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SCANNING DATA AND GIS 
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ALI MUTAR FANOS 

August 2019 
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Faculty  :  Engineering 

In mountainous and hilly areas such as Malaysia, rockfalls phenomena is a 
significant and ongoing threat to people and their properties in addition to 
infrastructure and transportation lines located within steep terrain. This is 
because such incidence can cause serious injuries and fatalities as well as 
severe damage to buildings and infrastructure. Therefore, proper and accurate 
assessment of rockfall sources and hazard is required in order to map and thus 
understand the characteristics of rockfall catastrophe. The identification of 
probable rockfall starting regions, the calculation of the rockfall trajectories in 
complex three-dimensional terrain, and rockfall hazard assessment are three 
major components of the rockfall research and issues. Although the numerous 
significant attempts to propose models that can accurately identify potential 
rockfall source areas, one major problem remain unsolved. This issue is when 
the focus area contains other types of landslides that have nearly similar geo-
morphometric characteristics such as rockfall and shallow landslides. Therefore, 
this research adopted various methods to investigate, analyze and assess 
rockfall in terms of sources identification, trajectories modeling and their 
characteristics, and consequently rockfall hazard. This is based on high-
resolution Light Detection and Ranging (LiDAR) techniques both airborne and 
terrestrial (ALS and TLS). Different machine learning algorithms (Artificial Neural 
Network [ANN], K Nearest Neighbor [KNN] and Support Vector Machine [SVM]) 
were tested individually and with various ensemble models (bagging, voting, and 
boosting) to detect the probability of the landslide and rockfall occurrences. 
Consequently, a novel hybrid model is developed to identify potential rockfall 
sources in the presence of shallow landslides. This is based on an integration of 
Gaussian Mixture Model (GMM) and an ensemble Artificial Neural Network 
(Bagged ANN -BANN) for automatic detection of potential rockfall sources at 
Kinta Valley area, Malaysia. Moreover, a developed 3D rockfall model is 
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employed to derive rockfall trajectories and their characteristics in three different 
areas within Kinta Valley namely (Gunung Lang, Gua Tambun, and Gunung 
Rapat) with various scenarios. In addition, a proposed spatial model in 
combination with fuzzy analytical hierarchy process (fuzzy-AHP) is executed 
within the geographic information system (GIS) environment to extract rockfall 
hazard. Mitigation measures are suggested based on the modelling results. 
Overall, the proposed hybrid model was found to be an efficient method for 
identifying potential rockfall source areas in the presence of other landslides 
types with relatively high prediction accuracy and a good generalization 
performance. GMM could reproduce the slope angle distribution in an accurate 
way with a coefficient of determination close to 1. The obtained slope thresholds 
through GMM were (23° to 58°) for landslide and (> 58°) for rockfall. The results 
of Ant Colony Optimization show that best subset of conditioning factors 
contains 12 factors of 17 for rockfall with an accuracy of (86%) and 14 factors of 
17 for shallow landslide with an accuracy of (82%). The proposed BANN model 
achieved the best training accuracies of (95%) and best prediction accuracies of 
(92%) based on testing data compared to other employed methods. This 
indicates that the model can be generalized and replicated in different regions 
and the proposed method can be applied in various landslides studies. The 
result of Fuzzy-AHP revealed the rockfall hazard is highly affected by kinetic 
energy, frequency, bouncing height, and impact location with weights of (0.48, 
0.30, 0.12, and 0.10), respectively. In addition, the proposed spatial model 
effectively delineates areas at risk of rockfalls. The suggested barriers could 
effectively reduce the degree of rockfalls hazard. In summary, the proposed 
methods provide a comprehensive understanding of rockfall hazards that can 
assist authorities to develop proper management and protection of urban areas 
and transportation corridors. 
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ALI MUTAR FANOS 

Ogos 2019 

Pengerusi : Profesor Shattri Mansor, PhD 
Fakulti  : Kejuruteraan 
 
 
Di kawasan bergunung-ganang dan berbukit-bukit seperti Malaysia, fenomena 
runtuhan batu adalah signifikan dan merupakan ancaman yang berterusan 
kepada manusia dan harta benda mereka, juga pada infrastruktur dan jalan 
pengangkutan yang terletak di terain yang cerun. Hal ini disebabkan fenomena 
ini boleh mengakibatkan kecederaan yang serius dan juga kematian di samping 
kerosakan yang teruk pada bangunan dan infrastruktur. Oleh sebab itu, 
penaksiran yang wajar dan tepat mengenai sumber runtuhan batu dan bencana 
adalah perlu bagi pemetaan dan dengan itu dapat memahami ciri katastrofi 
runtuhan batu. Pengenalpastian kawasan bermulanya runtuhan batu yang 
mungkin terjadi, pengiraan trajektori runtuhan batu di terain tiga dimensi yang 
kompleks dan penaksiran bencana runtuhan batu merupakan tiga komponen 
utama dalam penyelidikan dan masalah runtuhan batu. Walaupun pelbagai 
percubaan yang signifikan bagi mengesyorkan model yang secara tepat dapat 
mengenal pasti kawasan sumber runtuhan batu yang berpotensi, satu masalah 
utama masih belum dapat diselesaikan. Isu ini ialah apabila kawasan fokus 
mengandungi pelbagai jenis tanah runtuh lain yang mempunyai ciri 
geomorfometrik yang seakan-akan sama seperti runtuhan batu dan tanah 
runtuh yang cetek. Oleh sebab itu, penyelidikan ini menerima pakai pelbagai 
kaedah bagi menyelidiki, menganalisis dan menilai runtuhan batu dari segi 
pengenalpastian sumber, modeling trajektori dan ciri mereka, dan seterusnya 
bencana runtuhan batu. Hal ini berdasarkan teknik Penjulatan dan Pengesanan 
Cahaya beresolusi tinggi (LiDAR) yang meliputi kedua-dua udara dan darat 
(ALS dan TLS). Algoritma pembelajaran mesin yang berbeza (Rangkaian Neural 
Artifisial [ANN], K Jiran Terdekat [KNN], dan Mesin Vektor Bantuan [SVM]) telah 
diuji secara individu dan dengan pelbagai model ensembel (pengantungan, 
pengundian, dan penggalakan) bagi mengesan kebarangkalian kewujudan 
kejadian tanah runtuh dan runtuhan batu. Akibatnya, suatu model hibrid yang 
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novel telah dibangunkan bagi mengenal pasti sumber runtuhan batu yang 
berpotensi dengan kewujudan tanah runtuh yang cetek. Hal ini berdasarkan 
Model Percampuran Gaussan (GMM) dan Rangkaian Neural Artifisial yang 
diensembel (Kantung ANN -BANN) bagi pengesanan automatik bagi sumber 
runtuhan batu yang berpotensi di kawasan Lembah Kinta, Malaysia. Tambahan 
pula, model runtuhan batu 3D yang berpotensi telah digunakan bagi 
mendapatkan trajektori runtuhan batu dan ciri mereka di tiga kawasan yang 
berbeza di Lembah Kinta, iaitu (Gunung Lang, Gua Tambun, dan Gunung 
Rapat) dengan pelbagai senario. Di samping itu, suatu model spatial yang 
disyorkan berkombinasi dengan proses hierarki analitikal fuzi (fuzzy-AHP) telah 
digunakan dalam persekitaran sistem maklumat geografik (GIS) bagi 
mengekstrak bencana runtuhan batu. Pengukuran mitigasi telah disyorkan 
berdasarkan dapatan modeling. Keseluruhannya, model hibrid yang disyorkan 
didapati sebagai suatu kaedah yang efisien bagi mengenal pasti kawasan 
sumber runtuhan batu yang berpotensi di samping kewujudan jenis tanah runtuh 
lain dengan ketepatan ramalan yang secara relatif adalah tinggi dan suatu 
prestasi generalisasi yang baik. GMM dapat menghasilkan semula penyebaran 
sudut lereng dengan cara yang tepat dengan koefisien determinasi hampir pada 
1. Ambang lereng diperoleh melalui GMM ialah (23° hingga 58°) bagi tanah 
runtuh dan (> 58°) bagi runtuhan batu. Dapatan Pengoptimisasian Koloni Semut 
menunjukkan bahawa subset faktor pelaziman terbaik mengandungi 12 faktor, 
iaitu 17 bagi runtuhan batu dengan ketepatan (86%) dan 14 faktor daripada 17 
bagi tanah runtuh dengan ketepatan (82%). Model BANN yang disyorkan 
memperoleh ketepatan latihan terbaik sebanyak (95%) dan ketepatan ramalan 
terbaik (92%) berdasarkan data pengujian berbanding dengan kaedah lain yang 
digunakan. Dapatan ini memperlihatkan model tersebut dapat digeneralisasi 
dan direplikatkan di kawasan yang berbeza dan kaedah yang disyorkan dapat 
diaplikasikan dalam pelbagai kajian mengenai runtuhan batu.  Dapatan Fuzzy-
AHP memperlihatkan bencana runtuhan batu amat disebabkan oleh tenaga 
kinetik, kekerapan, ketinggian lantunan, dan lokasi impak dengan keberatan 
masing-masing (0.48, 0.30, 0.12, dan 0.10). Di samping itu, model spatial yang 
disyorkan secara efektif dapat menghalang kawasan yang berisiko runtuhan 
batu. Penghalang yang disyorkan secara efektif dapat mengurangkan kadar 
bencana runtuhan batu.  Kesimpulannya, kaedah yang disyorkan dapat 
memberikan pemahaman yang komprehensif mengenai bencana runtuhan batu 
yang seterusnya dapat membantu pihak berkuasa membangunkan pengurusan 
dan perlindungan yang sesuai terhadap kawasan bandar dan koridor 
pengangkutan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General 

Rockfall is one of the catastrophes which threaten the human's life and 
properties in mountainous and hilly regions such as Malaysia with steep and 
high elevation topography. Rockfall is categorized as one of the landslides types 
that composes of a boulder detachment or many isolated blocks from a sub-
vertical or vertical cliffs followed by fast downslope movement with different 
motion mode: flying or free-falling, impact and bouncing, sliding and rolling 
(Varnes, 1978). Rockfall is extraordinarily fast process and can run long 
distance. Although rockfall has a low risk level on economic in comparison with 
large scale landslide, the high velocity correlated with rockfall results in the same 
fatalities number as the number of people killed by all other landslide types on 
the same order of magnitude (Hoek, 2007). While a rockfall event is happening, 
people are normally incapable to take an evasive behavior because of the rapid 
movement. Therefore, the risks of injuries and loss of lives is excessively high. 
Thus, rockfall incidents are the main reason of landslides casualties, even when 
elements with lower exposure degree are included like traffic along 
transportation ways (Fanos and Pradhan, 2018). Moreover, rockfall can cause 
serious damage to lifelines buildings and infrastructure. An efficient and simple 
way to minimize probable destruction from natural hazard, such as rockfall is to 
make better land management via accurate land use (LU) designing relying on 
hazards delineation maps (Hungr, 2018). This is significant for the selection and 
setting priorities of proper mitigation processes (Wohlers et al., 2017). Utilizing 
hazard zoning and mapping methods has become essential for the planning of 
land management for two major causes. First, the recent obvious changes in the 
climatic have excessively increased rockfall frequency events. Second, growth 
of population results in urban sprawl and a subsequent increase in the number 
of regions at risk (Ravanel and Deline, 2011). 

1.2 Background of Study 

Rockfalls are rock movement from a very steep slope that the rock continually 
moving down the slope. Rockfall is a frequent phenomenon on steep terrain or 
excavated/constructed slopes that are exposed to erosion and weathering. 
Rockfall includes free fall or flying, bouncing, rolling, and sliding causing one of 
the main geologic hazard in Malaysia (Simon et al., 2015). Rockfalls occurrence 
is high in Kinta Valley which is characterized by steep slopes of few hundred 
meters. 
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Most of the rockfalls in Kinta Valley that result in serious damage involves 
massive beds of limestone and granite (Lai et al., 2017). Rockfalls pose a 
massive risk to traffic safety, cause maintenance issues, and exert a continual 
exertion on the available limited maintenance funds amount. This produced a 
considerable agreement of management-related and scientific interest, and the 
current thesis is one of this situation outcome. This research aims to develop a 
novel model for rockfall source identification in presence of the other landslide 
types. In addition, this research strives to calibrate and test a sophisticated 3D 
rockfall model to provide a reliable tool for future rockfall hazard assessment. 
The first research of rockfall behavior has been carried out by Ritchie (1963) for 
the Washington State Highway Commission. Since then many researches have 
been performed in several countries to define the rockfall trajectories and their 
characteristics and to design the rockfall mitigation processes as well. 

Rockfall has developed into a topic with enormous economic significance, 
especially for the agencies of transportation. The economic attention combines 
with extraordinary growth in the capability of the rockfall phenomenon evaluation 
and the modern techniques for designing and constructing rockfall mitigation 
measures, has resulted in the necessity of a much more comprehensive 
assessment of rockfall phenomenon than in earlier researches. Developed 
understanding of such physical process assists engineers and scientists to 
improve accurate analytical models for rockfall evaluation as a hazard to people 
and their properties (Hungr, 2005), that decision makers can thus combine in 
land-use planning for the risk minimizing.  

Landslide and rockfall controlled by various conditioning factors. On the other 
hand, the distribution of rockfall trajectories and deposits is highly controlled by 
topography, block physical properties (size, shape, and geology), the dynamics 
of block (velocity, impact, and bounce height) (Wyllie, 2014). Rockfall 3D models 
to some extent can consider all the above mentioned processes through an 
algorithm, normally parameterized in a user interface where the effects of 
specific site can be calibrated. Algorithms calibration to reality is a fundamental 
process that can be done through field checks and user expertise or back 
analysis based on historical data (Dorren and Berger, 2005). 

In last decades, the topographic data both acquisition and analysis have seen a 
remarkable development in terms of methodologies and technologies related to 
the use of LiDAR technique. LiDAR technique is essentially designed for general 
geospatial data collection and terrain mapping. This technique is able of 
gathering huge amounts of accurate 3D data point and has been widely utilized 
in recent years, not just in the field of photogrammetry and remote sensing, but 
also in a vast difference of applications such as preservation of sculptures and 
historical buildings and assisting in the navigation of unmanned vehicles (Yan et 
al., 2015). 
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1.3 Problem Statement 

Rockfall source areas are needed to be detected through proper method in order 
to be used in rockfall modeling and prediction. Furthermore, traditional rockfall 
forcasting methods contain some weak points interms of solpe geometry 
representation and sources identification which can be solved through the 
colletion of accurate data and the use of a novel ensemble model in addition to 
proper modeling of rockfall hazard assessment.  

Rockfalls vary both spatially and temporally and it is challenging to predict or 
eliminate such incidents worldwide. This phenomenon is widely occurred in 
limestone and granitic areas with high and steep terrain. Kinta Valley is one of 
the main districts in Malaysia. The bedrock geology for Kinta Valley and 
surrounding areas are granitic hills, limestone bedrock, and it is mining area. As 
a result, a lot of engineering geologic issues have been encountered Kinta Valley 
and its immediate surroundings, involving rockfalls and landslides. The bedrock 
of limestone in Kinta Valley rises over the alluvial plains forming limestone hills 
with vertical to sub- vertical slopes (Simon et al., 2015). 

The major triggering factors of rockfalls are ascribed to the rainwater along the 
crevices and joints exist in the limestone and it is unavoidable that the rock plates 
will fracture from the cliff where this action is sufficiently decreased its stability. 
Rockfalls might have also been precipitated by a number of secondary triggers, 
like vibrations such as low-intensity seismic, mine explosion and passing cars 
surrounding and oscillation associated with the wind blows through vegetation 
that grows on cliff faces and lost cohesion due to extended periods of humid 
weather. Rock blocks and slabs will thus fall down and occasionally even though 
the time and period of subsequent rockfalls are unpredictable. 

Although the aforementioned studies (Losassoet al., 2017; Messenzehl et al. 
2017; Mote et al., 2019) have made significant attempts to propose models that 
can accurately identify potential rockfall source areas using photogrammetry or 
laser scanning data, one major problem still remain unsolved. This issue is when 
the focus area contains other types of landslides that have nearly similar geo-
morphometric characteristics such as rockfall and shallow landslides.  Thus, this 
research proposes a hybrid model for identifying potential rockfall source areas 
from airborne laser scanning data. The proposed model is based on two main 
algorithms: a Gaussian Mixture Model (GMM) and bagging Artificial Neural 
Networks (BANN). 

In addition, despite the numerous studies in rockfall hazard assessment, 
information about impact location and time factor are rarely discussed or 
presented in the literature. However, the impact location is the most significant 
factor in rockfall risk assessment and designing of a mitigation process. 
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Moreover, the time element is not considered or demonstrated in these studies, 
which a key element in early warning processes. 

1.4 Research Gaps

There are many studies have been performed regarding the identification of 
rockfall source areas and characterization of rockfall hazard. However, there are 
some limitations associated with the implementation of these studies. The main 
gaps obtained from extensive literature review are: 

1. The identification of rockfall source areas is the most challenge in 
rockfall modeling. However, most of researchers rely only on slope 
angle (which specified based on their experience) to determine rockfall 
source areas. Therefore, the uncertainty associated with this method is 
quite high (Agliardi et al., 2016).  

2. Most of researchers applied a single machine learning algorithm for 
producing rockfall probability, nevertheless, they did not apply or test an 
ensemble model that can produce better accuracy and consistency 
(Pham et al., 2017). 

3. Most of the rockfall studies used limited conditioning factors whereas 
rockfall phenomenon controlled by various conditioning factors. In 
addition, factors optimization was not performed in these studies or 
optimized individually (Kavzoglu et al., 2015). 

4.  In most of the studies that use machine learning algorithms, the 
hyperparameters of the machine learning algorithms were not 
optimized. However, these parameters highly affect the performance of 
machine learning algorithms (Klein et al., 2016). 

5. In order to obtain accurate rockfall hazard maps, factors such as the 
rockfall runout and distribution, frequency, probability, and intensity 
should be taken into account at each position and over the trajectory. 
However, just a few methodologies of rockfall hazard assessment fulfill 
all of these demanding (Ferrari et al., 2016). 

6. A lot of rockfall studies are performed based on 2D rockfall modelling. 
However, these models are critical to select 2D slope profile and are 
restricted to provide the spatial distribution of rockfall trajectories and 
their characteristics. Therefore, they cannot provide realistic 
assessment results of rockfall hazard (Li and Lan, 2015).  

7. Even the existing 3D rockfall model most of them are based on lumped 
mass approach which neglects rock properties (shape and size) and 
considers a rock as a point mass (Li and Lan, 2015). 

 
 
 
 
 
 



© C
OPYRIG

HT U
PM

 
5 

1.5 Scope of Study 

Rockfall occurs in steep terrain and determining the slope geometry on which 
these hazards occur is demanding. Remote survey methods are generally 
preferred to create the steep rock slope geometry. The remote survey technique 
that has become quite popular in the last ten years is Light Detection and 
Ranging (LiDAR). Since airborne LiDAR technique is widely popular these days, 
it has been widely used for rockfall analysis. In this thesis, LiDAR technique was 
used to derive three-dimensional digital terrain model (DTM) of slope terrain. In 
geohazard application, the concern is the bare earth or DTM.  Therefore, a 
filtering algorithm to filter non-ground points from ground points is required. The 
identification of rockfall sources areas is a key element in rockfall hazard 
assessment. Therefore, in this research, a novel model based on machine 
learning algorithms within GIS environment was utilized to identify rockfall 
source regions. This based on Gaussian Mixture Model (GMM) and Bagged 
Artificial Neural Network (BANN). The assessment of rockfall trajectories 
described in this thesis employs 3D physical rockfall modelling process to 
evaluate the rockfall characteristics and hazard. The achievement of this 
research has been performed employing a 3D rockfall model to efficiently handle 
the distribution geometry and the mechanical parameters. This was carried out 
in three different study areas namely: Gunung Lang, Gua Tambun, and Gunung 
Rapat. The influence of barrier, such as concrete wall or catch net in the 
advanced rockfall hazard analysis, is also taken into account. The input 
parameters required for this analysis, such as the slope geometry (slope, aspect, 
and curvature), were derived from high-resolution DTM. The factors included 
morphological, hydrological, anthropogenic, soil and vegetation factors were 
also considered in this research. The mechanical parameters (coefficient of 
restitution and friction angle) were calibrated based on historical data. Rockfall 
trajectories and their characteristics in three study areas were derived through 
3D rockfall modeling process with three different scenarios. A developed spatial 
modelling was then applied to produce the rockfall hazard maps based on 
rockfall characteristics (frequency, height, impact, and kinetic energy). 

1.6 Research Objectives

This research proposes some methods that clearly contribute to the gaps in the 
literature. The main research objective of this research is to predict and assess 
rockfall sources and hazard using LiDAR data and the specific objectives are: 

1- To develop and test a hybrid model to automatically identify rockfall 
source areas in the presence of other landslide types based on machine 
learning algorithms.  

2- To predict rockfall trajectories and derive their distribution and 
characteristics (velocity, bouncing height, kinetic energy, and impact 
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locations), based on the identified sources using a developed 3D rockfall 
kinematic model. 

3- To develop a spatial model for rockfall hazard assessment based on the 
obtained rockfall characteristics integrated with fuzzy-AHP and suggest 
mitigation processes. 

 
 
1.7 Research Questions

This thesis comprehensively addresses the following research questions: 

1- What is the accuracy of digital terrain model (DTM) that can be obtained 
from the using of LiDAR technique?  

2- What are the probable sources of rockfall (seeder points)? 
3- How can differentiate rockfall from other landslide types? 
4- What are the possible trajectories of falling rocks down the slope? Can 

they be characterized? 
5- Where do falling rocks stop?  
6-  What are the regions subject to probable hazard from future rockfalls 

on the slope under the cliff? 
7-  What are the possible mitigation ways for rockfall damage? 
8- What is the efficiency of mitigation way eliminating rockfall hazard?   

1.8 Motivation behind this Research  

Nowadays, natural hazards are common in today's life. Increasing amounts of 
natural catastrophes have proved to the human the vital importance of the 
natural hazards issues for the safety of the environment and the populations. 
Rapid urbanization and climate change are expected to raise the amount of 
rockfall. The rockfall which occurs in tropical countries, especially Malaysia, 
emphasizes the extreme in climatic variations. That is why, the topic of rockfall 
monitoring, mapping, modelling, and mitigation are among priority tasks in 
governments schedule (Kussul et al., 2008). This phenomenon occurs due to 
the unexpected variation in the state of natural features due to natural forces. In 
most of the cases, the human is not capable to control and predict these 
disasters precisely. Main natural catastrophes such as rockfall, landslide, 
earthquakes, floods and land subsidence when they occur, they lead to affect 
the human lives, belongings, infrastructure, and environment. The influence of 
natural hazards is varying based on its amount and coverage region. 

Rockfalls are the most frequent happening natural catastrophes which influence 
human and its adjacent environment. Rockfall disaster is more prone to Asia and 
the Pacific areas which influences the economic and social stability of those 
countries. Rockfall and landslide incidents in Malaysia are very frequent, and 
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have, at times, caused in fatalities as well as destruction for the properties 
(Pradhan and Lee, 2010). A typical example of rockfall incidents has been 
reported by Simon et al., (2015). Attention for providing proper rockfall 
management has increased over the last centuries. The recent reasons for 
recurrent falling rocks of some regions are mostly due to rainfall, un-planned 
urbanization, construction, and deforestation activities. Despite all this, it is still 
human participation to control rockfall catastrophe through the enormous use of 
various technologies. Technology using can facilitate rockfall prevention actions 
to detect the rockfall areas and to have an early warning for this catastrophe. 

This thesis attempts to propose techniques to map the rockfall-prone areas and 
map the rockfall susceptible areas using a developed hybrid model for the 
identification of rockfall source areas and a 3D rockfall modelling for rockfall 
trajectories distribution and their characteristics. The key motivation of this 
research is to use the generated maps in order to avoid more urbanization in 
hazardous areas and have a sustainable environment. To reduce the damage 
and victims in case of a rockfall occurrence, it is critical to locate the susceptible 
areas. Governments and planners can utilize the produced results by this study 
to recognize safe regions for citizens, support first responders in emergencies, 
and update the urban planning strategies. This information can decrease the 
requirement to perform in-situ investigation by agencies such as surveying 
departments. 

1.9 Research Limitation

The proposed methods for rockfall sources and hazard assessment have been 
applied and the research objectives have been achieved. However, the temporal 
factor was not considered in this research. This is because of uncompleted 
inventory data of landslides incidents in terms of time. Nevertheless, the focus 
of this study is on identifying rockfall source areas and assessment of rockfall 
kinematic process and spatial distribution, thus rockfall hazard. This is based on 
high-resolution LiDAR data and a developed 3D rockfall model in addition to a 
novel hybrid model. 

1.10 Thesis Organization 

The thesis is split into five chapters. Chapter 1 demonstrates the background of 
the research problem, the scope of the study, the research objectives and 
motivation behind this research. Chapter 2 reviews the literature on rockfall 
hazard assessment. This chapter mainly discusses the general principles and 
methodology of rockfall hazard assessment including rockfall causes, 
mechanism, rockfall sources identification parameters and methods, modelling 
approaches for rockfall analysis and parameters affect the rockfall simulation. 
Some of machine learning algorithms are also presented in this chapter.  
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Chapter 3 presents the methodology and framework of the thesis. This chapter 
presents and discusses the data which necessary for rockfall sources 
identification and hazard analysis. The chapter includes the following: deriving 
digital terrain model (DTM), identify rockfall sources and a 3D modelling 
approach has been adopted to obtain rockfall trajectories and their spatial 
distribution and then producing of rockfall hazard maps. 

Chapter 4 presents the collected information and the results of rockfall source 
identification and hazard assessment in term of trajectories, frequency, velocity, 
bouncing height, kinetic energy, impact points, and hazard maps. Chapter 5 
summarizes the research finding, limitations and suggests directions for future 
work. 
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