

UNIVERSITI PUTRA MALAYSIA

A QUALITY MODEL FOR COMPONENT-BASED SOFTWARE

MOHAMED ABDULLAHI ALI

FSKTM 2019 13

© C
OPYRIG

HT U
PM

A QUALITY MODEL FOR COMPONENT-BASED SOFTWARE

By

MOHAMED ABDULLAHI ALI

Thesis submitted to the School of Graduate Studies

Universiti Putra Malaysia

in fulfilment of the requirements for the

Master of Software Engineering

JANUARY 2019

© C
OPYRIG

HT U
PM

i

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial use
of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

ii

DEDICATION

This thesis is dedicated to my beloved parents.

© C
OPYRIG

HT U
PM

iii

Abstract of thesis presented to the Universiti Putra Malaysia in fulfilment of
the requirement for the Master of Software Engineering

A QUALITY MODEL FOR COMPONENT-BASED SOFTWARE

By

MOHAHMED ABDULLAHI ALI

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

In Component Based Software Development (CBSD), applications are built from

existing components by assembling and replacing interoperable parts. Now day’s

component based software engineering considers one of the growing approaches for

software development, its Reusable components that minimize implementation time,

cost. To evaluate design quality of the component is important because it has main

impact to the final implementation therefore, the existing component quality models

all of them are based on generic attributes of the component so that none of them

were discussed attributes that specific at design level for the component that has the

main influence to the final product hence designing high quality component needs to

get component quality model that specific in design level that based on design

attributes for component. This thesis proposed Quality Model for Component-based

Software at design level. To evaluate this quality model, it implemented a prototype

metrics tool. Finally, this prototype metrics tool will help the developers to detect the

design problems and indication the goodness of design early, hence good design

leads to ease for maintenance and improve the quality of the final product.

© C
OPYRIG

HT U
PM

iv

Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Sarjana Kejuruteraan Perisian

Oleh

MOHAHMED ABDULLAHI ALI

FAKULTI SAINS KOMPUTER DAN TEKNOLOGI MAKLUMAT

Dalam Pembangunan Sistem Berasaskan Komponen (CBSD), aplikasi dibangunkan

daripada komponen sedia ada dengan memasang dan menggantikan bahagian yang

boleh beroperasi secara rentas. Pada masa sekarang kejuruteraan perisian berasaskan

komponen merupakan satu daripada kaedah pembangunan perisian yang semakin

berkembang dengan komponen yang boleh diguna pakai semula mengurangkan masa

pelaksanaan dan kos. Penilaian kualiti rekabentuk komponen adalah penting kerana

ianya memberi kesan utama kepada pelaksanaan akhir, maka model kualiti

komponen sedia ada adalah berdasarkan ciri-ciri umum komponen tersebut supaya

tiada diantaranya adalah ciri-ciri diperbincangkan yang khusus pada tahap

rekabentuk untuk komponen tersebut yang mempunyai kesan utama terhadap produk

akhir yang seterusnya merekabentuk komponen berkualiti tinggi memerlukan kepada

model kualiti komponen yang khusus untuk tahap rekabentuk berasaskan ciri-ciri

rekabentuk bagi komponen. Tesis ini mencadangkan Model Kualiti untuk Perisian

Berasaskan Komponen pada tahap rekabentuk. Bagi menilai model kualiti tersebut,

satu prototaip peralatan metrik telah dilaksanakan. Akhir sekali, prototaip peralatan

metrik tersebut akan membantu pembangun perisian untuk mengesan masalah dalam

rekabentuk dan sebagai petunjuk kepada kelebihan rekabentuk awal, seterusnya

rekabentuk yang baik menjurus kepada penyelenggaraan yang mudah dan

meningkatkan kualiti produk akhir.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENT

In the name of ALLAH, the Beneficent, the Compassionate, thanks and praise to

God for giving me strength and patience to complete my duties successfully.

I would like to express my very great appreciation to my supervisor Dr. Ng Keng

Yap for his valuable and constructive suggestions during in this research. His

willingness to give his time so generously has been much appreciated.

I would like to thanks my family for their support and encouragement. This thesis

would not have been done without the foundation created by my beloved mother,

Zeynab Abdullahi, and my father, Abdullahi Ali, and their spurring me on further,

even when different continent separated us for many years. Thank you!

Finally, to all UPM staff, thanks you for your facilitation. I would like to

acknowledge to any individual who are not mentioned here for his/her irreplaceable

helps and cooperation.

© C
OPYRIG

HT U
PM

vi

APPROVAL

Thesis submitted to the Senate of University Putra Malaysia and has been accepted

as fulfilment of the requirement for Master of Computer Science (Software

Engineering).

Supervisor,

Dr. Ng Keng Yap

Department of Software Engineering

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

January/21/2019

© C
OPYRIG

HT U
PM

vii

DECLARATION

Declaration by Graduate Student

I hereby confirm that:

this thesis is my original work;
quotations, illustrations and citations have been duly referenced;
this thesis has not been submitted previously or concurrently for any other
degree at any other institutions;
intellectual property from the thesis and copyright of thesis are fully-owned
by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;
written permission must be obtained from supervisor and the office of Deputy
Vice-Chancellor (Research and Innovation) before thesis is published (in the
form of written, printed or in electronic form) including books, journals,
modules, proceedings, popular writings, seminar papers, manuscripts, posters,
reports, lecture notes, learning modules or any other materials as stated in the
Universiti Putra Malaysia (Research) Rules 2012;
There is no plagiarism or data falsification/fabrication in the thesis, and
scholarly integrity is upheld as according to the Universiti Putra Malaysia
(Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra
Malaysia (Research) Rules 2012. The thesis has undergone plagiarism
detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: _______________________________________

© C
OPYRIG

HT U
PM

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENT v
APPROVAL vi
DECLARATION vii
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
CHAPTER 1

1 INTRODUCTION 1

1.1 Research Background 1
1.2 Problem Statement 5
1.3 Research Objectives 8
1.4 Research Scope 8
1.5 Thesis Organization 9
1.6 Chapter Summary 10

2 LITERATURE REVIEW 11

2.1 Introduction 11
2.2 Software Components 11
2.3 History for Software Components 12
2.4 Existing Software Quality Models 13
2.5 Existing Software Component Quality Models 17
2.6 What Is Good Component Design? 18
2.7 Good Component Design according different component models 18

2.7.1 Architecture Description Language (ADL) Component
Models 19

2.7.1.1 Compositionality 19
2.7.1.2 Reusability 20
2.7.1.3 Coupling 20
2.7.1.4 Configurability 21
2.7.1.5 Encapsulation 21
2.7.1.6 Interoperability 22
2.7.1.7 Complexity 23
2.7.1.8 Testability 23
2.7.1.9 Cohesion 24
2.7.1.10 Usability 25
2.7.1.11 Slim 25
2.7.1.12 Bloat 26
2.7.1.13 Interface Documentation 27
2.7.2 Object Component Models 28
2.7.2.1 Compositionality 28
2.7.2.2 Reusability 29
2.7.2.3 Coupling 29
2.7.2.4 Configurability 30
2.7.2.5 Encapsulation 31

© C
OPYRIG

HT U
PM

ix

2.7.2.6 Interoperability 31
2.7.2.7 Complexity 32
2.7.2.8 Testability 32
2.7.2.9 Cohesion 33
2.7.2.10 Usability 34
2.7.2.11 Slim 34
2.7.2.12 Bloat 35
2.7.2.13 Interface Documentation 36
2.7.3 Encapsulated Component Models 37
2.7.3.1 Compositionality 37
2.7.3.2 Reusability 38
2.7.3.3 Coupling 38
2.7.3.4 Configurability 39
2.7.3.5 Encapsulation 39
2.7.3.6 Interoperability 40
2.7.3.7 Complexity 40
2.7.3.8 Testability 41
2.7.3.9 Cohesion 42
2.7.3.10 Usability 42
2.7.3.11 Slim 43
2.7.3.12 Bloat 44
2.7.3.13 Interface Documentation 45

2.8 Comparison design quality attributes for different component
models 46

2.9 Guidelines how it assigned rating for quality attributes in
comparison table 2.1 48

2.10 Component Measurement 60
2.11 Summary 62

3 RESEARCH METHODOLOGY 63

3.1 Introduction 63
3.2 Research Methodology 63

3.1 Research Questions 63
3.2 Search Strategy 64
3.3 Study Selection 65
3.4 Quality Assessment 65
3.5 Data Synthesis 67
3.6 Result 68

4 PROPOSED COMPONENT QUALITY MODEL 70

4.1 Introduction 70
4.2 Proposed Component Quality Model 70
4.3 Attribute Descriptions for The Proposed Component Quality Model

71
4.3.1 Compositionality 71
4.3.2 Reusability 71
4.3.3 Coupling 72
4.3.4 Configurability 72
4.3.5 Encapsulation 72

© C
OPYRIG

HT U
PM

x

4.3.6 Interoperability 73
4.3.7 Complexity 73
4.3.8 Testability 73
4.3.9 Cohesion 74
4.3.10 Usability 74
4.3.11 Slim 74
4.3.12 Bloat 75
4.3.13 Interface Documentation 75

4.4 Description for Metrics of the Proposed Component Quality Model
75

4.4.1 I%MCI 75
4.4.2 IMCM 77
4.4.3 CCBC 78
4.4.4 RCC 79
4.4.5 RCO 79
4.4.6 Fan (in/out) 80
4.4.7 CCM 80
4.4.8 COMC 82
4.4.9 AIC 83
4.4.10 PSU 84
4.4.11 RPD 84

5 PROTOTYPE DEVELOPMENT 86

5.1 Introduction 86
5.2 Overview Prototype Metric Tool 86
5.3 Description how prototype metric tool is working 87
5.4 Design and Implementation for Prototype Metric tool 87
5.5 Summary 88

6 DISCUSSION & CONCLUSION 89

6.1 Introduction 89
6.2 Research Discussion & Conclusion 89
6.3 Benefits of the research 90
6.4 Research Limitations and Future Work 90
6.5 Chapter Summary 91

REFERENCES 92

© C
OPYRIG

HT U
PM

xi

LIST OF TABLES

Table Page

Table 2.1: Comparison design quality attributes for different component models 45

Table 2.2: Guideline how it assigned rating for quality attributes in table 2.1 47

Table 3.1: Quality assessment criteria 64

Table 3.2: Quality assessment result 64

Table 3.3: What are main characteristic influencing good component design to derive

quality model? 66

Table 3.4: What are metric for good component design? 66

© C
OPYRIG

HT U
PM

xii

LIST OF ABBREVIATIONS

ADL ARCHITECTURE DESCRIPTION LANGUAGE

CBSE COMPONENT BASED SOFTWARE ENGINEERING

CBS COMPONENT BASE SOFTWARE

CBSD COMPONENT BASED SOFTWARE DEVELOPMENT

COTS COMPONENT-OFF-THE-SHELF

CQM COMPONENT QUALITY MODEL

EUC END-USER COMPUTING

SQuaRE SYSTEM AND SOFTWARE QUALITY REQUIREMENTS
OF EVALUATION

SCQM SOFTWARE COMPONENT QUALITY MODEL

Ci COMPONENT INTERACTION

I%MCI % AGE METRICS FOR COMPONENT INTEGRATION

IMCM (BB) INTERFACE METHOD COMPLEXITY METRIC FOR
BLACK-BOX

CCBC COUPLING COMPLEXITY OF BLACKBOX
COMPONENT

IIc INTERFACE INCOMING

OIc OUTGOING INTERFACES

RCC RATE OF COMPONENT CUSTOMIZABILITY

RCO RATE OF COMPONENT OBSERVABILITY

© C
OPYRIG

HT U
PM

xiii

CCM COMPONENT COMPLEXITY METRIC

PCM PARAMETER COMPLEXITY METRIC

CCCM COMPONENT COUPLING COMPLEXITY METRIC

FICM FAN-IN INTERFACSES

FOCM FAN-OUT INTERFACES

COMC COHESION OF METHODS WITH IN COMPONENT

AIC AVERAGE INTERFACE COMLEXITY

PSU PROVIDED SERVICE UTILIZATION

RPD REFERENCE PARAMETER DENSITY

© C
OPYRIG

HT U
PM

1

CHAPTER 1

CHAPTER
1 INTRODUCTION

This chapter explores background software engineering, conventional software

development challenges and solutions, CBSE, problem statement, research

objectives, scope of the research and dissertation organization.

1.1 Research Background

Software engineering is a discipline that concerns the all aspects of software

development including methodologies, project management and tools [22].

Traditional software development approaches advocate phase bye phase software

process meaning that starting development from scratch so that it results several

problems such as budget overrun and late delivery. Moreover, that approaches also

lead to low quality and high maintenance software [23].

To tackle the problems of traditional software development, a new approach for

component based software engineering (CBSE) was arisen [2]. CBSE is a software

development approach that integrates components within appropriate software

architecture rather than starting a software development from scratch to save cost and

time of development [2]. CBSE solved the problems in traditional software

development by composing existing components instead of starting development

from scratch [2 and 23]. Finally, CBSE is an approach that change the way of

software development and results developing with less time and less effort [11].

© C
OPYRIG

HT U
PM

2

Software component has many definitions. According [24] a component is a

“reusable unit deployment and compositions that can access through interface”.

Szyperski [24] defines a component precisely by looking the characteristic properties

of a component: “A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software component

can be deployed independently and is subject to composition by third party”.

D.Souza and Wills [3] described that a component as a reusable part of software, that

is independently developed and can be integrated with other components to build

larger units. It may be adapted but may not be modified. A component can be, for

instance, “compiled code” without a program source (so that it may not be modified)

or part of a model or a design.

Although the reusability concept is familiar to us from object oriented technologies,

CBSE takes an approach to reusability that is different from conventional software

reuse. Aoyama [4] explains this difference as follows: First, components can be

composed at run time without the need for compilation. Second, a component

separates its interface from its implementation and conceals its implementation

details, hence permitting composition without the requiring to know the component

implementation details. The interface of a component should be standardized to

enable reuse and allow components to interoperate in a predefined architecture.

Lastly, all above definitions of software components shows that component is

independently developed which enable to compose through standard interface in

order to build larger system from pre-existing components.

© C
OPYRIG

HT U
PM

3

Component based software (CBS) is an approach that should characterize if they

have interface, contracts, framework, and pattern. Interface represents access points

to a component. In component specification can be through contracts that enable to

make sure a certain conditions holds true during the execution of component with its

environment. The framework is a large unit of design which defines relationship

between participants of the framework. Patterns define recurring solutions to

recurring problems [24]. To summarize, CBS has unique characteristics that can

easily distinguish from conventional software’s that are: interface, contracts,

framework, and pattern.

Many of the challenges were by faced CBSE approach that is the quality of the

component which eventually give to the quality of final product [10]. According to

IEEE, software quality is defined as “the degree to which system, system component

or process meets specified requirements” or “the degree to which system, system

component, or process meets customer or user needs or expectations”. CBSE can

used for building many domain applications including embedded systems that mostly

considers to critical for business success and also many other related domain human

safety hence assessing and evaluating is become mandatory in CBSE lifecycle. A

risk for choosing a component with unknown attributes is no longer acceptable and

when it happens it may cause a huge damage result. However, software component

quality become increasingly important activity to bring reliability in reusing of

software components. The quality of components has main impact for final system

[2]. In conclusion, to evaluate quality of the component is important because it has

© C
OPYRIG

HT U
PM

4

main impact to the business success, human safety hence evaluating the quality of

the components may those reduce risks.

There are several reasons that motivates to focus goodness of the component design

such producing quality product, ease maintenance and help to detect design issues

early, and architectural differences of the component. Good software components

design results in high quality for final product, so that market needs building

component that has good quality in order to do that may need to look quality

attributes and evaluation (metrics); enables for indication the goodness of design

early [16]. Good design leads to ease for maintenance while poor quality derived

from poor design because internal structures and methods are exposed that leads for

complicated interdependencies hence bad design may responsible for time to market

pressure [10]. In CBSE, quality aspect becomes more crucial because of architectural

variances hence the quality of the component will be high influence for the quality of

the final system [2]. To conclude, there are main reasons that motivate to evaluate

the research of the component design including, to detect the design errors early, it

helps for ease maintenance if maintenance require, architectural variances of the

components and also results to improve the quality of the product because the errors

detect at early.

To evaluate software quality, several software quality models were proposed but

their limitations were having general attributes software quality so that it’s hard to

apply specific domains like CBSD therefore Component Quality Model (CQM) were

© C
OPYRIG

HT U
PM

5

proposed. Software quality models were proposed in order to solve the quality issues

and to avoid producing software whose quality is below the standard that may lead

[16 and 2]. There is a limitation for existing software quality models because they

focus on general quality hence it’s very hard to apply to specific domains such as

Component-Off-The-Shelf (COTS) and (CBSD) [31]. By referring a set of models

[31] and ISO/IEC 9126, CQM was proposed that based on ISO/IEC 9126, it contains

marketing attributes and relevant component information [31]. To evaluate software

quality, several software quality models were proposed but their limitations were

having general attributes software quality so that it’s hard to apply specific domains

like CBSD therefore Component Quality Model (CQM) were proposed.

1.2 Problem Statement

The existing conventional software quality model is not applicable to software

components because internal structure such as source code is not available at CBSE,

therefore there is need quality model for CBSE based on black-box [75].

The existing component quality models is too general in terms of the attributes they

have identified hence this shows the lack of component quality model that is specific

to design level of the component in-order to detect the errors at early stage of design

that minimizes the cost, effort, resources for implementation of the component and

improves the quality. In [2], a component quality model has been proposed for CBSE

that consists of six quality attributes namely functionality, maintainability, usability,

© C
OPYRIG

HT U
PM

6

efficiency, reliability, fault tolerance, portability hence this components quality

model is too generic because it based on attributes for whole component life cycle

and it does not focus on component design quality attributes that mainly influences

the quality the final system. Several component quality models have been proposed

such as [2, 31, 33 and 34] but none of them did not identify the attributes to evaluate

the quality of internal design for the components that helps to take decision at early

stage of design and detecting design problems early instead of final stage [4]. To

conclude, all above discussed component quality models are too general in terms of

their quality attributes and also there is no component quality model that is specific

at design that can plays important role for the detection of errors at early stage of

design meaning that before implementation because it reduces cost, effort and

resources and improve the quality of final product.

Several component quality models were proposed but none of them did not identified

for both component quality attributes and metrics and also limited research for

component measurement so that component metrics is important because component

is black-box cannot see the internal structure. Existing component quality model

such as: Software Component Quality Model (SCQM) [33], Software component

quality characteristics model for CBSE [2], Quality characteristics model for COTS

component [34], software component quality model [31] but none of them does not

talk together component quality attributes and metrics, in [4] component evaluation it

does not only needs to mention what to evaluate (attributes) [4] that is identifying

quality attributes but also needs to come up with how to evaluate (metrics)

© C
OPYRIG

HT U
PM

7

component that is component metrics and [16] it also enable to take decision at early

stage of design and detecting design problems early instead of final stage. As on

paper [1] stated that measuring component quality attributes is still issue not solved

at component design level and needs for further investigation because the component

is a black-box that means other developers that needs to integrate the existing

component to their work is restricted from internal design of the component [4]

hence component design metrics can help developers to make decision at early stage

of design and detect problems more quickly [16]. There is limited research for

measuring software component quality compared to conventional software quality

[2]. To summarize, the above mentioned component quality models all of them they

identified the general quality attributes of the component but they don’t identify the

metrics use to measure those attributes hence this shows needs for proposing a

quality model for component specific at design that based on for both attributes and

their metrics hence it will lead to develop component design metric tool for

component design quality evaluation.

Currently there is lack of tool for evaluating the component design quality hence this

may lead difficultness for decision making and also detecting problems at design

level so that design quality has main impact to the component quality. As many

researchers agree that there is lack of tool for measuring design quality of software

components [7, 8, and 9] because this tool will help developers to make decision at

early stage of design and detect problems more quickly hence developers can fix

their design problems and recheck again their design [16]. On this paper [16]

© C
OPYRIG

HT U
PM

8

announced that main reason needs to develop this tool is that “design” is the most

influential factor for component quality. To sum up, the existing researches shows

lack of component metric tool that enables the developers for both early decision

making and detecting design errors at early because design plays key role for the

component quality.

1.3 Research Objectives

To overcome these problems, the main objectives of this research are:

I. To investigate for main characteristics influencing good component design to

derive a quality model.

II. To propose metrics for the quality model.

III. To implement a prototype metrics tool for selected metrics.

1.4 Research Scope

This research limited to propose quality model for component based software at

design level in order to evaluate the goodness of the component at earlier stage and

detect all design issues before implementation therefore the proposed component

quality model will enhance the component quality and leads to implement high

quality component at implementation.

© C
OPYRIG

HT U
PM

9

1.5 Thesis Organization

CHAPTER 1 discusses about traditional software development and issues. Also this

chapter discusses problem statements, research objectives, scope.

CHAPTER 2 discusses general overview about component and history. Also the

chapter discusses existing software and component quality models. In addition to

that, this unit also covered the.

CHAPTER 3 presents the overall methodology used to conduct this research in

order to achieve the main goal of the research.

CHAPTER 4 explain the proposed component quality model in this study. Also

discussed in detail the attributes and metrics in the proposed component quality

model.

CHAPTER 5 provides the evaluation of the study or research. This evaluation

conducted using prototype metric tool.

CHAPTER 6 gives explanation about the conclusion, future work and

recommendations. It also provides the achievements of the study such: objectives,

research questions and the limitations of the research are covered.

© C
OPYRIG

HT U
PM

10

1.6 Chapter Summary

In this chapter, the author described the introduction that guides the entire conduct of

this research. Beginning with a background of the study, the chapter continues with a

discussion of the problems addressed by this research. Furthermore, specific

objectives were discussed. Also, the scope delimiting this study was presented.

Finally, readers guide on the organization of this thesis is presented as the closing

section of the introductory chapter.

© C
OPYRIG

HT U
PM

92

REFERENCES

[1] Anguswamy, R., & Frakes, W. B. (2013). Reuse design principles. In International

Workshop on Designing Reusable Components and Measuring Reusability (DReMeR 2013).

[2] Tiwari, A., & Chakraborty, P. S. (2015, February). Software component quality

characteristics model for component based software engineering. In Computational Intelligence

& Communication Technology (CICT), 2015 IEEE International Conference on (pp. 47-51).

IEEE.

[3] Abdellatief, M., Sultan, A. B. M., Ghani, A. A. A., & Jabar, M. A. (2013). A mapping study

to investigate component-based software system metrics. Journal of systems and software, 86(3),

587-603.

[4] Kaur, K., & Singh, H. (2009). Evaluating an evolving software component: case of internal

design. ACM SIGSOFT Software Engineering Notes, 34(4), 1-4.

[5] Kalia, A., & Sood, S. (2017). A Metrics Based Framework to Improve Maintainability of

Reusable Software Components through Versioning. International Journal of Advanced

Research in Computer Science, 8(3).

[6] Ismail, S., Kadir, W. M. W., Noor, N. M. M., & Mohd, F. (2017). Determining

Characteristics of the Software Components Reusability for Component Based Software

Development. Journal of Telecommunication, Electronic and Computer Engineering

(JTEC), 9(3-5), 213-216.

© C
OPYRIG

HT U
PM

93

[7] Heineman, G. T., & Councill, W. T. (2001). Component-based software engineering. Putting

the pieces together, addison-westley, 5.

[8] Carvalho, F., Meira, S. R., Freitas, B., & Eulino, J. (2009, August). Embedded software

component quality and certification. In Software Engineering and Advanced Applications, 2009.

SEAA'09. 35th Euromicro Conference on(pp. 420-427). IEEE.

[9] Alvaro, A., de Almeida, E. S., & de Lemos Meira, S. R. (2005, August). Software component

certification: a survey. In Software Engineering and Advanced Applications, 2005. 31st

EUROMICRO Conference on (pp. 106-113). IEEE.

[10] Kaur, K., & Singh, H. (2008, July). A Metrics Based Approach to Evaluate Design of

Software Components. In 18th ECOOP Doctoral Symposium and PhD Student Workshop (p.

17).

[11] Negi, G. P. (2015). Evaluating Quality of Software Component using Metrics.

[12] MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2007). The impact of component

modularity on design evolution: Evidence from the software industry.

[13]Jack.(1998).Configurability.https://www.thwink.org/soft/article/future_app_dev/Configurabi

lity.html. accessed 4/8/2018.

[14] Lüer, C., & Van Der Hoek, A. (2002). Composition environments for deployable software

components. Department of Information and Computer Science, University of California, Irvine.

© C
OPYRIG

HT U
PM

94

[15] Lau, K. K., & Wang, Z. (2005). A survey of software component models. In in Software

Engineering and Advanced Applications. 2005. 31 st EUROMICRO Conference: IEEE

Computer Society.

[16] Irwanto, D. (2010, December). Visual Indicator Component Software to Show Component

Design Quality and Characteristic. In Advances in Computing, Control and Telecommunication

Technologies (ACT), 2010 Second International Conference on (pp. 50-54). IEEE.

[17] Stephe W. (2007). Union Design pattern. OpenStax-CNX.

[18] Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., &

Linkman, S. (2010). Systematic literature reviews in software engineering–a tertiary

study. Information and Software Technology, 52(8), 792-805.

[19] Sanatnama, H., Ghani, A. A. A., Yap, N. K., & Selamat, M. H. (2008). Mediator Connector

for Composition of Loosely Coupled Software Components. Journal of Applied Sciences, 8(18),

3139-3147.

[20] Di Cola, S. Catch Me If You Can: To Use a Component You Need to Find It First.

[21] Lau, K. K., Elizondo, P. V., & Wang, Z. (2005, May). Exogenous connectors for software

components. In International Symposium on Component-Based Software Engineering (pp. 90-

106). Springer, Berlin, Heidelberg.

[22] Sommerville, I. (2010). Software engineering. New York: Addison-Wesley.

© C
OPYRIG

HT U
PM

95

[23] Simão, R. P., & Belchior, A. D. (2003). Quality characteristics for software components:

Hierarchy and quality guides. In Component-based software quality (pp. 184-206). Springer,

Berlin, Heidelberg.

[24] Crnkovic, I., & Larsson, M. P. H. (2002). Building reliable component-based software

systems. Artech House.

[25] Ghani, N., Hedges, J., Winschel, V., & Zahn, P. (2016). Compositional game theory. arXiv

preprint arXiv:1603.04641.

[26] Gill, Nasib S. "Reusability issues in component-based development." ACM SIGSOFT

Software Engineering Notes28.4 (2003): 4-4.

[27] Sametinger, J. (1997). Software engineering with reusable components. Springer Science &

Business Media.

[28] Eric M. Dashofy (2002). Interoperability [PowerPoint Slides]. Retrieved from

https://www.ics.uci.edu/~taylor/ICS221/slides/Interoperability.ppt.

[29] Madiajagan, M., & Vijayakumar, B. (2006). Interoperability in component based software

development. World Academy of Science, Engineering and Technology, 22, 68-75.

[30] Gui, G., & Scott, P. D. (2009). Measuring Software Component Reusability by Coupling

and Cohesion Metrics. JCP, 4(9), 797-805.

© C
OPYRIG

HT U
PM

96

[31] Alvaro, A., De Almeida, E. S., & Meira, S. L. (2006, August). A software component

quality model: A preliminary evaluation. In Software Engineering and Advanced Applications,

2006. SEAA'06. 32nd EUROMICRO Conference on (pp. 28-37). IEEE.

[32] K.k lua and Simone dicola (2017). An introduction to component based software

development. world scientific.

[33] Upadhyay, N., Despande, B. M., & Agrawal, V. P. (2011, January). Towards a software

component quality model. In International Conference on Computer Science and Information

Technology (pp. 398-412). Springer, Berlin, Heidelberg.

[34] Bertoa, M. F., & Vallecillo, A. (2002). Quality attributes for COTS components.

[35] Gill, N. S., de Cesare, S., & Lycett, M. (2002). Measurement of Component-Based

Software: Some Important Issues.

[36] Lau, K. K., Elizondo, P. V., & Wang, Z. (2005, May). Exogenous connectors for software

components. In International Symposium on Component-Based Software Engineering (pp. 90-

106). Springer, Berlin, Heidelberg.

[37] Lau, K. K., & Wang, Z. (2007). Software component models. IEEE Transactions on

software engineering, 33(10).

[38] Lau, K. K., Ornaghi, M., & Wang, Z. (2005, November). A software component model and

its preliminary formalisation. In International Symposium on Formal Methods for Components

and Objects (pp. 1-21). Springer, Berlin, Heidelberg.

© C
OPYRIG

HT U
PM

97

[39] Aoyama, M. (1998, April). New age of software development: How component-based

software engineering changes the way of software development. In 1998 International Workshop

on CBSE.

[40] Szyperski, C. (1998). Component Software: beyond object-oriented software. Reading, MA:

ACM/Addison-Wesley.

[41] Youness, B., Abdelaziz, M., Habib, B., & Hicham, M. (2013). Comparative Study of

Software Quality Models. IJCSI International Journal of Computer Science Issues, 10(6), 1694-

0814.

[42] Al-Qutaish, R. E. (2010). Quality models in software engineering literature: an analytical

and comparative study. Journal of American Science, 6(3), 166-175.

[43] Bertoa, M. F., & Vallecillo, A. (2002). Quality attributes for COTS components.

[44] Alvaro, A., Almeida, E. S., & Meira, S. L. (2005). Quality attributes for a component

quality model. 10th WCOP/19th ECCOP, Glasgow, Scotland, 31-37.

[45] Rawashdeh, A., & Matalkah, B. (2006). A new software quality model for evaluating COTS

components. Journal of Computer Science, 2(4), 373-381.

[46] Kharb, L., & Singh, R. (2008). Complexity metrics for component-oriented software

systems. ACM SIGSOFT Software Engineering Notes, 33(2), 4.

[47] Lau, K. K., Ling, L., & Wang, Z. (2006, August). Composing components in design phase

using exogenous connectors. In Software Engineering and Advanced Applications, 2006.

SEAA'06. 32nd EUROMICRO Conference on (pp. 12-19). IEEE.

[48] Scheller, T., & Kuhn, E. (2011, August). Measurable concepts for the usability of software

components. In Software Engineering and Advanced Applications (SEAA), 2011 37th

EUROMICRO Conference on (pp. 129-133). IEEE.

© C
OPYRIG

HT U
PM

98

[49] Dong, J. (2002). Design Component Contracts: Modeling and Analysis of Pattern-Based

Composition [Ph. D. Thesis]. Waterloo, Ontario, Canada, University of Waterloo.

[50] Liu, Y., & Cunningham, H. C. (2002, April). Software component specification using

design by contract. In Proceeding of the SouthEast Software Engineering Conference, Tennessee

Valley Chapter, National Defense Industry Association (Vol. 6, p. 2). sn.

[51] Parnas, D. L. (2006). Component Interface Documentation: What do we Need and Why do

we Need it?. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 147, 3.

[52] McGrenere, J., & Moore, G. (2000, May). Are we all in the same" bloat"?. In Graphics

interface (Vol. 2000, pp. 187-196).

[53] Efi Papatheocharous. (2012). Component-based software engineering. Retrieved from
https://www.cs.ucy.ac.cy/~cs00pe/epl603/lectures/Lect11-12.pdf

[54] Morasca, S. (2001). Software measurement. In Handbook of Software Engineering and

Knowledge Engineering: Volume I: Fundamentals (pp. 239-276).

[55] Rana, P., & Singh, R. (2014). A Study of Component Based Complexity

Metrics. International Journal of Emerging Research in Management & Technology, 3(11), 159-

16.

[56] Fenton, N., & Bieman, J. (2014). Software metrics: a rigorous and practical approach.

CRC press.

[57] Kaur, N., & Singh, A. (2013). A complexity metric for black box components. International

Journal of soft computing and engineering, 3(2).

[58] Kaur, N., & Singh, A. (2013). A Metric for Accessing Black Box Component

Reusability. International Journal of Scientific & Engineering Research, 4(7), 1114-1121.

[59] Rotaru, O. P., & Dobre, M. (2005, January). Reusability metrics for software components.

In aiccsa (pp. 24-I). IEEE.

© C
OPYRIG

HT U
PM

99

[60] Kumar, S., Tomar, P., Nagar, R., & Yadav, S. (2014). Coupling metric to measure the

complexity of component based software through interfaces. International Journal, 4(4).

[61] Agarwal, J., Dubey, S. K., & Tiwari, R. (2017). A Roadmap to Identify Complexity Metrics

for Measuring Usability of Component-Based Software System. In Advances in Computer and

Computational Sciences (pp. 33-41). Springer, Singapore.

[62] Kumari, U., & Upadhyaya, S. (2011). An interface complexity measure for component-

based software systems. International Journal of Computer Applications, 36(1), 46-52.

[63] Li, Shimin, and Ladan Tahvildari. "A service-oriented componentization framework for

java software systems." In Reverse Engineering, 2006. WCRE'06. 13th Working Conference on,

pp. 115-124. IEEE, 2006.

[64] Tonella, P., Antoniol, G., Fiutem, R., & Merlo, E. (1997, March). Points to analysis for

program understanding. In Program Comprehension, 1997. IWPC'97. Proceedings., Fifth

Iternational Workshop on (pp. 90-99). IEEE.

[65] Boxall, M. A., & Araban, S. (2004). Interface metrics for reusability analysis of

components. In Software Engineering Conference, 2004. Proceedings. 2004 Australian (pp. 40-

51). IEEE.

[66] Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003, September). A metrics suite for

measuring reusability of software components. In Software Metrics Symposium, 2003.

Proceedings. Ninth International (pp. 211-223). IEEE.

© C
OPYRIG

HT U
PM

100

[67] Yadav, K., & Tomar, P. (2014). Design of Metrics for Component-Based Software System

at Design Level. International Journal of Engineering and Technical Research, 2(4), 285-289.

[68] Latika, M. (2011). Software component complexity measurement through proposed

integration metrics. Journal of Global Research in Computer Science, 2(6), 13-15.

[69] KOSGEY, J. K. K. (2017). An Evaluation Model for Determining Quality in Academic

Websites (Doctoral dissertation, COHES-JKUAT).

[70] Reussner, R., Poernomo, I., & Schmidt, H. (2003). Contracts and quality attributes for

software components.

[71] Reussner, R. H., Firus, V., & Becker, S. (2004, June). Parametric performance contracts for

software components and their compositionality. In Proceedings of the 9th International

Workshop on Component-Oriented Programming (WCOP 04) (pp. 40-49). June.

[72] e Abreu, F. B. (2005, August). Composition assessment metrics for CBSE. In null (pp. 96-

105). IEEE.

[73] Aloysius, A., & Maheswaran, K. (2015). A review on component based software

metrics. Int. J. Fuzzy Math. Arch, 7(2), 185-194.

[74] Rana, P., & Singh, R. (2016). A Design of Cohesion and Coupling Metrics for Component

based Software Systems. International Journal of Computer Applications, 146(4).

[75] Goulão, M. (2011). An overview of metrics-based approaches to support software

components reusability assessment. arXiv preprint arXiv:1109.6

	CHAPTER 2
	LC

