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The popularity of Android Operating System rose gradually in the past years. 

Android becomes the first choice of the users in the second quarter of 2019 

with more than 75 percent of worldwide market share. Furthermore, most of 

the users are keeping their personal information on their mobile devices. 

Consequently, Android is the main target of attackers on mobile and portable 

devices.  In order to protect users’ privacy and data, numerous researches 

have been done with different approaches. There are two main methods for 

analyzing and investigating applications. The first one is a static analysis which 

is the most common method that extracts static features from Android Package 

(APK) files. AndroidManifest features are extracted from APK files for 

analyzing malware in this research. The second method is the dynamic 

analysis that collects data while operating the application in an isolated 

environment. Mostly, machine learning techniques are used in researches for 

classifying unknown samples. This study comes with a new framework which 
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is named as a Composite of AndroidManifest Features (CAMF) to detect 

Android malware. In the proposed framework, three different static features 

are extracted like, requested permissions, hardware features, and intent-filters. 

A single merged feature vector is created from the feature matrix of each static 

feature. This vector is used as input data to our supervised machine learning 

models. As a result, CAMF framework minimizes the number of features to 

141. Hence, it reduced the false negative rate to 1.201 percent in comparison 

to the previous study which is nearly 5 percent in their string feature analyzes.   
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MOHAMMAD SALEHI 

JUN 2019 

Penyelia: Dr. Mohd Yunus Sharum 

Fakulti: FAKULTI SAINS KOMPUTER DAN TEKNOLOGI MAKLUMAT 

Populariti Sistem Operasi Android semakin meningkat dalam beberapa tahun 

yang lalu. Android menjadi pilihan pertama pengguna pada suku kedua pada 

tahun 2019 dengan lebih daripada 75 peratus bahagian pasaran di seluruh 

dunia. Tambahan lagi, Majoriti pengguna akan menyimpan maklumat peribadi 

mereka pada peranti mudah alih. Akibatnya, system operasi Android menjadi 

sasaran utama bagi penyerang untuk menyerang peranti mudah alih. Bagi 

melindungi privasi dan data pengguna, pelbagai penyelidikan telah dilakukan 

dengan kaedah yang berlainan. Terdapat dua kaedah utama untuk 

menganalisis dan menyiasat lebih mendalam berkenaan aplikasi Sistem 

Operasi Android. Kaedah pertama adalah analisis statik yang merupakan 

kaedah paling umum mengekstrak ciri statik dari fail Pakej Android (APK). 

Dalam penyelidikan ini ciri Android Manifest diekstrak dari fail APK untuk 

menganalisis malware. Kedua adalah kaedah menganalisis dinamik yang 
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mengumpul data semasa aplikasi operasi dalam persekitaran terpencil. 

Kebanyakan teknik pembelajaran mesin digunakan dalam penyelidikan untuk 

mengklasifikasikan sampel yang tidak diketahui. Kajian ini datang dengan 

dapatan kajian yang baru yang dinamakan sebagai Composite of Android 

Manifest Features (CAMF) untuk mengesan malwares Android. Berdasarkan 

Kaedah CAMF yang dicadangkan, ia merangkumi tiga ciri statik diekstrak 

berbeza seperti, kebenaran yang diminta, ciri perkakasan dan penapis niat. 

Satu ciri vektor yang digabungkan dicipta dari ciri matriks pada setiap ciri 

statik. Vektor ini digunakan sebagai data kemasukan di model pembelajaran 

mesin untuk tujuan pemantauan. Hasil dari kaedah CAMF ia dapat 

meminimumkan bilangan ciri vector kepada 141. Oleh itu, hasil dapatan kajian 

mendapati kaedah ini dapat mengurangkan kadar negatif palsu kepada 1.201 

peratus berbanding dengan kajian sebelumnya yang hampir 5 peratus dalam 

analisis ciri rentetan mereka. 

. 
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1 

INTRODUCTION 

This introduction briefly explained about research background, the importance 

of security in Android environment, techniques which are used for detecting 

malware, problem statement, research objective, research scope, and thesis 

structure. 

1.1 BACKGROUND INFORMATION

The popularity of the mobile phone is soared since they become more powerful 

and easy to use in daily life. The statistical stats that in 2018, 58% of visits of 

sites get from the mobile which illustrates that people are more willing to using 

their smartphones for surfing on the Internet instead of personal computers 

(PCs).(Enge, 2019)  

In the fourth quarter of 2018, the number of worldwide PC shipment dropped 

by 4.3 percent compared to the fourth quarter of 2017(Gartner, 2019). It’s clear 

that people are more willing to buy devices which be more portable. Thus, 

smartphones become their first choice.  

There are several different operating systems in the market for a mobile device 

such as Android, iOS, KaiOS, Windows, and Samsung. Base on the report of 

web traffic analysis website, Statcounter, Android mobile operation system, 

with more than 75 percent of the worldwide market share in the second quarter 

of 2019, is the first choice of the users(Statcounter, 2019). Most users keep 
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and store their personal information in their devices that attract attackers to 

develop their malicious applications (malapps) for the Android platform. 

Kaspersky Lab detected 5,730,916 mobile malicious installation packages in 

2017 (Roman Unuchek, 2018). Android is an open source operating system 

and the user are able to install the application from third-party markets. Some 

third party markets are not using any mechanism in detecting malware. Thus, 

malware is more likely to be installed by users. Mobile malware is divided into 

several categories according to their behavior and goal.  

1.1.1 MALWARE 

There are two kinds of malware in the Android system. The first one is self-

propagating which is used several different strategies to automatically installed 

on victims’ phone like worms. The second one uses social engineering 

techniques to manipulate the user to install the application (apps) manually. 

Herein, mobile malware is divided base on their behaviors such as Adware, 

mobile Botnet, Scareware, Mobile spyware, mobile worm, mobile Trojans and 

mobile virus(Yan & Yan, 2018). 

1.1.2 DETECTION METHODS 

Hence, many research has been done in this area since for the first time 

Microsoft Lab used code analysis and monitoring behavior to detect Malware 

applications in 2008. Until now has been used many approaches to detect 

malicious apps, which static and dynamic approach are two main approaches 

in this area (Zachariah, Akash, Yousef, & Chacko, 2017). Android application 
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package has many features which the researcher can use for analyzing the 

applications.  In(Feizollah, Anuar, Salleh, & Wahab, 2015) mobile malware 

features are divided into four different categories for detection. The first group 

is Static features which extract from Android packaging (APK) file. Also, there 

are various features, namely requested permissions, Java code, network 

address, intent filters, string features, and hardware components. Static 

features are widely used by researchers for increasing the detection rate. The 

AndroidManifest.xml file contains necessary information which causes the 

operating system cannot run the codes without it and every application should 

have the manifest file in its root directory. In this research, for detecting 

malware applications, we used three different features in AndroidManifest files. 

The second category, dynamic features, is defined as the behavior of the 

application while it is running on the device. The features which are related to 

the operating system and network are used for investigation. System calls 

along with network traffic are two main features that recent works used them 

since application needs resources and services to be able to run on the device.

Most application request network connection to receive and send data, receive 

updates or leaking personal information of users to the attackers. Additionally, 

user interaction is another feature which has been used beside system 

component for analyzing CPU and memory usage and running process of the 

mobile device. Hybrid features are defined as a combination of static and 

dynamic features that used simultaneity to get more accuracy in detection. In 

the fourth category, the researcher used Android application metadata that 

user can review the prior installation of the application such as description of 
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apps, rate of them in google play, the requested permission additional 

developer information.  

In Figure 1.1 there is the taxonomy of Android feature selection for detecting 

attacks: 

Figure 1.1 Taxonomy of mobile malware features (Feizollah et al. 2015)

In March 2018, Google play store was placed at 3.3 million apps(Google, 

2017a), one of a most common method for malware detection is using rule and 

signature-based approach, while, the detection rate of this method is declined 

since it depends on fingerprint database (Fang et al. , 2014). Therefore, the 

learning-based approach has been used to detect malware from benign 

application automatically. The most popular method in automated learning is 

using Machine Learning Technique. Supervised and unsupervised learning 

are used for detecting malware. In a supervised method, the model is trained 

based on labeled data while in unsupervised, the data are clustered based on 

similarity (Martinelli et al., 2017). In view of such condition, Deep Learning 
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allowed using multiple layers to learn data which can implement multiple levels 

of abstraction (LeCun et al. , 2015).

Refer to the (Makridakis et al., 2018) Machine Learning methods 

computational cost is so high compare than statistical ones. Also, they are not 

the panacea that would increase detection accuracy automatically. 

Here we are using the supervised method and three different classification 

models, Support Vector Machine, Random Forest and K-Neatest neighbor, are 

used for detecting the malware. There are different evaluation measurements 

that are used in android malware detection. The confusion matrix is usually 

used in detection systems. The result of the experiment is shown in four 

different elements by a confusion matrix (Davis & Goadrich, 2006). 

The false negative (FN) which represent the number of malware which wrongly 

classified as the normal application is the most important element in the 

confusion matrix. Thus, we focused on beside reduce the false negative rate 

in our classification model.  

1.2 PROBLEM STATEMENT 

The design and structure of malicious application are going to be more 

complex compare than previous (Riad & Ke, 2018). Therefore, with just 

extracting a single feature, it is ambiguous to get a high percentage in detection 

rate (J. Li et al., 2018). Nowadays, researchers extracting several static 

features to increase their detection rate (Feizollah et al., 2017)(D. Li et al. , 

2018). However, Wang et al. used six different static features which three of 

them are extracted from manifest file and other three features from .dex. They 
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specify those features as string features. Just number of the features they 

extracted from the .dex file is more than 34,000 features (Wang et al., 2018). 

Although they could get a high percentage of accuracy with sting features, the 

number of malware which wrongly classified as benign is an unforeseen event. 

As they mentioned, some of the malware samples do not have enough 

suspicious features which caused they wrongly classified as a benign 

application. Clearly, 19 samples form 389 malware applications misclassified 

by their string features which cause false negative rate reach to just under 5 

percent. In malware detection systems, the false negative rate is the most 

important metric. 

1.3 RESEARCH OBJECTIVE 

The main objective of this research is, improving the detection rate with just 

using the AndroidManifest features. With the use of AndroidManifest features, 

we are able to reduce the number of our features in our detection model to 

avoid some malware with the low number of suspicious features be wrongly 

classified in benign batch. As a result, the rate of our false negative is reduced 

simultaneously in the proposed model. 
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1.4 RESEARCH SCOPE  

In Android malware detection has different phases. There are two main 

analyzing methods for detecting malware. The first one is static analysis which 

uses static features and the second one is dynamic analysis. 

Static analysis is used as our method for detecting malware and we used 

AndroidManifest features as our static features. AndroidManifest.xml file is one 

of APK component that each application should have it and the operating 

system use it to run the app codes. The requested permission, hardware 

features, and intent-filter are extracted from the manifest file. All the feature 

matrix are merged into a single feature vector to be used on our machine 

learning models. the machine learning models are used as a classifier to detect 

malware sample in our unknown dataset. 



© C
OPYRIG

HT U
PM

8 

1.5 THESIS STRUCTURE 

This thesis contains six chapters including Introduction, Literature Review, 

Methodology, Implementation, Result and Discussion, and Conclusion is 

defined as a final chapter.  

Introduction chapter briefly explains the reasons and our motivation for 

researching on the Android environment, different types of features are used 

by researchers. Besides that, our problem statement, research objective, and 

research scope are defined. 

Chapter two, explain about the history of mobile malware, Android operating 

system and stricter of APK files. The security features which is used on the 

Android environment is discussed. Additionally, the different type of malware 

is introduced to provide an overview of the types of malware the proposed 

method tries to detect. In the end, based on the different analysis method, 

several cutting edge articles’ method and the result are provided. Also in the 

bar charts, their results are compared. 

In chapter three, we defined our research methodology and its requirements. 

The proposed framework that contains five different phases is fully covered 

and each phase is explained in details. The features are extracted from 

AndroidManifest.xml file are introduced beside different approaches which are 

used for generating feature matrixes. Moreover, classification models and 

evaluation metrics are discussed.  

Chapter four includes different parts of framework implementation. It explained 

in details about the tools and libraries which is used for extracting and merging 
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features. It also shows the sample of codes as well as data extracted from APK 

files. Different techniques are used for training and testing the machine 

learning models is described clearly. 

Chapter five represents the results of the proposed framework in details. The 

result of every single AndroidManifest feature is shown in a single table. Also, 

the result of merged features is compared in different machine learning 

models. Finally, the result of the proposed framework is compared with other 

techniques. 

For sum up, in chapter 6 we summarized the objective and result for the 

research and future work is discussed in details. 
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