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Abstract of thesis presented to the Senate of University Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Information Security 

 

A SCORE BASED MALWARE CLASSIFICATION APPROACH FOR 
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Chair: Assoc. Prof. Dr. Zurina Mohd Hanapi 

Faculty: Faculty of Computer Science and Information Technology 

 

The rapid growth of Android as one of the leading Operating System (OS) for mobile 

devices drives the need of effective security measures to ensure the users have a safer 

platform to use. Boolean based features used for application permissions degrades the 

precision, recall, F-1 score and accuracy of malware detection. The reason for this is 

that Boolean based features classify the benign and malware applications based on true 

or false rule which is done based on the binary 0 for benign and 1 for malware. 

FAMOUS (Forensic Analysis of MObile devices Using Scoring of application 

permissions) which incorporates Effective Maliciousness Score of Permission 

(EMSP), a score based representation for permissions which replaces the Boolean 

representation for permissions have produced better result for the accuracy, precision, 
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recall and F1-score over the Boolean based feature from existing works. FAMOUS is 

tested on the crawled datasets that are collected from multiple public archives such as 

Cantagio dump, AndroMalShare, Derbin project and Andrototal. This crawled datasets 

are then labelled by the result captured from Virus Total engines. Thus, FAMOUS did 

not use any standard dataset for its analysis. In his research, we will implement the 

EMSP, a score based triage and test it over Android Malware Dataset (AMD) and 

Android PRAGuard dataset to ensure reliable result obtained for the Accuracy, 

Precision, Recall and F1-Score through Machine Learning classifiers. Total of five 

classifiers have been used to train and test the datasets which consist of Random 

Forest, Decision Tree, Naive Bayes, K-nearest neighbours, and Support Vector 

Machine. EMSP will be implemented using Python programming language on 

Windows system. The performance metrics evaluated for the research are precision, 

recall, F-1 score and accuracy. The accuracy obtained varies for different classifiers 

for AMD and Android PRAGuard dataset. The best result obtained for Random Forest 

classifier when using AMD. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

Sebagai memenuhi keperluan untuk ijazah Sarjana Keselamatan Maklumat 
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RAMYAA A/P GOBI 

 

Jun 2019 

 

Pengerusi: Assoc. Prof. Dr. Zurina Mohd Hanapi 

Fakulti: Fakulti Sains Komputer Dan Teknologi Maklumat 

 

Pertumbuhan pesat Android sebagai salah satu Sistem Operasi yang terkemuka untuk 

peranti mudah alih memacu keperluan langkah keselamatan yang berkesan untuk 

memastikan pengguna mempunyai platform yang lebih selamat untuk digunakan. Ciri 

berasaskan Boolean yang digunakan untuk kebenaran aplikasi merendahkan  

ketelitian, keimbasan, skor F-1 dan ketepatan pengesanan malware. Sebabnya ialah 

ciri berdasarkan Boolean mengklasifikasikan aplikasi baik dan aplikasi negatif 

berasaskan peraturan benar atau palsu yang dilakukan berdasarkan binari 0 untuk 

aplikasi baik dan 1 untuk aplikasi negatif. (Forensic Analysis of MObile devices Using 

Scoring of application permissions) yang menggabungkan Effective Maliciousness 

Score of Permission (EMSP), perwakilan berdasarkan nilai untuk kebenaran yang 
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menggantikan kerja yang sedia ada yang menggunakan perwakilan Boolean untuk 

mendapatkan kebenaran telah menghasilkan hasil yang lebih baik untuk terperinci, 

keimbasan, skor F-1 dan ketepatan pengesanan malware ke atas ciri berasaskan 

Boolean daripada kerja sedia ada. FAMOUS diuji pada kumpulan data yang 

dikumpulkan yang dikumpulkan dari pelbagai arkib awam seperti Cantagio dump, 

AndroMalShare, Derbin dan Andrototal. Data-data yang dikemas kini kemudian 

dilabelkan dengan hasil yang ditangkap daripada enjin Virus Total. Oleh itu, 

FAMOUS tidak menggunakan sebarang dataset standard untuk analisisnya. Dalam 

kajian ini, kami akan melaksanakan EMSP, triage berasaskan skor dan mengujinya 

melalui dataset Android Malware Dataset (AMD) dan Android PRAGuard untuk 

memastikan hasil yang boleh dipercayai untuk ketelitian, keimbasan, skor F-1 dan 

ketepatan melalui pengeluar Machine Learning. Jumlah 5 pengelasan telah digunakan 

untuk melatih dan menguji dataset yang terdiri daripada Random Forest, Decision 

Tree, Naive Bayes, K-nearest neighbours, dan Support Vector Machine. EMSP akan 

dilaksanakan menggunakan bahasa pengaturcaraan Python pada sistem Windows. 

Metrik prestasi yang dinilai untuk penyelidikan adalah ketelitian, keimbasan, skor F-

1 dan ketepatan. Ketepatan yang diperolehi berbeza untuk klasifikasi yang berbeza 

untuk dataset AMD dan Android PRAGuard. Hasil terbaik yang diperoleh untuk 

pengelas Random Forest apabila menggunakan AMD. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The popularity of smartphones have grown exponentially in the past years (Sanz et al., 

2013). The drive to this popularity is the technology change which has bring all the 

necessary facilities in a mobile phone in the form of applications. Smartphones are one 

of the powerful small computers that have the capability of accompanying us 

everywhere.  

 

In order to utilize the possibilities that smartphones offers, smartphone users are 

required to install applications. There are tons of mobile applications, which can be 

categorized from basic applications such as calculator to critical applications such as 

banking applications. Smartphones are the most targeted for cyber-attack due to the 

sensitivity of the data stored and transmitted over. 

 

Among the operating system available for smartphones, Android has the exponential 

growth which holds around 85% of the market share based on the International Data 

Corporation’s forecast report (Kumar et al., 2018). 

 

One of the major factor for the tremendous growth of Android as an operating system 

is that it comes with the capability of installing applications from many application 

markets to broaden the features that is already available in Android smartphone. The 

default application market for Android is widely known as Google Play Store while 
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there are many third party markets such as Samsung Galaxy app, Slide MF, Amazon 

App Store and many more that increases the usage and popularity of Android operating 

system for smartphones. Along with the popularity, the level of threat has also 

increased over the years. One of the top most treat is installation of malicious 

applications (Zhou et al., 2012). 

 
Figure 1.1 Android multi-layered security measures 

(Source: Kumar et al., 2018) 

 

Android platform is plot with many different layers of security measures as shown in 

Figure 1.1 Among the other layers in security mechanisms as shown in Figure 1.1, the 

weakest link is known to be the user level which has the outline of the application 

permission. Each activity that is carried out by the user on their smartphone requires 

permissions during the installation of an application. Apparently, the smartphone users 

are not aware of the risk in granting permission to proceed with the application 

installation without knowing the malicious intention of the application. Attackers takes 

advantage of this weak spot to intrude on the users’ device intentionally. Not only 

Android applications have this threat but even iOS applications are also being targeted.  

 

Detection of Android malicious application is one of the active research area that is 

being researched by many researches all around the world with approaches starts from 
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pattern matching up to machine learning (Faruki et al., 2013; Zheng et al., 2013; Sato 

et al., 2013; Huang et al., 2013; Sanz et al., 2013; Wu et al., 2012; Alam et al., 2013; 

Chan et al., 2014; Chuang et al., 2015). The tremendous growth of malware attacks on 

mobile created a space where mobile devices have been used for detecting the 

malwares with the use of machine learning (Shabtai et al., 2010). Ensemble of multiple 

classifiers used to categorize benign apps has been studied in a recent work (Wang et 

al., 2017). 

 

Android classifier feature set can be categorised into three categories known as static, 

dynamic and hybrid respectively. To extract the static feature, it is not necessary to 

execute the application. Example of static feature are permission, intent, API calls ad 

meta-data. Meanwhile, to extract dynamic feature set, the applications are required to 

be executed and the features extracted come from the log activities which triggers 

when the application is executed. Example of dynamic feature set are network activity, 

memory analysis, OS interaction, and process trace. Hybrid feature set are combination 

of both static and dynamic features. 

 

The existing works have used static feature set analysis, dynamic feature set analysis 

and hybrid feature set analysis. Most of research work discussed in Chapter 2, have 

used machine learning and deep learning techniques to obtain the accuracy, precision, 

recall and the F1-score for android permission analysis. 

 

This research adopts the static feature set focusing on application permission to 

construct a machine learning based model to detect malicious applications. 
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1.2 Problem Statement 

Forensic Analysis of MObile devices Using Scoring of application permissions 

(FAMOUS) which incorporates Effective Maliciousness Score of Permission (EMSP), 

a score based representation for permissions that replaces the existing work which uses 

Boolean representation for permissions. FAMOUS use crawled collection of dataset 

that was trained and tested on Machine Learning classifiers. However, standard dataset 

have not been tested on FAMOUS (i.e. Android Malware Dataset (AMD) & Android 

PRAGuard Dataset). The impact of using crawled dataset is that the dataset is labelled 

from the result captured from Virus Total engine. The rule set for the labelling is that 

the dataset is labelled as malware when at least one engine detects the dataset as 

malicious. Virus Total is a tool that operates from human intelligence where the 

community of the Virus Total vote the dataset as malware or benign thus the result 

obtained from crawled dataset is still arguable.  

 

1.3 Objective 

The objective of this research is to implement the EMSP score based triage over 

Android Malware Dataset (AMD) and Android PRAGuard dataset to ensure reliable 

result obtained for the Accuracy, Precision, Recall and F1-Score. 

 

1.4 Scope 

The scope of this research is limited to Android Operating System which runs on 

smartphones. This project is tested on AMD and Android PRAGuard Dataset. The 

development of the proposed method is programed on Windows system using Python 

programming language. 
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1.5 Thesis Structure 

The rest of this thesis is organized as follows; Chapter Two presents the literature 

review explained the background of crawled dataset and standard dataset. Chapter 

Three elaborates the methodology of this research, which consist of the EMSP 

architecture, the experimentation and tools used to implement this research work. 

Chapter Four describes the details on the results obtained from the conducted 

experiments. The results focuses on the accuracy, precision, recall and F1-score 

obtained from the machine learning classifiers. Finally, Chapter Five conclude the 

overall research work. 
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