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In the current study, the Wavelength-Space-Wavelength (W-S-W) switching

fabrics are considered for performance evaluation purpose. WSW2

architecture, which is derived from Clos switching fabrics, is made up of

three phases. In the first and third stages, the converting switches of the

bandwidth-variable waveband are contained, while the central phase is made

up of bandwidth-variable waveband selective space switches. This design

is capable of shifting the optical wavelength of connections within the first

and last stages, while the second stage merely forwards the connections in the

space domain. The switching fabric is capable of switching the switch m-slot

connections occupying the m adjacent slots, 1 ≤ m ≤ mmax. Recently, few

papers, which have been published in this area, investigated the strict-sense

(SSNB) and wide-sense (WSNB) non-blocking conditions of these kind of

switching fabrics. A large number of center stage switches and spectrum

converters are required by SSNB and WSNB switching fabrics. In this research,

an evaluation of the blocking switching fabrics has been done with the aim of
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identifying the optimal number of spectrum converters and/or center stage

switches. The performance evaluation has been carried out using simulation

that is implemented in C++ programming language. Simulation results have

provided insights on the relationship between the number of converters and

blocking probability of the mentioned switching.
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KESAN BILANGAN PENUKAR KEPADA PARAMETER
KEBARANGKALIAN PENYELESAIAN WSW2’ SWITCHING FABRIC’

Oleh

AWS ABDULKAREEM

June 2019

Pengerusi: Mohamed A. Alrshah , PhD

Fakulti: Sains Komputer dan Teknolologi Maklumat

Dalam kajian semasa, Wavelength-Space-Wavelength (W-S-W) switching

fabrics dipertimbangkan untuk tujuan penilaian prestasi. Seni bina WSW2,

yang berasal dari C switching fabrics Clos, terdiri daripada tiga fasa.

Dalam peringkat pertama dan ketiga, jahitan penukaran bandwidth-variable

waveband -pemboleh ubah jalur lebar terkandung, manakala fasa pusat

terdiri daripada suis ruang pilih-ganti waveband yang berubah-ubah. Reka

bentuk ini mampu mengalihkan panjang gelombang optik sambungan dalam

peringkat pertama dan terakhir, sementara tahap kedua hanya meneruskan

sambungan dalam domain ruang. Fabrik pensuisan berupaya menukar

sambungan m-slot suis yang menduduki slot bersebelahan m, 1 ≤ m ≤

mmax. Baru-baru ini, beberapa kertas yang telah diterbitkan dalam bidang

ini menyiasat syarat-syarat yang tidak menyekat (SSNB) ‘strict – sense dan

rasa luas (WSNB) wide - sense jenis fabrik beralih ini. Sejumlah besar

suis di tahap kedua dan penukar spektrum dikehendaki oleh SSNB dan

WSNB beralih fabrik. Dalam penyelidikan ini, penilaian terhadap bahan
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suis menyekat akan dilakukan dengan tujuan untuk mengenal pasti bilangan

penukar spektrum optimum dan / atau suis pada tahap kedua. Penilaian

prestasi akan dijalankan menggunakan simulasi yang dilaksanakan dalam

bahasa program C ++. Diharapkan bahawa hasil simulasi akan memberikan

gambaran tentang hubungan antara bilangan penukar dan kebarangkalian

untuk gagal dari pengunaan switching fabric tersebut.

iv
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CHAPTER 1

INTRODUCTION

1.1 Overview

The high influx of data traffic increases the needs of high transmission rates.

Optical paths of 100 Gb/s can be provided with optical networks between

end users. This might change the rate of Gbps to Tbps given the current and

future applications and services. This means that the network operators have

to make it cost effective and produce a scalable option to transport various

traffic streams; one such solution will be the use of elastic optical networks

(EONs) (Jinno et al., 2009).

An elastic optical network is a paradigm shift where a flexibility of optical

paths on bandwidth has been made possible. Hence the name elastic optical

networks, the bandwidth is assigned to the optical channel based on the

required transmission speed, distance, quality of the path and the modulation

scheme (Gerstel et al., 2012).

Furthermore, even lower traffic can be assigned to the full wavelength capacity

of the wavelength routed optical networks. In order to use bandwidth in

optical links efficiently, traffic grooming was proposed. Another method is

the division of bandwidth in to smaller parts where it is made possible to

aggregate the small parts into the large parts in order to make optical paths

flexible (Dutta et al., 2008). The International Telecommunication Union (ITU)

proposed a 50 GHz grid, which divides the relevant optical spectrum range of

1530–1565 nm (the so-called C-band) into fixed 50 GHz spectrum slots, but it is

likely that bit rates greater than 100 Gb/s will not fit into this scheme (ITU-T,

2012).
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In the past few years the use of 100-Gb/s has been made commercial. Due

to the compatibility with 50 GHz ITU grid which has been used, eliminating

the need to replace the grids. Telecom and Datacom industries see a spike

in the use of data rate above 100 GB/s and 400 Gb/s. Unfortunately, the

spectral width occupied by 400 Gb/s at standard modulation formats is too

broad to fit in the 50 GHz ITU grid, Using a high spectral efficiency modulation

format would result in short transmission distances. Hence, the use of flexible

frequency grid proposed by ITU (Gerstel et al., 2012), allows the flexibility

of spectrum assignment in the dense wavelength Multiplexing (DWDM)

networks. Figure 1.1 shows both ITU grids, fixed and flexible. Bit rates of 400

Gb/s and 1 Tb/s with standard modulation formats are not supported by fixed

grids as it overlaps the 50 GHz grid boundary. Hence, it is optimal to properly

size the spectrum for each demand based on the bit rate and the distance of

the transmission, instead of forcing all demands to use more spectrum.

50 GHz

10 Gb/s 50 Gb/s 100 Gb/s

400 Gb/s 1 Tb/s

Fixed 

Grid

Flexible Grid

Figure 1.1: ITU fixed and flexible grids.

Elastic optical switches are used to support EONs and optical switches are

used to switch connection between fibers. The issue of optical switching

2



© C
OPYRIG

HT U
PM

and switching fabrics was considered in many books and papers (El-Bawab,

2006; Kabaciński, 2005; Papadimitriou et al., 2007). Proposed switches for

EON differ in design, capacity and blocking characteristics. Some researchers

considered switches that depend only on Bandwidth-Variable Waveband

Space Switch (BV-WSS), which is a device that separate wavelengths

multiplexed in a single fiber and forward them into different directions

(Finisar, 2015; Hideaki et al., 2016; Yamaguchi et al., 2016). The BV-WSSs

elements are further explained in Chapter 3. Since the results of BV-WSS

were not satisfactory in terms of the blocking probability, researchers had to

come out with another solution. The widely accepted solution is to adapt

the principle of staging, where a switching fabric is implemented by means

of switching elements organized in stages. When we talk about multi-stage

switching fabrics, we have to consider Charles Clos and his well-known paper

(Clos, 1953).

Clos published a paper in 1953 that defined the basics of what is known

today as Clos switching fabrics (Clos, 1953). In 1953, switching systems were

purely electro-mechanical that depended on the principle of space-division,

which can be simply defined as separation of switching paths merely in space.

The separation of switching paths is further explained in Chapter 2. Clos

defined in his paper the number of second stage switches required so that any

connecting request from any free input to any free output could be established

successfully. V. E. Beneš extended the theory of Clos by introducing the

notion "nonblocking in the wide-sense" (WSNB) and refereed to the conditions

proposed by Clos as "nonblocking in the strict-sense" (SSNB) (Beneš, 1965;

Jajszczyk, 2003). SSNB and WSNB concepts are further extended in Chapter

2. The well-known results of space-division Clos switching fabrics are not

valid when we consider a system that operate in slots, such as Time-Division

Multiplexing (TDM) or Wavelength-Division Multiplexing (WDM), where

3
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each slot in the interstage links is considered as a connecting path. When we

compare slot-operating systems with the original principle of Clos, each of the

links connecting two consecutive stages in Clos original design corresponds to

a single slot in TDM or WDM systems. The definition of the term "free link"

in WDM is also different than Clos. In WDM systems, a free input link to an

m-slot connection can be defined as a link that has free adjacent slots, and their

sum is > m.

The switching fabrics which are nonblocking in the strict-sense require usually

a big number of middle stage switches. This might be the reason why

Beneš proposed the notion of wide-sense nonblocking in the first place. In

WSNB, the switching fabric depends on a certain control algorithm to achieve

the nonblocking. What is important in WSNB, the number of middle stage

switches is reduced or in some cases is equal to SSNB, where number of middle

stage switches (p) is the min {pssnb; pwsnb}.

1.2 Motivation

Detailed studies have recently been published on the switching conditions

of the strict-sense non-blocking and wide-sense non-blocking of the WSW2

switching fabrics. It is important to note that these need high number of

spectrum converters and center stage switches. Therefore, this research will

evaluate blocking switch fabrics which utilize less spectrum converters and

center stage switches.

4
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1.3 Problem Statement

The number of converters directly affects the blocking probability value. It

negatively affects the total performance if this number is reduced, and it

increase the cost if it is increased. The question of this research is:

• How to find the optimal number of converters that reduces the blocking

probability in W-S-W2 switching fabric while maintaining the cost.

1.4 Research Objectives

The main objective of this research is:

• To find the optimal number of converters that reduces the blocking

probability in W-S-W2 switching fabric while maintaining the cost.

1.5 Research Scope

The scope of this research is as follows:

• The reduction in number of converters/switches was done as an effort to

reduce the total implementation cost of WSW2 switching fabric, therefor

the scope for this work will be specific in Elastic optical networks

switching fabrics.

• All experiments are conducted using a simulation developed in C++

programming language.

• This work is only to revisit a previous work, which has been published

in (Kabaciński et al., 2018a).

5
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1.6 Research Significance

The significance of this research is in the reduced cost of the WSW2 switching

fabrics, where the results of this research might reduce the implementation

cost of such switching fabrics by almost 80%.

1.7 Thesis Organization

This research is structured as follows: Chapter 2 presents the background and

introduction to switching fabrics and the principle of elastic optical networks.

Chapter 3 presents the the research method that is used in this research. It

also describes the functions used to implement the simulator and introduces

general characteristics of the considered simulator. Chapter 4 introduces the

experiments which were done using the simulator along with results and

comparisons. Chapter 5 concludes the work and highlights the future works

and directions.

6
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