changes in chlorogenic acid concentration upon storage at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>177</td>
</tr>
<tr>
<td>47</td>
<td>Changes in p-hydroxybenzoic acid concentration upon storage at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>178</td>
</tr>
<tr>
<td>48</td>
<td>Changes in caffeic acid concentration upon storage at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>178</td>
</tr>
<tr>
<td>49</td>
<td>Changes in p-coumaric acid concentration upon storage at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>179</td>
</tr>
<tr>
<td>50</td>
<td>Changes in 2,3-dihydroxybenzoic acid concentration upon storage at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>179</td>
</tr>
<tr>
<td>51</td>
<td>Total colour difference of sugarcane juice stored at T1 (5 ± 2°C) and T2 (25 ± 2°C)</td>
<td>180</td>
</tr>
<tr>
<td>52</td>
<td>Schematic diagram of vacuum steam distillation apparatus (VSD)</td>
<td>181</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fresh sugarcane juice</td>
<td>182</td>
</tr>
<tr>
<td>2</td>
<td>Five days stored sugarcane juice at 5 ± 2°C and 25 ± 2°C</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>Ten days stored sugarcane juice at 5 ± 2°C and 25 ± 2°C</td>
<td>183</td>
</tr>
<tr>
<td>4</td>
<td>Fifteen days stored sugarcane juice at 5 ± 2°C and 5 ± 2°C</td>
<td>183</td>
</tr>
<tr>
<td>5</td>
<td>Cane juice crusher machine</td>
<td>184</td>
</tr>
<tr>
<td>6</td>
<td>Steam blancher chamber</td>
<td>184</td>
</tr>
<tr>
<td>7</td>
<td>Blast freezer</td>
<td>185</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GCMS-SIM</td>
<td>Gas Chromatography Mass Spectrometry-Selective Ion Mode</td>
</tr>
<tr>
<td>FID</td>
<td>Flame Ionisation Detector</td>
</tr>
<tr>
<td>EI</td>
<td>Electron Impact</td>
</tr>
<tr>
<td>AUFS</td>
<td>Absolute Unit of Full Scale</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogen Ion Concentration</td>
</tr>
<tr>
<td>TA</td>
<td>Titratable Acidity</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume Per Volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight Per Volume</td>
</tr>
<tr>
<td>PPO</td>
<td>Polyphenol oxidase</td>
</tr>
<tr>
<td>QDA</td>
<td>Qualitative Descriptive analysis</td>
</tr>
<tr>
<td>VSD</td>
<td>Vacuum Steam Distillation</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorous</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>O</td>
<td>Orhtho</td>
</tr>
<tr>
<td>M</td>
<td>Meta</td>
</tr>
</tbody>
</table>

xxiv