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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the degree of Doctor of Philosophy  

ADSORPTION, LEACHING AND BIOAVAILABILITY OF CADIMUM AND 
LEAD IN AQUEOUS SOLUTION AND CONTAMINATED SOILS 

AMENDED WITH MODIFIED BIOCHAR  

By

ALAA HASAN FAHMI 

November 2018 

Chairman :   Samsuri Abd Wahid, PhD 
Faculty :   Agriculture

Cadmium (Cd) and lead (Pb) are among the global priority pollutants and 
contaminations of these heavy metals cover a wide range of soils. Biochar has been 
proven to be a very good adsorbent of heavy metals. Reduction of its particle size may 
increase the sorption and removal of heavy metals from soils or aqueous solution. The 
present study investigated the effects of crushing oil palm empty fruit bunch biochar 
(EFBB) to different particle sizes on the adsorptive removal of Cd and Pb from 
aqueous solution, extractable, leaching and phytoavailability of Cd and Pb in 
contaminated soil. Three different particle sizes of EFBB were used in this study; 
coarse (C-EFBB) (>2 mm), medium (M-EFBB) – (0.25 ‒ 0.5 mm) and fine (F-EFBB) 
(< 0.05 mm). The F-EFBB was also coated with Fe to produce an iron coated F-EFBB 
(ICF-EFBB). A commercially available activated carbon (AC) was also included in 
the study as a benchmark for the sorption properties of the modified biochars. All the 
adsorbents were characterized for their physico-chemical and morphological 
properties using standard methods. A batch equilibrium study was performed using 
0.1 g of each adsorbent with 40 mL of solution containing 0 ‒ 500 mg L−1 Cd and/or 
Pb. The isotherm data was fitted to Freundlich and Langmuir’s sorption isotherm 
models. The C-EFBB and F-EFBB at three different rates (0%, 0.5% and 1%) were 
added to soils contaminated with Cd and/or Pb and the extractable, leaching and 
phytoavailability of these two metals were studied.  

The results indicated that F-EFBB had the highest CEC, pH, and acidic functional 
groups among the adsorbents but the AC had the highest BET surface area. The 
scanning electron micrographs suggested that crushing the biochar exposed the 
micropores which were otherwise hidden in the inner structure of the larger particle 
size biochar. There was no evidence of macropores presence in the AC. Sorption 
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isotherm data of the all adsorbents for Cd in the single system were better fitted to the 
Langmuir than the Freundlich model, except for AC. However, the bisorbate system 
were better fitted to the Freundlich than the Langmuir model, except for ICF-EFBB. 
The sorption isotherms of all the adsorbents for Pb in the single and bisorbate system 
were better fitted to the Langmuir than the Freundlich model, except for AC in the 
bisorbate system. The Qmax values for Cd and Pb adsorption follow the order of ICF-
EFBB > F-EFBB > M-EFBB > C-EFBB> AC in the single systems (55.87, 40.32, 
19.34, 17.79 and 14.31 mg g-1 for Cd and 142.86, 103.09, 58.14, 54.95 and 50.51 mg 
g-1 for Pb, respectively). The same order was observed for Pb adsorption in bisorbate 
systems (126.58, 98.04, 51.02, 45.25 and 43.86 mg g-1, respectively). The order of 
Qmax values for Cd adsorption in bisorbate systems exhibited the following order: F-
EFBB > ICF-EFBB > M-EFBB > AC > C-EFBB (20.79, 17.86, 12.87, 6.25 and 5.59 
mg g-1, respectively). The adsorption of Pb was more preferable than Cd by all the 
adsorbents.  

Application of EFBB to the soils contaminated with Cd and/or Pb significantly 
reduced the synthetic rainwater (SRW) extractable Cd and Pb. The lowest SRW 
extractable Cd and Pb was recorded by the contaminated soils applied with 1% F-
EFBB. The lowest extractable values of Cd from Cd-soil and Cd+Pb-soil were 0 and 
10.786 μg kg-1 in week 8, respectively. The lowest extractable values of Pb from Pb-
soil and Cd+Pb-soil were 4.180 and 9.770 μg kg-1  in week 8, respectively. Similar 
results were obtained from the leaching study, which showed the effectiveness of the 
F-EFBB in reducing the leaching of Cd and Pb from the soils compared to the other 
adsorbents. The growth parameters of mustard plants grown in Cd- and Cd+Pb-soil 
treated with EFBBs were significantly better compared to the untreated soil (control). 
However, there was no significant difference in the growth parameters of mustard 
plants grown in Pb-soil treated with EFBBs compared to the control soil. There was 
also no significant effect of EFBB particle size on the growth parameters of the 
mustard plants grown on the contaminated soils. However, the application of 1% F-
EFBB to the contaminated soils showed significantly lower Cd and Pb concentrations 
in the roots and shoots of the mustard plants as compared to the mustard plants grown 
on the untreated contaminated soil. The lower values of Cd in roots were 448.6 and 
346 mg kg-1, while, the lower values in shoots were 115.200 and 99 mgkg-1 in 
contaminated soils Cd-soil and Cd+Pb-soil, respectively. For the lower Pb values in 
roots were 4196 and 1529.5 mg kg-1, while, in shoots were  78.467 and 35.733 mg kg-

1, in contaminated soils Pb-soil and Cd+Pb-soil, respectively. This may be attributed 
to the reduction in bioavailable Cd and Pb in soils treated with F-EFBB. It can be 
concluded from this study that all the EFBBs, regardless of their particle size adsorbed 
Cd and Pb better than the commercial AC. Reducing the EFBB particle size improved 
its adsorption capacity as well as reduce the extractable and leaching of Cd and Pb 
from contaminated soils. Therefore, the EFBB can be an alternative to the much 
costlier AC as an adsorbent for Cd and Pb. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

JERAPAN, LARUTLESAP DAN KEDAPATANBIO Cd DAN Pb DALAM 
LARUTAN AKUEUS DAN TANAH TERCEMAR MENGGUNAKAN

BIOCHAR YANG DIUBAH MENGG NAKAN KAEDAH FIZIK DAN
KIMIA  

Oleh 

ALAA HASAN FAHMI 

November 2018 

Pengerusi :   Samsuri Abd Wahid, PhD 
Fakulti :   Pertanian 

Kadmium (Cd) dan plumbum (Pb)  adalah antara bahan cemar  utama dunia dan 
pencemaran logam berat ini merangkumi pelbagai jenis  tanah. Biochar telah 
dibuktikan sebagai penjerap logam berat yang sangat baik. Pengurangan saiz zarah 
biochar meningkatkan penjerapan dan penyingkiran logam berat dari tanah atau 
larutan berair. Kajian ini menyiasat kesan saiz zarah yang berbeza terhadap  biochar 
dari tandan kosong kelapa sawit (EFBB) hancur dalam menyingkirkan Cd dan Pb dari 
larutan berair, boleh diekstrak, larutlesap dan kedapatan fito Cd dan Pb dalam tanah 
yang tercemar. Tiga saiz zarah EFBB digunakan dalam kajian ini; kasar (C-EFBB) (> 
2 mm), sederhana (M-EFBB) - (0.25 - 0.5 mm) dan halus (F-EFBB) (<50 μm). EFBB 
juga disalut dengan Fe untuk menghasilkan F-EFBB bersalut ferum (ICF-EFBB). 
Karbon aktif komersial (AC) juga dimasukkan dalam kajian ini sebagai penanda aras 
bagi sifat-sifat penyerapan biochar yang telah diubahsuai. Sifat fizik-kimia dan 
morfologi semua penjerap dianalisis menggunakan kaedah piawai. Kajian 
keseimbangan berkumpulan dijalankan menggunakan 0.1 g setiap penjerap dengan 
larutan 40 mL yang mengandungi 0 - 500 mg L-1 Cd dan/atau Pb. Data isoterma 
dipadankan pada model isoterma jerapan Freundlich dan Langmuir. C-EFBB dan F-
EFBB pada tiga kadar berbeza (0%, 0.5% dan 1%) telah ditambahkan pada tanah yang 
tercemar dengan Cd dan/atau Pb dan keboleh ekstrak, larutlesap dan kedapatan fito 
kedua-dua logam ini juga dikaji. 

Keputusan menunjukkan bahawa F-EFBB mempunyai KPK, pH, dan kumpulan 
keasidan tertinggi di kalangan penjerap tetapi AC mempunyai keluasan permukaan 
BET tertinggi. Imbasan mikroskop elektron menunjukkan bahawa biochar yang 
dihancurkan membuka banyak liang-liang mikro yang  tersembunyi di dalam struktur 
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dalaman biochar. Tiada bukti kehadiran liang makro pada AC ditemui. Data 
penjerapan isotermik semua penjerap untuk Cd dalam sistem logam tunggal lebih 
padan kepada model Langmuir berbanding model Freundlich, kecuali untuk AC. 
Walau bagaimanapun, sistem dwilogam  lebih sepadan dengan model Freundlich 
daripada model Langmuir, kecuali untuk ICF-EFBB. Jerapan isoterma semua penjerap 
untuk Pb dalam sistem logam tunggal dan dwilogam lebih padan dengan model 
Langmuir daripada Freundlich, kecuali AC dalam dwilogam. Nilai Qmax untuk 
penjerapan Cd dan Pb mengikuti turutan ICF-EFBB > F-EFBB > M-EFBB > C-EFBB 
> AC (masing-masing sebanyak 55.87, 40.32, 19.34, 17.79 dan 14.31 mg g-1 bagi Cd 
dan 142.86, 103.09, 58.14, 54.95 dan 50.51 mg g-1 bagi Pb) dalam satu logam tunggal 
dan turutan yang yang sama diperhatikan untuk penjerapan Pb dalam sistem 
dwilogam. Turutan nilai Qmax untuk penjerapan Cd dalam sistem dwilogam 
menunjukkan urutan berikut: F-EFBB > ICF-EFBB > M-EFBB > AC > C-EFBB, iaitu 
masing-masing dijerap sebanyak 20.79, 17.86, 12.87, 6.25, dan 5.59 mg g-1. 
Penjerapan Pb lebih tinggi daripada penjerapan Cd. 

Penambahan EFBB kepada tanah yang tercemar dengan Cd dan/atau Pb  membantu 
mengurangkan Cd dan Pb yang boleh diekstrak oleh air hujan sintetik (AHS). 
Cadmium dan Pb yang diekstrak adalah terendah dalam tanah yang tercemar yang  
ditambah dengan 1% F-EFBB. Nilai Cd terendah bagi tanah Cd dan tanah Cd+Pb, 
masing-masing adalah 0 dan 10.786 μg kg-1 dalam minggu kelapan. Keputusan yang 
sama diperoleh daripada kajian larutlesap, yang menunjukkan keberkesanan F-EFBB 
dalam mengurangkan larutlesap Cd dan Pb dalam tanah berbanding dengan penjerap 
yang lain. Parameter tumbuhan sawi yang ditanam di tanah yang dicemari Cd- dan 
Cd+ Pb yang dirawat dengan EFBBs adalah jauh lebih baik berbanding dengan tanah 
kawalan yang tidak dirawat. Walau bagaimanapun, tidak perbezaan ketara yang 
ditemui pada tumbuhan sawi yang ditanam pada tanah yang dicemari Pb yang telah 
dirawat menggunakan EFBBs berbanding dengan tanah kawalan. Tidak ada kesan 
yang signifikan terhadap saiz zarah EFBBs pada parameter pertumbuhan pokok sawi 
yang ditanam di tanah yang tercemar. Walau bagaimanapun, penambahan 1% F-EFBB 
pada tanah yang tercemar menunjukkan kepekatan Cd dan Pb yang lebih rendah dalam 
akar, pucuk dan keseluruhan tumbuhan sawi berbanding tumbuhan sawi yang ditanam 
di atas tanah tercemar yang tidak dirawat. Nilai Cd dalam akar adalah 448.6 dan 346 
mg kg-1 manakala terdapat 115.200 dan 99 mg kg-1 Cd dalam pucuk tumbuhan yang 
ditanam pada tanah tercemar dengan Cd dan Cd+Pb. Jumlah nilai Pb yang terendah 
dikenalpasti pada paras 4196 dan 1629.5 mg kg-1 dalam akar serta 78.467 dan 35.733 
mg kg-1 dalam pucuk yang ditanam pada tanah tercemar dengan Pb dan Cd+Pb. Ini 
mungkin disebabkan pengurangan kedapatan bio Cd dan Pb dalam tanah yang dirawat 
dengan F-EFBB. Dapat disimpulkan daripada kajian ini bahawa semua EFBB, tanpa 
mengira saiz zarah boleh menjerap Cd dan Pb lebih baik daripada AC komersil. 
Pengurangan saiz zarah EFBB meningkatkan kapasiti penjerapan serta mengurangkan 
keboleh ekstrak dan larutlesap Cd dan Pb dari tanah yang tercemar. Oleh itu, EFBB 
boleh menjadi alternatif kepada AC yang jauh lebih mahal sebagai penjerap untuk Cd 
dan Pb.
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Background 

Cadmium (Cd) and lead (Pb) are significant pollutants found globally, causing 
contamination in many urban cities and related industrial sites (Mohan and Singh, 
2002; Mohan et al., 2006; Thinakaran et al., 2017). Cadmium is toxic and can 
accumulate in bones and cause kidney damage in humans (Mohan and Singh, 2002;
Yamkate et al., 2017). It is also a major cause of itai-itai disease (Mohan and Singh, 
2002; Sharma et al., 2017). The major sources of Cd in the soils are by emission from 
alloy, pigments, battery, and from plastic manufacturing industries (Mohan and Singh, 
2002; Peng et al., 2016) as well as from the application of phosphate fertilizers (Tianlik 
et al., 2016).  Similarly, lead is released into the atmosphere or deposited in the soils 
or sediments through incomplete combustion of petroleum hydrocarbons and sulfide 
ore smelting (Mohan et al., 2014; Jiang and Zhou, 2018). In the case of water bodies, 
Pb is deposited on surface water resources via acid mine drainage (Mohan et al., 2014). 
Moreover, both Cd and Pb cannot be biodegraded (Inyang et al., 2012).   

Heavy metals such as Cd and Pb can be removed from wastewater and soil using 
different technologies (Bolan et al., 2014). Some of the technologies used for 
wastewater heavy metals removal include precipitation, membrane filtration, 
electrocoagulation, ion exchange and packed-bed filtration (Inyang et al., 2012; Kim
et al., 2013). Unfortunately, these technologies are costly and the pose disposal 
problems arising from the cumulation of sludge (Sud et al., 2008). Recently, the use 
of biosorbents has been reported to be a better alternative to the previously mentioned 
methods (Demirbas, 2009). Activated carbon (AC) is widely used in the 
decontamination of Cd and Pb from soils. However, as a result of biochar discovery, 
studies have indicated that AC is becoming less important in decontamination of heavy 
metals in soils because it is expensive to produce while biochar is cheaper and more
environmentally friendly (Cornelissen et al., 2005; Kołtowski et al., 2017). Several 
investigators have proposed the use of biochar to replace AC as a biosorbent for large-
scale soil remediation of heavy metals (Babel and Kurniawan, 2003; Liang et al., 2010; 
Fu and Wang, 2011).  Moreover, Cao et al. (2009) revealed that using different 
sorbents for heavy metals removal in wastewater only result in the binding of only one 
metal ion contaminant and the method is expensive. 

Biochar is defined as an organic material produced by heating biomass residues in the 
absence of oxygen (Sohi, 2012). Biochar has a capacity to sorb contaminants and 
heavy metals in soils (Beesley et al., 2011). Not only that, the addition of biochar to
soil does serve various other functions such as increasing soil fertility and sequester 
carbon by storing carbon biomass which is more resistant to biodegradation (Sohi, 
2012). Shen et al. (2015) showed that prior to a large-scale field application of biochar, 
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there is a need to rely on commercially available and renewable feedstock that proved 
to have the potential for soil decontamination. Oil palm empty fruit bunch (EFB) is 
abundantly produced in Malaysia and about 23 million tons are generated yearly 
(Vijaya et al., 2008). The EFB is usually disposed off in landfills and this can result in 
gas emission leading to pollution problems (Kong et al., 2014a). The Malaysian Palm 
Oil Board (MPOB), which is under the Ministry of Plantation Industry and 
Commodities, commercially produces biochar from EFB at its factory located in Bangi 
Lama, Selangor. The EFB biochar is produced at a temperature of 250 oC using a 
horizontal rotary kiln. The rotating motion of the kiln moves the EFB biomass along 
the kiln and the speed is controlled based on the period of the heating required.    

The biochar produced at low temperature (<500 oC) has advantages and 
disadvantages. The advantages of biochar produced at low temperature include greater 
CEC (Kołodyńska et al., 2012) high nitrogen content (Chan and Xu, 2009) high 
exchangeable bases (Anyika et al., 2015) higher amounts of functional groups 
(Rutherford et al., 2008; Xie et al., 2015) high yield (Kong et al., 2014a) and the 
process consumes less energy (Cao et al., 2009). However, the biochar produced at 
low temperature has low pH, low surface area, and unexposed functional groups (Chen 
and Chen, 2009) which will result in low adsorption capacity of heavy metals and 
organic pollutants (Goswami et al., 2016). The resulting low surface area and 
unexposed functional groups of biochar produced at low temperature are due to pore 
closing and/or blockage by volatile material (Uchimiya et al., 2011a) or as a result of 
bottleneck phenomena (Dieguez-Alonso, 2015). The micropores are of considerable 
importance in adsorption process and the pore size can be widened with high-
temperature pyrolysis due to the destruction of walls between the pores (Downie et 
al., 2009). On the other hand, high-temperature pyrolysis may lead to the loss of 
functional groups, which are also important in adsorption (Ding et al., 2014; Jindo et 
al., 2014).  Biochar produced at low temperature can be a potential biosorbent to be 
used for soil amendment and environmental remediation purposes especially if its 
surface area can be increased and its inner pores and functional groups can be exposed 
by physical methods such as crushing.  

1.2 Problem Statement 

Previous studies have established that physical enhancing biochar properties may 
result in greater sorption of metals (Yargicoglu et al., 2015; Lu et al., 2017). The 
important the physical properties of biochar affecting sorption of metals include 
particle size, surface area (Shen et al., 2015; Shen et al., 2016; Lu et al., 2017) and 
pore volume (Kołodyńska et al., 2012). According to the terminology used by the 
International Union of Pure and Applied Chemistry (IUPAC), pores can be divided 
into three sizes: micropores (< 2 nm), mesopores (2 ‒ 50 nm), and macropores (> 
50 nm) (Thommes et al., 2015). The micropores and mesopores are the most important 
pore size in the adsorption of heavy metals (Mohan and Pittman, 2006; Ishak and 
Abdullah, 2014; Kunhikrishnan et al., 2015). Blockage of the inner pores either by ash 
content or volatile materials such as tars and bio-oil will cause the inner pores to 
become inaccessible surfaces for adsorption (Downie et al., 2009; Lee et al., 2010;
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Gupta et al., 2013; Ahmad et al., 2014; Jindo et al., 2014). Therefore, exposing these 
inner pores will increase the effective adsorption capacity of biochar for heavy metals. 
According to Dieguez-Alonso (2015), to avoid bottlenecks phenomenon and pore 
blockage the biochar should be crushed to smaller particle size. However, for 
production pore of sizes up to 100 nm, the particle size should not be crushed less than 
10 μm. Therefore, in order to obtain biochar with pores up to 100 nm, the biochar has 
to be crushed to particle size near to 10 μm. Previous studies have attempted to exploit 
the inner pores of biochar via particle size reduction (Mohanty and Boehm, 2014;
Jaafar et al., 2015). However, the particle size that researchers used was much larger 
than 0.05 mm, which was not capable of exposing the occluded inner pores. 

Shen et al. (2015) have reported the effect of particle size on metal sorption. They 
compared the sorption of Pb by Salisbury wood biochar of < 0.15 mm and 2 mm
particles sizes and they found that the < 0.15 mm biochar adsorbed greater Pb relative 
to those of the 2 mm biochar. They attributed the higher sorption capacity of the fine 
particle size biochar for Pb to the CEC and a functional group, not the surface area. 
This because the sorption capacity of the Salisbury wood biochar was higher than that 
of sugarcane biochar reported by Inyang et al. (2011) even though the surface area of 
the former was higher. Shen et al. (2015) also concluded that the adsorption of Pb on 
the Salisbury wood biochar was not controlled by physical sorption but rather by
chemisorption. 

Meanwhile, the use of biochars with small particle sizes will require more specific and 
expensive filter paper to separate the biochar particles from the treated wastewater 
(Wang et al., 2014; Han et al., 2015). Consequently, it is assumed that magnetizing 
the biochar will ease its separation from the wastewater by using a magnet (Baig et 
al., 2014; Wang et al., 2015a; Tan et al., 2016). The smaller the size of the magnetic 
biochar, the better the separation from aqueous solution because of the higher 
adsorptive area. However, if the size of the magnetic biochar is too small, the magnetic 
tractive force will not be strong enough to overcome the Brownian motion, and 
therefore, the separation from the aqueous solution will be difficult (Cotten and 
Eldredge, 2002; Yavuz et al., 2006). 

Studies have reported that impregnation of biochar with iron oxide increased the 
surface area and oxygen-containing functional groups of the biochar, hence increasing 
its adsorption capacity for heavy metals (Song et al., 2014; Wang et al., 2015b; Tan et 
al., 2016). However, other studies revealed that iron oxide could block the pores and 
reduce the pore volume and surface area of biochar (Wang et al., 2011; Hu et al., 
2015).

According to Kołodyńska et al. (2012), 3 mechanisms exists for metal adsorption on 
biochar surfaces: (1) migration of the metal ions from the bulk solution to the external 
surfaces of the biochar (film diffusion), (2) migration of the metal ions into the biochar 
interior surfaces by either pore diffusion or surface diffusion, and (3) adsorption of 
metal ions on biochar surfaces. It is important to note that most of the reported 
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mechanisms involved the surface functional groups of the biochar. However, metal 
retention by the surface functional groups of the biochars inner pores has not been 
completely verified. Amonette and Joseph, (2009) and Mohan et al. (2015)  reported 
that both acidic and basic functional groups do exist in the inner pores of the biochar 
and in biochars matrix.

As far as I know, very rare literature can be found on the influence of the inner pores 
functional groups to increase the sorption capacity of metals by exposing the inner 
pores via particle size reduction. In this study, the inner pores of biochar were exposed 
by crushing the biochar to a particle size of < 0.05 mm. It is hypothesized that this will 
expose the inner pores of the biochar, which may increase its adsorption capacity for 
heavy metals. It is also hypothesized that magnetizing the biochar with Fe oxide will 
increase its adsorption capacity for heavy metals and ease the biochar separation from 
aqueous solution. Apart from studying the effect of particle sizes on the sorption 
characteristics, extractable, leaching and phytoavailability characteristics of Cd and 
Pb were also investigated. 

1.3 Research Objectives 

The general objective of this research was to study the effects of biochar particle size 
in increasing its adsorption capacity for Cd and Pb. Consequently, reducing the 
leaching and phytoavailability of the metals.  The specific objectives are listed below: 

1. To determine the physico-chemical, mineralogical and morphological
characteristics of different sizes of biochar (C-EFBB, M-EFBB, and F-EFBB), 
magnetic biochar (ICF-EFBB) and activated carbon (AC).

2. To study the sorption capacity of Cd and Pb in the single and bisorbate system by 
different sizes biochars (C-EFBB, M-EFBB, F-EFBB, ICF-EFBB, and AC).

3. To investigate extractable and leaching of Cd and Pb in contaminated soil (Cd, 
Pb, Cd+Pb) amended with different particle sizes (C-EFBB and F-EFBB) and 
rates of biochar (0%, 0.5%, 1%).

4. To determine phytovailability of Cd and Pb in contaminated soil (Cd, Pb, Cd+Cd)  
amended with different particle sizes (C-EFBB and F-EFBB) and rates of biochar 
(0%, 0.5%, 1%) by the mustard plant. 
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