FLAVOUR COMPONENTS AND THE EFFECTS OF ORGANIC ACIDS WASHING ON THE EARTHY FLAVOUR AND PHYSICAL ATTRIBUTES OF THE BLACK TILAPIA (O. MOSSAMBICA) FILLETS

NURUL IZZAH AHMAD

FSMB 2000 5
FLAVOUR COMPONENTS AND THE EFFECTS OF ORGANIC ACIDS WASHING ON THE EARTHY FLAVOUR AND PHYSICAL ATTRIBUTES OF THE BLACK TILAPIA (*O. MOSSAMBICA*) FILLETS

By

NURUL IZZAH AHMAD

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Food Science and Biotechnology, Universiti Putra Malaysia

April 2000
Dedicated to my beloved...........

parent,
husband,
children,
sisters
and
brothers
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Master of Science

FLAVOUR COMPONENTS AND THE EFFECTS OF ORGANIC ACIDS WASHING ON THE EARTHY FLAVOUR AND PHYSICAL ATTRIBUTES OF THE BLACK TILAPIA (O. MOSSAMBICA) FILLETS.

by

NURUL IZZAH AHMAD

April 2000

Supervisor : Assoc. Prof. Dr. Jamilah Bakar
Faculty : Food Science and Biotechnology

The selection and training of panelists for identification of earthy attributes in wild black tilapia was carried out using triangle test and Quantitative Descriptive Analysis procedures. Training was carried out in three stages. The first stage was the introduction to fish flavour characteristics while the second and third stages were the familiarization and discrimination stages, respectively. Earthy was the main characteristic for odour and flavour in freshwater fish, while shellfish, briny and sour characteristics were described for marine fish. The threshold level for geosmin was 0.1μgml⁻¹. Earthy flavour attribute was more easily detected as compared to aroma or aftertaste attributes.

The volatile flavour compounds identified in black tilapia from three different water environments (cultured pond, lake and channel) were aldehydes, ketones, alcohols, acids and esters, aromatic compounds, furans, cyclic- and hydrocarbons, N-containing compounds and S-containing compounds. 62 compounds were detected in cultured black tilapia, 139 in black tilapia taken from lake and 89 in black tilapia.
taken from channel. The major compound identified in all samples was 2,6-bis(tert-butyl)-4-methylphenol. Other abundant compounds were 1,1-(6-hydroxy-2,5-benzofurandiyl)bis-ethanone, butyl 2-methylpropyl 1,2-benzenedicarboxylate, hexadecanal, heptadecane and benzothiazole. The earthy flavoured compounds, geosmin and isoborneol were found in trace amount in all samples.

Acetic, citric and tartaric acids washings at 0.125, 0.25, 0.5, 1 and 2 % respectively, were carried out to determine their effects on the removal of the earthy odour and the physical attributes (hardness and colour) of black tilapia fillets. Washing with 0.5 % citric acid resulted in fillets with acceptable hardness and colour characteristics and showed a minimum denatured muscle zone. Washing with 0.5 % tartaric acid decreased (P < 0.01) the hardness, while washing with 0.5 % acetic acid increased the whiteness (P < 0.05) and imparted acetic acid smell. The sensory scores showed that washing with 0.5 % acetic, citric and tartaric acid respectively decreased 75, 65 and 48 % of earthy odour from uncooked black tilapia fillets.
FLAVOUR COMPONENTS AND THE EFFECTS OF ORGANIC ACID WASHING ON THE EARTHY FLAVOUR AND PHYSICAL ATTRIBUTES OF THE BLACK TILAPIA (O. MOSSAMBICA) FILLETS

Oleh

NURUL IZZAH AHMAD

April 2000

Penyelia : Prof. Madya Dr Jamilah Bakar
Fakulti : Sains Makanan dan Bioteknologi

Komponen meruap ikan tilapia hitam yang ditangkap dari 3 persekitaran yang berbeza iaitu kolam peliharaan, tasik dan parit adalah terdiri daripada komponen aldehid, komponen keton, komponen alkohol, komponen asid dan ester, komponen aromatik, komponen furan, komponen siklik- dan hidrokarbon, komponen yang mengandungi kumpulan N dan komponen yang mengandungi kumpulan S. Sebanyak
62 komponen merupu dikesan dari ikan peliharaan, 139 dari ikan yang ditangkap dari tasik dan 89 dari ikan yang ditangkap dari parit. Komponen utama yang ditemui di dalam semua sampel adalah 2,6-bis(ter-butyl)-4-methylphenol. Komponen utama yang lain adalah 1,1-(6-hydroxy-2,5-benzofurandiyl)bis-ethanone, butyl 2-methylpropyl 1,2-benzenedicarboxylate, hexadecanal, heptadecane dan benzothiazole. Geosmin dan isoborneol, iaitu komponen yang menyebabkan bau tanah telah dikesan dalam amun yang sangat kecil di dalam tilapia hitam.

Kaedah pembasuhan menggunakan asid asetik, sitrik dan tartarik (0.125 - 2 % masing-masing) telah dijalankan untuk melihat kesannya ke atas penyahbauan tanah dan ciri-ciri fizikal (kekerasan dan warna) kepada filet ikan tilapia hitam. Rawatan dengan 0.5 % asid sitrik menghasilkan ciri kekerasan dan warna yang paling diterima kepada filet tilapia hitam serta memberikan ‘denatured muscle zone’ yang minima. Rawatan menggunakan asid tartarik menyebabkan filet menjadi terlalu lembut (P < 0.01) manakala basuhan dengan 0.5 % asid asetik telah menurunkan warna filet kepada keputihan (P < 0.05) dan menyebabkan filet berbau asid asetik. Ujian penilaian deria menunjukkan bahawa rawatan menggunakan 0.5 % asid asetik, sitrik dan tartarik ke atas filet tilapia hitam telah merendahkan skor bau tanah sebanyak 75, 65 dan 48 % masing-masing.
ACKNOWLEDGEMENTS

Alhamdulillah, my utmost thanks and gratitude to Almighty Allah S.W.T. who has given me the capability to complete this project and my salawat and salam to his righteous messenger, prophet Muhammad s.a.w.

I would like to express my sincere appreciation to the Chairman of Supervisory Committee, Associate Professor Dr. Hjh. Jamilah Bakar, of the Department of Food Technology, Faculty of Food Science and Biotechnology for her guidance and encouragement throughout the course of my study. I am also very grateful to my co-supervisor, Associate Professor Dr. Hjh. Salmah Yusof, of the Department of Food Technology, Faculty of Food Science and Biotechnology and Associate Professor Dr. Hj. Faujan Bin Hj. Ahmad, of the Chemistry Department, Faculty of Science and Environment, Universiti Putra Malaysia.

My appreciation is also to all the technical staffs, graduate students and research assistants in the Faculty of Food Science and Biotechnology for their cooperation, moral encouragement and support to complete this study.

Many thanks to Professor Dr. Nordin Haji Lajis and staff, Encik Zainal Abidin Kassim at the Gas Chromatography and Mass Spectrometer Laboratory, Department
of Chemistry, Faculty of Science and Environment, Universiti Putra Malaysia for allowing and assisting to use their facilities.

Sincere gratitude is extended to the financial support provided by the IRPA fund for this research, which was awarded to Associate Professor Dr. Jamilah Bakar.

I also wish to acknowledge to the Head of the Environmental Health Research Center, Institute for Medical Research, Dr. Stephen Ambu, officers and all staffs for their encouragement, support and making it possible for me to finish the study. Many thanks to Dr Inder Singh and Puan Nazni Wasi Ahmad for their editorial help during my completing the thesis.

Finally, my deepest appreciation to my beloved husband; Mr Iszurin Sha’ari, sons; Adi Farhan and Arief Farhan, parent, sisters, brothers and friends for giving me encouragement and support in anyway during the many years of my pursue for knowledge. I wish will be in Allah’s baraqah.
I certify that an Examination Committee met on 12 April, 2000 to conduct the final examination of Nurul Izzah Ahmad on her Master Science thesis entitled “Flavour Components and the Effects of Organic Acids Washing on the Earthy Flavour and Physical Attributes of the Black Tilapia (O. mossambica) Fillets” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azizah Abdul Hamid, PhD.
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairperson/Representing the Dean)

Jamilah Bakar, PhD.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Salmah Yusof, PhD.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Faujan Ahmad, PhD.
Associate Professor
Faculty of Science and Environmental Study
Universiti Putra Malaysia
(Member)

MOHD GHAZALI MOHAYIDIN, PhD.
Professor/Deputy Dean of Graduate School
Date: 30 MAY 2000
This thesis was submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements for the Degree of Master of Science.

KAMIS AWANG, PhD
Associate Professor,
Dean of Graduate School,
Universiti Putra Malaysia.

Date: 13 JUL 2000
DECLARATION

I hereby declare that the thesis is based on my original work except quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

(Nurul Izzah Ahmad)

Date: 24th May 2000
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

I GENERAL INTRODUCTION

1

II LITERATURE REVIEW

5

Volatile Flavour Components in Fish
5
 Volatile Carboxyls
5
 Alcohols
7
 Free Fatty Acids
7
 Sulfur-Containing Compounds
8
 Hydrocarbons
10
 N-Containing Compounds
12
 Furans
14
 Off-Flavour in Fish
14
 Geosmin
17
 2-methylisoborneol
20
 Earthy Flavour in Fish
21
 The Source of Earthy Odour/Flavour
23
 Actinomycetes
23
 Blue-Green Algae
26
 Removal of Earthy Odour from Fish
27
 The Effect of Acid Washing on Fish Muscle
31
 Techniques of Flavour Analysis
33
 Simultaneous Steam Distillation-Extraction (SDE) Method
33
 Extraction and Identification Procedure for Geosmin and MIB
35
 Sensory Evaluation
36
 Selection of Panelist
38

III SELECTION AND TRAINING OF PANELISTS FOR SENSORY EVALUATION OF EARTHY CHARACTERISTIC IN WILD BLACK TILAPIA (O. mossambica)

40

Introduction
40
Materials and Methods
42
 Materials
42
 Experimental Design
42
IV VOLATILE FLAVOUR COMPONENTS IN BLACK TILAPIA (O. mossambica) BY SDE/GC/MS ANALYSIS

Introduction.. 61
Materials and Methods.. 63
 Materials.. 63
 Extraction Method... 63
 Gas Chromatography and Mass Spectrum (GCMS) Analysis... 65
Results and Discussions... 66
 Aldehydes and Ketones.. 76
 Alcohols.. 78
 Acids and Esters.. 90
 Aromatic Compounds.. 91
 Furans... 96
 Cyclic- and Hydrocarbons.. 96
 N-Containing Compounds... 97
 S-Containing Compounds.. 98
M Miscellaneous Compounds.. 99

Summary and Conclusions... 100

V THE EFFECT OF ACETIC, CITRIC AND TARTARIC ACID WASHING ON THE SENSORY ATTRIBUTES AND PHYSICAL CHARACTERISTICS OF WILD BLACK TILAPIA (O. mossambica) FILLET

Introduction.. 101
Materials and Methods.. 102
 Materials.. 102
 Methods.. 105
 pH.. 105
 Depth of Acid Penetration.................................... 105
 Texture... 107
 Colour.. 107
S Sensory Evaluation on Earthy Attributes by Trained Panelists.. 107
 Statistical Analysis.. 108
Results and Discussions... 108
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH for Acid Solutions</td>
<td>110</td>
</tr>
<tr>
<td>pH of Fillets</td>
<td>110</td>
</tr>
<tr>
<td>pH of Washed Water</td>
<td>111</td>
</tr>
<tr>
<td>The Depth of Denatured Muscle</td>
<td>111</td>
</tr>
<tr>
<td>Texture (Hardness)</td>
<td>112</td>
</tr>
<tr>
<td>Colour</td>
<td>114</td>
</tr>
<tr>
<td>Sensory Evaluation for Earthy Attribute by Trained Panelists</td>
<td>121</td>
</tr>
<tr>
<td>Uncooked Samples</td>
<td>121</td>
</tr>
<tr>
<td>Cooked Samples</td>
<td>123</td>
</tr>
<tr>
<td>Summary and Conclusion</td>
<td>127</td>
</tr>
<tr>
<td>VI GENERAL CONCLUSION</td>
<td>130</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>136</td>
</tr>
<tr>
<td>APPENDICES A</td>
<td>153</td>
</tr>
<tr>
<td>APPENDICES B</td>
<td>158</td>
</tr>
<tr>
<td>BIODATA OF AUTHOR</td>
<td>164</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>56</td>
</tr>
<tr>
<td>13</td>
<td>58</td>
</tr>
<tr>
<td>14</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1. Organoleptic properties of the reaction mixtures and some of the isolated products...
2. Volatile heterocyclic-products generated from the reaction of aliphatic aldehydes with ammonium sulfide...
3. Geosmin studies on fish...
4. Type of actinomycetes involved in producing earthy-flavour metabolites as reported in the literature...
5. Blue green algae producing earthy-smelling metabolites reported in the literature...
6. Minimum threshold concentration of organic acids...
7. Methods of isolation of volatiles...
8. Responses of panelists on sample prepared with corn and rice as the basic stock...
9. Sequential sampling patterns for panelists’ cumulative correct decision...
10. Flavour profiles of cooked muscle of marine and freshwater fish...
11. Scores for earthy attributes by panelists’ for standard solutions, uncooked and cooked samples for stage 2 training...
12. Scores for earthy attributes from panelists’ training for stage 3...
13. Statistical data on performance of panelists evaluating the earthy attributes in uncooked fish...
14. Statistical data on performance of panelists evaluating the earthy attributes in cooked fish...
15. Volatile flavour components identified in black tilapia (*O.*...
mossambica) caught from cultured pond, lake and channel as determined by SDE/GC/MS.

The pH (acid solution, washed fillet and washed water), depth of denatured muscle zone and hardness of black tilapia fillet washed with acetic, citric and tartaric acid.

Hunter ‘L’, ‘a’, and ‘b’ values for black tilapia fillet washed with acetic, citric and tartaric acid.

Sensory scores for earthy odour of uncooked black tilapia fillet washed with acetic, citric and tartaric acid.

Sensory score for earthy odour of cooked black tilapia fillet washed with acetic, citric and tartaric acid.

Correlation analysis between the physico-sensory changes of uncooked and cooked black tilapia fillet washed with 0.125, 0.25, 0.5 1.0 and 2.0 % of acetic acid.

Correlation analysis between the physico-sensory changes of uncooked and cooked black tilapia fillet washed with 0.125, 0.25, 0.5 1.0 and 2.0 % of citric acid.

Correlation analysis between the physico-sensory changes of uncooked and cooked black tilapia fillet washed with 0.125, 0.25, 0.5 1.0 and 2.0 % of tartaric acid.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geosmin</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>2-Methylisoborneol</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>The relationship of primary and secondary metabolisms of actinomycetes metabolites</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Steam distillation-extraction (SDE) unit</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>Total ion chromatogram of volatile components in cultured black tilapia as determined by Simultaneous Distillation Extraction (SDE). Peak numbers correspond to those listed in Table 15.</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>Total ion chromatogram of volatile components in lake origin black tilapia as determined by Simultaneous Distillation Extraction (SDE). Peak numbers correspond to those listed in Table 15.</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>Total ion chromatogram of volatile components in channel origin black tilapia as determined by Simultaneous Distillation Extraction (SDE). Peak numbers correspond to those listed in Table 15.</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>The mass spectrum of geosmin with base peak of 112 and molecular ion of 182</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>Ion chromatography of geosmin with retention time of 15.46 min.</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>The mass spectrum of isoborneol with base peak of 95 and molecular ion of 154</td>
<td>81</td>
</tr>
<tr>
<td>11</td>
<td>Ion chromatography of isoborneol with retention time of 11.44 min.</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>Ion chromatography of geosmin (RT : 15.46 min) in cultured black tilapia</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>Ion chromatography of geosmin (RT : 15.46 min) in black tilapia originated from lake</td>
<td>85</td>
</tr>
<tr>
<td>14</td>
<td>Ion chromatography of geosmin (RT : 15.46 min) in black tilapia originated from channel</td>
<td>86</td>
</tr>
</tbody>
</table>
Ion chromatography of isobomeol (RT: 11.43 min) in cultured black tilapia .. 87

Ion chromatography of isobomeol (RT: 11.44 min) in black tilapia originated from lake ... 88

Ion chromatography of isobomeol (RT: 11.46 min) in black tilapia originated from channel 89

The schematic drawing of black tilapia fillet prepared for measuring the denatured muscle zone whiteness depth 106

Hunter 'L' values for black tilapia fillet washed with acetic, citric and tartaric acid .. 121

Hunter 'a' values for black tilapia fillet washed with acetic, citric and tartaric acid acid ... 119

Hunter 'b' values for black tilapia fillet washed with acetic, citric and tartaric acid acid ... 120

Sensory scores for earthy odour of uncooked black tilapia fillet washed with acetic, citric and tartaric acid 122

Sensory scores for earthy odour of cooked black tilapia fillet washed with acetic, citric and tartaric acid 124

Sensory scores for earthy flavour of cooked black tilapia fillet washed with acetic, citric and tartaric acid 126

Sensory scores for earthy aftertaste of cooked black tilapia fillet washed with acetic, citric and tartaric acid 128
<table>
<thead>
<tr>
<th>Plate</th>
<th>Image Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild black tilapia (O. mossambica)</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>Scaling of black tilapia (O. mossambica)</td>
<td>104</td>
</tr>
<tr>
<td>3</td>
<td>Manual filleting of black tilapia (O. mossambica)</td>
<td>104</td>
</tr>
<tr>
<td>4</td>
<td>The cross section of black tilapia fillet with varying depth of denatured white muscle after washing treatment</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>Colour of black tilapia fillets washed with acetic, citric and tartaric acid at 0.125, 0.25, 0.5, 1 and 2 % concentrations respectively</td>
<td>115</td>
</tr>
</tbody>
</table>
CHAPTER I

GENERAL INTRODUCTION

Fish provides an important source of high quality protein food since its nutritional value is similar to that of meat and milk, although less than that of eggs. It is cheaper than other animal protein foods, geographically within the reach of most consumers and acceptable to most ethnic and religious groups, hence, resulting in a worldwide increase in the consumption of fish and fishery products (Floyd, 1985).

In the 1980s, the growth of marine catches rose by almost one third in the decade. In contrast, the 1990s had showed a decline instead. This could be due to overcapacity of world fishing fleets, inadequate management and over-fishing. (Josupeit, 1994). The global increase of population and continuous demand for fish as a cheap source of animal protein, contributed towards dependence on aquaculture for increasing fish supply. Recent studies show that the aquaculture was the fastest growing food production subsection and over the past decade growing more than five times as fast as the global population and may keep growing at a similar pace until and beyond the turn of the century (Csavas, 1994).

The consumer acceptance on fishery products depends on safety, nutrition, flavour, texture, color, appearance and the suitability of the raw material for...
processing and preservation (Haard, 1992). However, flavour attribute seems to be one of the most important factor which influence their acceptance. Although fish exhibits a similar recognizable flavour characteristic, however the flavour differences indicate uniqueness in attributes (Josephson, 1991). The flavour characteristic of fish are derived from both their volatile and nonvolatile taste constituents. The former which is associated with fish-like aromas in fish flesh are mostly non nitrogenous constituents such as aldehydes, alcohols, volatile sulfur and ketones (Jones, 1967), while the latter are amplified by nucleotides, amino acids and inorganic acids (Josephson, 1991; Jones, 1967; Tarr, 1966). The degree to which they contribute to the flavour is dependent on their recognition threshold value and on their concentration. Specific volatile aroma compounds contribute characterizing flavour to each species (Josephson, 1991).

Unacceptable flavours may be due to the exposure of the fish to contaminated environment or their diet. In spoiled fish, the development of off-flavour is due to a series of complex changes caused by reaction of indigenous enzymes and microbially-induced activity, which will lead to the development of 'rotten flavour' in freshwater fish and the characteristic of 'fishy' taste of trimethylamine in marine fish (Love, 1988). In fresh fish, the off-flavour is caused by chemical residue in polluted water (Berg, 1983; Vale, et al., 1970) and actinomycete metabolites (Gerber and Lechevalier, 1965; Yurkowski and Tabachek, 1980). Other aquatic organism either growing in the water or serving as food for fish such as algae are also the source of off-flavour (Juttner, 1983). These metabolites are present in the fish through the direct intake of contaminated water through the skin or the gills or through feeding of blue green algae (Haard, 1992; Reineccius, 1991 and From and Horlyck, 1984).
Earthy or muddy taints occurs commonly in fish or marine products. The off-flavour compounds responsible for the earthy defects in fish are generally geosmin or 2-methylisoborneol (Yurkowski and Tabachek, 1974; Yurkowski and Tabachek, 1980; Kuusi and Suihko, 1983). Both compounds are the metabolites of actinomycetes and blue green algae (Lovell, 1983; Gerber, 1983; Kuusi and Suihko, 1983). Each compounds have strong earthy odour characteristic, with threshold odour concentration as low as ngL$^{-1}$ level in water (Sano, 1988).

Many studies have been conducted to remove the earthy odour/flavour in fish. Limited studies on removal of off-flavour from the processed and semi-processed fish have been reported such as soaking and cleaning in supernatant of banana (Musa sp.) leaf ash (Mohsin et al., 1999), salt solution (Rohani and Yunus, 1994), a mixture of salt, tamarind pulp and lemon juice or a mixture of tamarind pulp, salt and lemon grass (Anon, 1991) and 4 % acetic acid (El Sahl et al., 1990).

Gerber and Lechevalier (1965) and Gerber (1983) reported that earthy flavour components especially geosmin was destroyed by acid as it is converted into argosmin which had no odour. Washing with crude extract of organic acids such as tamarind pulp and lemon juice and vinegar has been a common practice among Malaysian housewives (Jamilah and Siti Aini, 1997). Since tamarind pulp, lemon juice and vinegar contain organic acids such as tartaric (Rasul, 1992), citric (Lawrence, 1974) and acetic acid (Wheaton and Lawson, 1985) respectively, these acids may removed the earthy odour/flavour characteristic during the washing of fish.
Aquaculture in Malaysia had its beginning in the early 20th century (Ang, 1990) and recently, the industry boost a total production of more than 100,000 metric tonnes (Anon, 1997). Black tilapia (*O. mossambica*) are abundant and among the main species cultured in freshwater ponds in Malaysia. In 1997 the production of this fish had reached 4,196.64 metric tonnes of which more than 95 % was produced from freshwater ponds in Sabah, East Malaysia (Anon, 1997). The increase in production may be due to its quick growth, easy reproduction, adaptability to wide range of environmental conditions and ready acceptance of artificial feed (Saxena, 1987). The retail value for the fish was RM 34 million (Anon, 1997). Inspite of its increasing production (Anon, 1994; Anon 1997) in freshwater ponds, there are many complaints from consumers on the presence of earthy odour and flavour of the fish (Mohsin et al., 1999; Jamilah and Siti Aini, 1997).

Hence, the objectives of this study are (1) to determine the flavour components and confirm the presence of geosmin and isoborneol in black tilapia (2) to determine the effects of acid washing for the removable of the earthy attributes (3) and to determine the effects of washing on the physico-chemical characteristics of the washed fillets. The study also included the selection and training of panelists on earthy attributes. The trained panelists were then used to evaluate earthy character in treated fillets.
CHAPTER II

LITERATURE REVIEW

Volatile Flavour Components in Fish

The flavour characteristics of fish are derived from both their non-volatile and volatile components. The taste active non-volatile compounds include nucleotides, free amino acids and inorganic salts. The volatile aroma compounds which formed in the living species are lipid derived compounds, sulfur-containing compounds, unsaturated hydrocarbons, isoprenoid related compounds, trimethylamine and related amines and carotenoids-derived compounds (Jones, 1967; Josephson, 1991). Not all volatile compounds present in fish are important because the degree to which they contribute to the flavour is dependent on their recognition threshold value and on their concentration (Josephson, 1991).

Volatile Carbonyls

Eight-carbon volatile ketones have been found to occur in most seafood. They contribute to the distinct fresh plant-like and metallic aroma, however individually, these compounds exhibited mushroom and geranium aroma (Josephson et al., 1984a; Josephson, 1991). These volatile compounds were derived through