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STATIC SINGLE CELL FAULTS ON SRAM MEMORIES 

 

 

By 

 

 

NOR AZURA BINTI ZAKARIA 

 

 

August 2013 

 

 

Chairman :   Associate Professor Wan Zuha Wan Hasan, PhD 

Faculty :   Engineering 

 

 

Memory testing is a method that requires an algorithm capable of detecting faulty 

memory as comprehensively as possible to facilitate the efficient manufacture of fault 

free memory products. Therefore, the purpose of this thesis is to introduce a Data 

Background (DB) scheme to generate an optimal March Test Algorithm (MTA) for 

detecting faults of memory that are undetectable using existing algorithms. The 

present research focuses on two types of Static Single Cell Faults (SSCFs): Write 

Disturb Faults (WDFs) and Deceptive Read Destructive Faults (DRDFs). These faults 

are undetectable by existing algorithms with insufficient operation. To date, the main 

effort in this field of research is to improve fault detection by modifying or adding an 

operation sequence in the MTA. A relatively small number of test approaches have 

worked on the DB scheme instead of the MTA to improve fault coverage. However, 

these approaches were designed to improve the fault coverage for detectable faults 

only. Thus, the present research develops a new DB scheme to be applied to existing 

MTA to detect two WDFs and two DRDFs.  

 

 

Two methods are proposed in this project. In Method 1, a multiple DBs generator with 

a bit-adjacent DB management scheme is applied for the selected MTA. This method 

is evaluated in terms of function and performance differences between the proposed 

MTA and existing MTA using the User Defined Algorithm (UDA) available in the 

MBISTArchitect tool. Findings show that both MTAs have the same testing time. 

However, the existing MTA of the Memory Built-In-Self Test (MBIST) required a 

bigger area overhead and consumed more power. Hence, Method 1 is not suitable to 

be used with the MBIST for System on Chip (SoC).  
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For Method 2, suitable solid DBs are used to provide higher fault coverage instead of 

using the existing MTA. The new MTA is defined by designing an automation 

program called DB generator. The DB generator computes all the possible DBs and 

filters the list of preferable DBs using efficient combination logic. The proposed MTA 

is obtained after the eliminating procedure of the preferable DB list using the SQ 

generation rule. Finally, the fault coverage will be calculated manually by doing fault 

evaluation analysis using Fault Primitives (FP) rules. Results show that WDFs and 

DRDFs are successfully detected with each proposed MTA. The proposed MTAs are 

also able to detect other SSCFs, such as Transition Fault, Stuck-At Fault, Incorrect 

Read Fault, Read Destructive Fault, and State Fault. Finally, based on the SQ 

generation rule, and the development of the DB generator, MTAs are generated. The 

present research demonstrates that the DB generator and proposed MTAs, such as 

March CL-1, March Cl-2, March SR-1, and March SR-2, are successfully applied and 

designed, with up to 100% fault coverage.  
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SKIM LATAR BELAKANG DATA PELBAGAI DAN PADU UNTUK 

MENGESAN KESALAHAN SEL TUNGGAL STATIK DALAM MEMORI 

SRAM 

 

 

Oleh 

 

 

NOR AZURA BINTI ZAKARIA 

 

 

Ogos 2013 

 

 

Pengerusi :   Profesor Madya Wan Zuha Wan Hasan, PhD 

Fakulti :   Kejuruteraan 

 

 

Ujikaji memori merupakan teknik penting yang memerlukan algoritma yang baik bagi 

mengesan kesalahan memori dengan kadar liputan yang tinggi untuk menghasilkan 

produk memori tanpa kesalahan.  Oleh itu, objektif tesis ini adalah memperkenalkan 

skim data yang bersesuaian untuk diguna pakai dalam Algoritma March (MTA) untuk 

mengesan dua jenis kesalahan sel tunggal statik memori iaitu kesalahan “Write 

Disturb Faults” (WDFs) dan “Deceptive Read Destructive Faults” (DRDFs). Hasil 

kerja penyelidikan sebelum ini, didapati MTA yang diperkenalkan gagal untuk 

mengesan kesalahan-kesalahan tersebut dalam masa ujian yang sesuai. Pelbagai usaha 

telah dibuat untuk meningkatkan kadar pengesanan kesalahan dengan kaedah 

mengubah atau menambah turutan operasi di dalam MTA. Tetapi kaedah ini tidak 

sesuai kerana ia akan meningkatkan masa ujian. Sebaliknya, terdapat beberapa 

penyelidikan terdahulu telah membuktikan dengan menggunakan skim latar belakang 

data (DB) di dalam MTA, kadar pengesanan kesalahan adalah tinggi dan penggunaan 

masa ujian yang pendek. Walau bagaimanapun, penyelidikan terdahulu hanya 

mengesan kesalahan konvensional sahaja.  Oleh yang demikian, satu kajian susulan 

haruslah dibuat untuk menghasilkan kaedah baru dengan menghasilkan DB yang baru 

untuk mengatasi kelemahan algoritma. 

 

 

Terdapat dua kaedah yang telah digunakan dalam projek ini. Dalam Kaedah 1, 

penjanaan pelbagai DB dilakukan dengan skim pengurusan DB pada MTA yang 

terpilih. Hasilnya, MTA yang dijana dengan DB baru berjaya mengesan kesalahan 

tersebut. Kaedah ini telah dinilai dari segi prestasi dan fungsi pada setiap MTA baru 

dan konvensional. Setiap MTA diperterjemahkan kepada  perkakasan rekabentuk 

ujian dalaman memori (MBIST) dengan menggunakan perisian MBISTArchitect. 

Dari hasil penilaian, didapati kedua-dua simulasi mempunyai masa ujian yang sama. 
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Walau bagaimanapun, rekabentuk MBIST yang dihasilkan mempunyai saiz yang 

lebih besar dan penggunaan kuasa elektrik yang tinggi. Oleh itu, Kaedah 1 tidak sesuai 

untuk digunakan untuk system cip memori (SoC). 

 

 

Bagi Kaedah 2, penghasilan DB padu (solid DB) yang sesuai di dalam MTA 

hendaklah digunakan untuk mencapai liputan pengesanan kesalahan yang lebih tinggi 

berbanding menggunakan MTA sedia ada. MTA baru dijana dengan bentuk program 

automasi dipanggil penjana DB. Penjana DB mengambil kira semua DB dan menapis 

senarai DB menggunakan gabungan logik yang cekap. Cadangan MTA diperoleh 

dengan mengikuti prosedur ujian yang dicadangkan menggunakan peraturan generasi 

SQ. Akhirnya, liputan kesalahan akan dikira secara manual dengan melakukan analisis 

penilaian kesalahan berpandukan peraturan Primitif Kerosakan Primitif (FP). 

Keputusan menunjukkan bahawa WDFs dan DRDFs berjaya dikesan dengan setiap 

penghasilan MTA. MTA yang dihasilkan juga dapat mengesan SSCFs lain, seperti 

“Transition Fault” , “Stuck-At Fault”,  “Incorrect Read Fault”, “Read Destructive 

Fault”, and “State Fault”. Hasil penyelidikan menunjukkan bahawa penjana DB dan 

MTA yang dicadangkan, seperti March CL-1, March Cl-2, March SR-1, dan March 

SR-2, berjaya dijana dengan liputan kesalahan sehingga 100%. 
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1 

 CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

Static Random Access Memory (SRAM) has become an indispensable component of 

digital systems. It is used for specified capabilities for standalone products or 

embedded memories in System on Chip (SoC) products. The number of SRAM cores 

used in SoC products is increasing dramatically because of the need to facilitate 

multiple applications simultaneously. Moreover, technology scaling will lead to 

smaller feature sizes while enabling a huge number of CMOS (Complementary Metal 

Oxide Semiconductor) transistors to be fabricated into a single chip (Wang et al., 

2006). However, the smaller feature sizes of the transistor will increase the density of 

the cell array (Akashe et al., 2011), leading to the risk of unknown defects occurring 

in the memory cells (Fonseca et al., 2010).  

Figure 1.1 : Memory Dominance on Silicon (Schrader, 2005) 

It was reported by Schrader et al., (2005) that the memory component dominates the 

SoC by silicon area, as shown in Figure 1.1. Figure 1.2 (Executive Summary, 2011) 

shows that the function size, including memory size, is becoming smaller, thus 

increasing the likelihood of defect occurrence. Achieving a high memory yield 

requires understanding memory designs, modeling their faulty behaviors in the 

presence of defects, and designing adequate tests with minimum area overhead as well 

as efficient repair schemes (Hamdioui et al., 2004). 
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Figure 1.2 : 2011 ITRS Product Function Size Trends: MPU Logic Gate Size (4-

transistor); Memory Cell Size [SRAM (6-transistor); Flash (SLC and MLC), and 

DRAM (transistor + capacitor)] (Executive Summary, 2011) 

In CMOS testing, defects occur due to the failure mode being prompted by the 

manifestation of a defect at the electrical level. Typically, failure modes are modeled 

as faults at the logic level abstraction of a physical defect. Fault abstractions or fault 

modeling provide the number of conditions that must be considered in deriving tests. 

To trace the substance of physical defect in memory testing, the test procedure is 

created based on the definition of the fault model (FM) described in fault primitives 

(FP).  

(March element  (r0, w1)) 

for cell := 0 to n - 1 do 

begin 

read Memory[cell]; {expected value = 0); 

write 1 to Memory[cell]; 

end; 

{March element  (r1, w0)] 

for cell := n - 1 downto 0 do 

begin 

read Memory[cell]; {expected value = 1); 

write 0 to Memory[cell]; 

end; 

Figure 1.3 : Example of a March Test (Van de Goor et al., p19, 1990) 
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Normally, embedded memory testing is tested by the developed a test algorithm 

known as a March Test Algorithm (MTA), as in Figure 1.3. Nair et al. (1978) first 

proposed an Algorithm Test Sequence to test stuck at fault physical defects with an 

optimum 4N test operation; later, Suk et al. (1981) proposed the MTA, with a 16N test 

procedure to test coupling faults. A detailed discussion of the MTA’s operation in fault 

detection can be found in Chapter 3. Basically, an MTA is developed based on the test 

procedure; the MTA consists of a sequence set of March elements containing writing 

and reading operations. An example of the March element is described in Figure 1.3. 

An example of a March element is (w0,r1), where ‘w0’ is writing a 0 into each cell 

and ‘r1’ is reading each cell with an expected 1 value. A memory cell is deemed faulty 

if the reading results show a 0 value. In Figure 1.3, the operation of “ (r0, w1)” means 

reading a 0 and writing a 1 into the memory cell with an ascending address order from 

the lowest address to highest address. The operation of “ (r1, w0)” means reading a 

1 and writing a 0 into the memory cell with descending address order, ‘’ from the 

highest to the lowest address.  

The test area can range in size from that appropriate for an LSI (Large Scale 

Integration) chip to that appropriate for an Ultra Large Scale Integration (ULSI) chip 

due to the rapid scaling of semiconductor devices. Therefore, the traditional test 

algorithms are no longer sufficient for testing various faults in standalone memories 

and embedded memories in SoC contexts. Thus, the development of efficient and 

effective testing procedures is essential to detect the defects that are expected to occur 

in SRAM.  

 

Figure 1.4 : Fault Classification 
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The CMOS process technology necessary for the dominant memories to be equipped 

into the ULSI silicon chip is under 180nm and below. SRAM testing under this process 

technology can be classified into two categories: dynamic and static faults (Figure 1.4). 

Static faults are FPs that sensitizes a fault by performing one operation; dynamic faults 

are FPs that performs more than one operation sequentially in order to sensitize a fault 

(Hamdioui et al., 2004). Until now, static faults have been a predominant fault class 

model of the memory cell, and numerous researches on the characteristics of static 

faults in CMOS memory and development of effective MTAs are still being conducted. 

Therefore, the focus of the present research, as highlighted in Figure 1.4, is to test 

Static Single Cell Faults (SSCFs). There are six types of SSCFs: Transition Faults 

(TFs), State Faults (SFs), Write Disturb Faults (WDFs), Read Disturb Faults (RDFs), 

Incorrect Read Faults (IRFs), and Deceptive Read Disturb Faults (DRDFs) (Van de 

Goor et al., 2000). The research conducted will also observe the detection of Static 

Double Cell Faults (SDCFs), such as Coupling Transition Faults (CFtr), Coupling 

Deceptive Destructive Faults (CFdrds), and Coupling Write Disturb Faults (CFwds) 

(Van de Goor et al., 2000). 

1.2 Problem Statement 

Over the years, the fault characterizations of ULSI chip fabrication in Very Deep 

Submicron (VDSM) CMOS process technology has become more challenging 

because of new faults arising that are not fully covered by the existing MTAs. Thus, 

the investigation of the SRAM testing approach involves functional fault models and 

MTA definition (Hamdioui et al., 2004). Therefore, in order to define the efficient 

MTAs required for VDSM technology, some problems need to be identified and 

addressed, such as undetectable static single cell faults (e.g., WDF and DRDF). 

Previously, these faults could not be detected by Van de Goor et al., (2000), Zordan et 

al., (2011), or Vardanian et al., (2002), as shown in Table 1.1. The undetected faults 

of WDF and DRDF have been tabulated in gray colored columns in the table. 
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Table 1.1 : Fault Detection on Single Static Cell Faults by March Test 

 

March 
Algorithm 
(Authors) 

Fault Detection Results 

SAF SF TF WDF RDF DRDF IRF 
MATS+ (Van 
de Goor et al. 

(2002) and 

Zordan et al. 
(2011)) 

 

2/2 2/2 2/2 0/2 2/2 0/2 2/2 

March C- 
(Van de Goor 
et al. (2002) 

and Zordan et 
al. (2011)) 

 
 

2/2 2/2 2/2 0/2 2/2 0/2 2/2 

March SR 
(Van de Goor 
et al. (2002) 

and Zordan et 
al. (2011)) 

 

2/2 2/2 2/2 0/2 2/2 2/2 2/2 

March CL 
(Vardanian & 
Zorian, 2002) 

2/2 2/2 2/2 0/2 2/2 1/2 2/2 

Table Notation: 

0/2 – None of the faults are detected. 

1/2 - One of the faults is detected. 

2/2- Both faults are detected.  

Each fault is divided into two types of faults; e.g., SAF is divided to SAF0 and SAF1.  

 

 

From Table 1.1, it is shown that the MATS+(4N) and March C- (10N) algorithms 

failed to detect DRDFs and WDFs, March CL (12N) and March SR (14N) failed to 

detect WDFs, and March CL (12N) was only able to detect fault DRDFs faults. Based 

on the analysis, there are two assumptions can be made concerning how these 

shortcomings occur. One is that the faults cannot be detected due to the test sequence 

of the test algorithm’s inability to fulfill its Functional Fault Primitives (FFPs) for both 

(Van de Goor and Al-Ars, 2002). The second is that the Data Background (DB) used 

in the MTA is inappropriate to detect the SRAM faults (Wu et al., 1999). 

Weaknesses of an algorithm depend on the effectiveness of the operational test and 

operational data background set. An algorithm can be carried out in accordance with 

testing bit by bit, classified under Bit Oriented Test Memories (BOM), and testing 

word by word, classified under Word Oriented Test Memories (WOM) (Van de Goor 

et al., 1998). Effectiveness is achieved if an algorithm is said to have complete 

coverage for detecting faults in a short time rate (Wang et al., 2006; Wan Hassan et 

al., 2006). Shorter test times will reduce the cost of testing, resulting in low-cost 

production of the mass-manufactured chips (Hamdioui et al., 2000). 
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Previously, researchers have produced a number of improvements to MTAs by adding 

N operations to enable the testing of previously undetected faults (Hamdioui et al., 

2002; Hamdioui et al., 2003; Vardanian et al., 2002; Harutunyan et al., 2007; 

Harutyunyan et al., 2012; Hamdioui et al., 2002; Hamdioui et al., 2003; Vardanian et 

al., 2002; Harutunyan et al., 2007;  Zordan et al., 2011; Harutyunyan et al., 2012). By 

adding N operations, the test time will be increased, thus increasing test cost. 

Table 1.2 : Test Approaches Using Various Types of DBs 

March Test 
Algorithm 
(Author) 

Solid 
DBs 

Multiple 
DBs 

Conventional 
Fault (SF) 

Improvement 
Coverage 

Static 
Single Cell 

Fault 
Coverage 

RAMSES (Wu et 

al., 1999) 
Yes 

Yes (Varies 

up to 8 DB) 
Yes (STAF, TF) 100% No NIL 

Data Background 
Generator (Wang 

et al., 2002) 
Yes No Yes ( STAF, TF) 100% No NIL 

Detecting Fault 
Under Bit Line 

Coupling (Irobi 
et al., 2010) 

No Yes Yes 100% 

Yes (SF, 
DRDF, 

WDF, IRF, 
RDF) 

100% at 
March m-

MSS but not 

March SR, 
March C-, or 

MATS++ 

Proposed Method 
Yes Yes Yes (STAF, TF) 100% 

Yes (SF, 
DRDF, 

WDF, IRF, 
RDF) 

100% 

The undetectable fault can also be solved by changing the DB operation in the test 

algorithm. Comparison between test approaches using various type of DBs in term of 

their fault detection improvement on conventional fault and SSCFs is tabulated in 

Table 1.2. Wu et al. (1999) developed the Random Access Memory Simulator for 

Error Screening (RAMSES) program to provide multi DB, consisting of eight DBs: 

P1 (0000), P2 (0101), P3 (0011), P4 (0110), P5 (0001), P6 (0010), P7 (0100), and P8 

(1000). Wu et al. (1999) proved that by extending March C- and MATS++ with those 

DBs, the fault coverage is improved. Their designing of a data background generator 

to generate sequences of solid DBs (0s and 1s) proved to achieve up to 100% detection. 

However, the fault model covered in their works only conventional fault.  

Irobi et al. (2010) proposed a new test algorithm, March m-MSS, which provided a 

solid-0 data background (00000000) , solid-1 data background (11111111), double-

column stripes data background (00110011), double-column stripes data background 

(11001100), shifted double-column stripes data background (01100110) and shifted 

double-column stripes data background (10011001), which was able  test all SSCF 

and SDCF faults under bit line coupling conditions. It was reported that using multiple 

DBs on March C-, March SR, and MATS+, the SSCFs are undetected with the 

condition of bit line coupling. Given these developments, it is necessary to develop 
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experiments to provide multiple DBs and to modify solid DBs to solve the 

undetectable issues. 

1.3 Aim and Objective 

The aim of the thesis is to improve the detection of SSCFs  in existing MTAs to 

increase fault coverage. The main objectives of the proposed research can be 

summarized as follows: 

To develop a test procedure consisting of sequence rules of DBs to detect the presently 

undetectable faults of SSCFs and SDCFs in the existing MTAs.  

To provide a new method to modify DBs of the existing MTAs for obtaining better 

fault coverage and better hardware performance. 

1.4 Scope of Research 

The following items comprise the scope of this research: 

The research involves generating multiple DBs and solid DBs after considering all 

possible DBs to test the conventional MTAs below 14N test length, such as MATS++ 

(9N), March C- (10N), March SR (14N), and Mod March CL (12N). Both methods 

are proposed to improve fault coverage of SSCFs. Figure 1.5 illustrates the flow of 

generating the new MTA based on the write operations numbers. DBs are filtered from 

all possible DBs following the test procedure rule. Those filtered DBs will be replaced 

by old DBs in the conventional MTA. Manual analysis to check the fault detection on 

each generated MTA will take place. The approach of this research is different 

compared to the approach based on the Address Fault Primitive and Test Pattern Graph 

used by Benso et al. (2005) and “Test Algorithm Generation by Simulation” used by 

Wu et al. (1999).  

 
 

Figure 1.5 : The Overview of the Flow for Generating the New MTA 
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Method 1 manages the transition and non-transition at its bit-adjacent to memory word 

to generate managed DBs. There are two schemes included: a static scheme, whereby 

the data will write the same value twice, and a dynamic scheme whereby the new data 

will be written with the opposite values of the previous data. 

The test evaluation of the specified MTA by Method 1 with static and dynamic scheme 

and MTA with solid DBs (0s and 1s) is conducted. The result of the generated MTAs 

will be compared in terms of its fault detection and Built-In-Self-Test (BIST) hardware 

performance with those with the conventional MTAs. The evaluation only picks one 

set of DBs per each Mod March SR (multiple DBs), March SR (solid DBs), and March 

SS (solid DBs) in the context of memory BIST. The testing scheme will be applied to 

single port and double port memories to evaluate the hardware performance in terms 

of hardware complexity, test cycle time, and test power. 

Method 2 involves designing an automation program using Verilog HDL; it follows a 

proposition solution under the SQ generation rule to generate solid DBs. The flow in 

generating the possible DB follows the steps shown in Figure 1.5. Method 2 differs 

compared to the Method 1only in terms of the rule used. Referring to the generated 

test patterns, the SQ rule will determine the final sequence bit pattern. The final bit 

test pattern will be used to generate the new MTA but will retain the sequence of the 

operation in the original MTA. 

Since the rule on the proposed test procedure involves transition and a non-transition 

data, the solution will also observe the detection of SDCFs, especially CFtrs, CFwds, 

CFrds, and CFdrds. 

Finally, based on the fault coverage and the hardware test evaluation results, the best 

method to be practiced in industry and research will be proposed. 

1.5 Project Contribution 

The test proposal consists of two methods to improve fault coverage in SSCFs 

detection as well as achieving low area overhead, test power, and test time by limiting 

the test length to 14N test operations. The following list briefly summarizes the main 

contributions of this dissertation: 

A new method of bit adjacent management in BOM tests by practicing dynamic and 

static DBs to improve fault coverage of SSCFs. 

A new method to generate a new MTA by generating a new sequence of DBs that 

follows the SQ generation rule to improve the fault coverage of SSCFs. 
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Designing data background generator follows the SQ generation rule. The design 

architecture is able to generate the optimum data background automatically with 

transition and non-transition operations to generate new MTAs. 

1.6 Thesis Layout 

The thesis is organized as follows: 

In Chapter 1, the motivations of SRAM testing research are described, introducing the 

fundamental work of the importance of March Test Algorithm and its issues 

concerning test performance, including the problem statement, objectives, project 

contribution, research methodology and scope of the project.  

Chapter 2 presents a detailed literature review of the relevant research work. Some of 

the analysis will take place in the context of highlighting the motivation of this 

research project. This chapter also explains the test fundamentals of the SRAM testing 

involved in the research work. The fault taxonomy of SSCFs and SDCFs are explained 

in detail. A summarized overview of SRAM testing that involves generating the FFM, 

FPs, and MTAs will be presented. The overview of the basic test algorithm elements 

and fault detection of each fault is discussed in detail.  

Chapter 3 shows the research and methodology used in this research. The 

implementation of Method 1 and the overview of the development of the test algorithm, 

the proposed test procedure, the produced new MTA, and the result of fault detection 

is also discussed in detail. The MBIST implementation and the result in terms of area, 

test time, and test power are discussed in this chapter. A comparison of utilization of 

multiple DB and solid DB approach also takes place. 

Chapter 4 discusses in detail the implementation of Method 2 based on the proposed 

SQ generation rule. The flow chart of designing the Data Background Generator and 

the generated DB results are presented. The produced MTAs and their fault detections 

are tabulated. Discussion of the results for the fault coverage and test power based on 

the produced MTA is also included in this chapter. 

Chapter 5 summarizes research work and findings, also discussing research limitation 

and highlighting potential future work. 
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