

UNIVERSITI PUTRA MALAYSIA

A TOOL FOR DETECTING AMBIGUITY IN SOFTWARE REQUIREMENT
SPECIFICATION

ABDIRASHID ALI ISSE

FSKTM 2019 12

© C
OPYRIG

HT U
PM

A TOOL FOR DETECTING AMBIGUITY IN SOFTWARE REQUIREMENT

SPECIFICATION

By

ABDIRASHID ALI ISSE

This dissertation submitted to School of Graduate Studies, Universiti Putra Malaysia, in

Fulfillment of the Requirement for the Degree of Master of Software Engineering

January 2019

© C
OPYRIG

HT U
PM

i

All material contained within the thesis, including without limitation text, logos, icons,

photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless

otherwise stated. Use may be made of any material contained within the thesis for non-

commercial purposes from the copyright holder. Commercial use of material may only be

made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

ii

DEDICATION

To:

This dissertation is dedicated to my beloved uncle (Abdi Isse Said) for his endless support

and motivation (encouragement).

© C
OPYRIG

HT U
PM

iii

Abstract of dissertation presented to the Senate of Universiti Putra Malaysia in fulfillment of

the requirement for the degree of Master of Software Engineering

A TOOL FOR DETECTING AMBIGUITY IN SOFTWARE REQUIREMENT

SPECIFICATION

ABSTRACT

This thesis is about detecting ambiguities in software requirements' specification (SRS).

Specifically, most of the software requirement documents are written in Natural languages

(NLs). NLs are basically ambiguous. Ambiguity is a statement of requirements, which have

more than one interpretation. However, Ambiguity can be considered as an issue of software

requirement documents because it can lead the software developers to develop software,

which is different what the customers’ need. The aim of this research is to propose a tool

which detects lexical, syntactic and syntax ambiguities in SRS. In this thesis, ambiguity

words from the ambiguity handbook have been used to detect lexical ambiguity. In parallel,

Parts of speech (POS) tagging technique has been applied to detect syntactic and syntax

ambiguous. The proposed tool was evaluated in order to check its performance by comparing

human detection capacity and the proposed tool. The aim of this evaluation also was to see if

the humans face complexities in detecting ambiguity in SRS, and the result shows that the

humans have difficulties detecting ambiguities in SRS compared to the proposed tool,

particularly, lexical ambiguity and requirements that contains lexical, syntactic and syntax

ambiguities in one sentence. The proposed tool can facilitate both software analysts and

developers to detect the ambiguities in software requirements' specification easily.

© C
OPYRIG

HT U
PM

iv

Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia sebagai memenuhi

keperluan untuk ijazah Sarjana Kejuruteraan Perisian

TOOL UNTUK MENGESAN KEKABURAN DALAM REQUIREMENT

SPECIFICATION

 ABSTRAK

Tesis ini adalah untuk mengesan kekaburan dalam software requirement specification (SRS).

Secara spesifik, kebanyakan dokumen keperluan perisian ditulis dalam Natural Languanges

(NLs). NLs secara asasnya adalah kabur. Kekaburan berlaku apabila pernyataan keperluan

mempunyai lebih satu daripada makna. Kekaburan merupakan satu isu dalam dokumen

keperluan perisian kerana ia boleh menyebabkan pembangun perisian membangunkan

perisian yang berbeza daripada keperluan pengguna. Tujuan kajian ini ialah untuk

mencadangkan satu alat untuk mengesan kekaburan leksikal, sintaktik and sintak dalam SRS.

Di dalam tesis ini, perkataan-perkataan kabur daripada ambiguity handbook digunakan untuk

mengesan kekaburan leksikal. Pada masa yang sama, teknik penandaan Parts of speech

(POS) telah digunakan untuk mengesaan kekaburan sintaktik and sintak. Prestasi alat yang

dicadangkan akan dinilai dengan membuat perbandingan keupayaan mengesan kekaburan

antara manusia dan alat yang dicadangkan. Penilaian ini juga bertujuan untuk melihat

sekiranya manusia mengalami kesukaran dalam mengesan kekaburan dalam SRS berbanding

alat yang dicadangkan, terutamanya, kekaburan leksikal dan pernyataan keperluan yang

mengandungi kekaburan leksikal, sintaktik dalam satu ayat. Alat yang dicadangkan akan

memudahkan penganalisis dan pembangun perisian untuk mngesan kekaburan dalam SRS

dengan mudah.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENT

In the name of ALLAH, the Beneficent, the Compassionate, thanks and praise to God for

giving me strength and patience to complete my duties successfully.

I would like to sincerely thank and express my deep thanks and gratitude to my supervisor

Dr. Sa’adah Hassan for her endless support, guidance, correction, encouragement, advice and

valuable observations in my Master’s degree.

Also, I would like to acknowledge the support of my family and parents (especially to my

uncle Abdi Isse said, who gave me fully financial support during this study), sisters and

brothers. They always give motivation and pray for successfully graduation of this study.

Finally, I thanks the contribution of my friends such as Mohamed nor and Ali Olow Jimale

(Somalia), Saiful Bahri Bin Hisamudin (Malaysia) for their great support and others who

don’t mention here their names I will never forgotten their supports, thanks allot.

Finally, to all UPM staff, thanks you for your facilitation. I would like to acknowledge to any

individual who are not mentioned here for his/her irreplaceable helps and cooperation.

.

© C
OPYRIG

HT U
PM

vi

APPROVAL

Thesis submitted to the Senate of University Putra Malaysia and has been accepted as

fulfillment of the requirement for the degree of Master of Software Engineering.

Supervisor,

Sa’adah Hassan, PhD.

Department of Software Engineering and Information Systems

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

January, 2019

© C
OPYRIG

HT U
PM

vii

 DECLARATION

I hereby confirm that:

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other degree at any

other institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned by Universiti

Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and Innovation) before thesis is published (in the form of written,

printed or in electronic form) including books, journals, modules, proceedings, popular

writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or

any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules

2012. The thesis has undergone plagiarism detection software.

Signature: ________________________

Date:

Name and Matric No.:

© C
OPYRIG

HT U
PM

viii

TABLE OF CONTENTS

ABSTRACT iii

ABSTRAK iv

ACKNOWLEDGEMENT v

APPROVAL vi

DECLARATION vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.2 Problem statements 3

1.3 Research objectives 4

1.4 Scope of the study 4

1.5 Dissertation organization 5

CHAPTER 2: LITERATURE REVIEW 6

2.1 Requirements Engineering Activities 6

2.2 Documenting Software Requirements Using NL 9

2.3 Ambiguity in Requirements Specification 10

2.4 Related Work 13

2.4.1 Unified Modeling Language (UML)-based approach 13

2.4.2 Ontology Based Approach 14

2.4.3 Natural Language Processing (NLP) Based Approach 14

2.5 Natural language Processing Tools for Detecting Ambiguity in SRS 17

2.6 Summary 24

CHAPTER 3: RESEARCH METHODOLOGY 25

3.1 Overview of Research Methodology 25

3.1.1 Phase 1: Preliminary Investigation and Analysis 27

3.1.2 Phase 2: Formulate Ambiguity detection framework 27

3.1.3 Phase 3: Tool Development 28

3.1.4 Phase 4: Evaluating the Tool 28

3.1.5 Phase 5: Findings and Conclusion 29

© C
OPYRIG

HT U
PM

ix

3.2 Summary 29

CHAPTER 4: TOOL FOR DETECTING AMBIGUITY IN SOFTWARE

REQUIREMENT SPECIFICATION 30

4.1 Framework of the Proposed Tool 30

4.2 How the framework detects ambiguity? 33

4.2.1 Detecting lexical ambiguity using dictionary 33

4.2.2 Part of Speech (POS) tagging technique 35

4.2.3 Steps for ambiguity detection 38

4.3 SRS ambiguity detector tool 41

4.4 Summary 43

CHAPTER 5: EVALUATION OF THE PROPOSED TOOL 44

5.1 Evaluation method 44

5.2 Referenced dataset 45

5.3 Detecting ambiguity by using ambiguity detection tool 47

5.4 Detecting ambiguity as manually 47

5.5 Result and Discussion 48

5.6 Summary 56

CHAPTER 6: CONCLUSION 57

6.1 Research Summary and Contributions 57

6.2 Limitations and future works 59

References 60

Appendix A: questionnaire 63

© C
OPYRIG

HT U
PM

x

 LIST OF TABLES

Table 2.1: Tools for finding as well as detecting defects and deviations in Software

requirements document (Arendse, 2016)………………………… ….…………………..….18

Table 2.2: summarizes of NLP tools of detecting ambiguities in software

requirements..………………………………………………………………………………...22

Table 4.1 Ambiguity words with source and Type of ambiguity. Sources: AHB=Ambiguity

Handbook...32

Table 4.2 list of tags among equivalent part of speech in English (Marcus et al.,

1993)……...35

Table 4.3: passive voice formulas as well as its comparable tags of POS tagger Technique

(Sabriye & Zainon, 2018)……...39

Table 5.1: Referenced Requirements dataset)……..44

Table 5.2: Respondent‘s Professional Division)……..47

Table 5.3: Result of ambiguity detection by human being as manually..................................49

Table 5.4: Lexical ambiguity corrected answers based on requirement number.....................50

Table 5.5: Mixed of lexical, syntactic and syntax ambiguities corrected answers based on

requirement number………………………………………………………….........................51

Table 5.6: Syntax ambiguity corrected answers based on requirement number……………..52

Table 5.7: Syntactic ambiguity corrected answers based on requirement……………………53

Table 5.8: Non - ambiguity corrected answers based on requirement number………………54

© C
OPYRIG

HT U
PM

xi

LIST OF FIGURES

Figure 2.1: Requirement engineering activities6

Figure 2.2: System Architecture of Activity Diagram Generating From Requirements

(Gulia and Choudhury, 2016) ... 15

Figure 2.3: System Architecture of Sequence Diagram Generating From Requirements

(Gulia and Choudhury, 2016) ... 15

Figure 2.4 Sample Tool Output Applied To Some Sentences (Gleich et al., 2010) 16

Figure 2.5 Ambiguity detector tool (Sabriye and Zainon 2017) .. 17

Figure 2.6 RQA Excel Quality Analyzer Snapshot (Génova et al., 2013) 20

Figure2.7: flow char of Dowser Tool (Popescu et al., 2007) .. 20

Figure2.8: Summary of Dowser Tool (Popescu et al., 2007) .. 21

Figure 2.9 HEJF (Femmer et al., 2014) .. 21

Figure 2.10 Snapshot of RESI tool (Korner and Brumm, 2009) .. 23

Figure 2.11 output of SR_ELICITOR tool snapshot (Umber et al., 2011) 24

Figure 3.1: High level outlook of the methodology in the research 26

Figure 4.1 Framework of Proposed Tool ... 31

Figure 4.2: Browsing NL SRS document ... 43

Figure 4.3: Browsed SRS Document ... 43

Figure 4.4: Figure 4.4: Displays result window .. 42

Figure 5.1: Result of ambiguity detection by human being as manually 49

Figure 5.2: Lexical ambiguity corrected answers based on requirement number 51

figure5.3: Mixed of all ambiguities corrected answers based on requirement number 52

Figure 5.4: Syntax ambiguity corrected answers based on requirement number 53

Figure 5.5: Syntactic ambiguity corrected answers based on requirement number 54

Figure 5.6: Non - ambiguity corrected answers based on requirement number 55

file:///D:/Personal%20data/USM%20offer%20letter/Master%20of%20Science(Computer%20Science)%20USM/Semester%20one/Dissertation/New%20thesis/Final%20Thesis/Final%20Thesis.docx%23_Toc488327895
file:///D:/Personal%20data/USM%20offer%20letter/Master%20of%20Science(Computer%20Science)%20USM/Semester%20one/Dissertation/New%20thesis/Final%20Thesis/Final%20Thesis.docx%23_Toc488327895

© C
OPYRIG

HT U
PM

xii

LIST OF ABBREVIATIONS

NLP NATURAL LANGUAGE PROCESSING

UML UNIFIED MODELING LANGUAGE

RE REQUIREMENTS ENGINEERING

OOA OBJECT ORIENTED ANALYSIS

NLs NATURAL LANGUAGEs

POS PART OF SPEECH

RQA REQUIREMENTS QUALITY ANALYZER

SRS SOFTWARE REQUIREMENTS SPECIFICATION

UPM UNIVERSITI PUTRA MALAYSIA

© C
OPYRIG

HT U
PM

1

CHAPTER 1: INTRODUCTION

1.1 Background

At the moment, software systems become the backbone of every organization such as: education,

manufacturing, governments, social networking, insurance, banking and health care. Developing

software system requires: time, cost, tools, idea, infrastructure and experts. Lack of correct

requirements can cause the failure of the project.

The success of any software development depends on how it meets and answers the needs of its

stakeholders (Cheng and Atlee, 2007). Requirement engineering (RE) becomes the backbone of

establishing the needs of the stakeholders. RE is the process of understanding the system’s

requirements through predefined activities of eliciting the needs of the users by: gathering,

analyzing, modeling, validating, documenting and managing the requirements. It involves a

systematic process of defining, analyzing, modeling, evaluating and documenting the requirement

of the system and the users in which the system will use (Inayat at el, 2015).

A payroll system was designed in 1970s, it was developed to store the last two digits of the year

rather than four digits for the purpose of the saving the memory space. Conversely, the year of

Millennium (year 2000) a bug happened. To fix that bug, hundreds of US dollars were spent

(Nigam et al., 2012a).Moreover, ERP software failure in Jordan: the cause of this problem was

due to unmatched the assumptions of the problem with system requirements. It means the

software requirements engineers don’t executed the system as expected and the issues of this

system that is sizeable gap between the system requirements and assumptions was built in the

project caused the loss of capital and immoral of the clients. A recent survey, participated more

than 800 information systems managers showed that more than 60% of the projects failed

different issues. Another example is automated airport baggage handling system failure: this

© C
OPYRIG

HT U
PM

2

project failed to forecast how many carts are properly resulted in interruptions in picking up bags

and that means this system failed to meet the requirements of the system and lastly, cause

monthly of correction which caused exceeded the time and the cost (Ribeiro, 2014).

 SRS document is a crucial document which contains system and user's requirements with their

descriptions. It is very important since it describes the stakeholder’s requirements together with

the system modeling. Briefly, it is a contract among stakeholders to clarify the key contents about

the software in order to design and develop (Anuar, Ahmad and Emran, 2015). Moreover, SRS is

an agreement report as well as written by the stakeholders of the developed system.

There a lot of problems cause natural languages (NLs) in software requirements specifications

(SRS) such as incomplete, incorrect inconstancies, and ambiguity (Shah and Patel, 2014).

Furthermore, this study focus on ambiguity of natural language in SRS, specially three types of

ambiguities which are lexical, syntax and syntactic.

NL is the human language which is used to describe software specification such as English

language (Fockel and Holtmann, 2015). The majority of NL documents are ambiguous. (Sabriye

and Zainon, 2017) Ambiguity is the possibility to understand a phrase or word in several different

means. The purpose of this study is to propose a tool which detects ambiguity in software

specification documents using words from ambiguity handbook as dictionary.

© C
OPYRIG

HT U
PM

3

1.2 Problem statements

The failed software development projects have become commonplace, due to, incomplete and

ambiguous software requirement specification (SRS), since most of the requirement documents

written in natural language (NL), (Bano, M. 2015). Ambiguity considered as a challenge of the

SRS than other requirements’ defects which have more frequently results in misunderstanding

(Bano, M. 2015). Detecting and addressing ambiguity during RE can be more cost-effective than

fixing it at later stages of development. Multiple interpretations of the requirements can lead to

incorrect implementation, especially in case of unacknowledged ambiguity (Haron and Ghani,

2015).

In addition to that, several researchers tried to solve the issues of the requirements specification

ambiguities using different tools and techniques including UML (unified modeling language)

based techniques, ontology based techniques and NLP based techniques (Sabriye and Zainon,

2017). However, until now, Syntactic and Syntax ambiguities are more prominent than other

types of ambiguities such as lexical (Bano, M. 2015). Moreover, there is limited research tried to

solve lexical, syntax and syntactic ambiguities using POS tagging technique and dictionary with

ambiguity handbook.

© C
OPYRIG

HT U
PM

4

1.3 Research objectives

To overcome the mentioned problems, the main objectives of this research are:

i) To formulate ambiguity detection based on the existing approaches

ii) To propose a tool for detecting requirement ambiguity in requirement specification

iii) To evaluate the effectiveness of the proposed tool

1.4 Scope of the study

The scope of this research is limited detecting syntax, syntactic and lexical ambiguities in SRS.

This study consists of three phases: Preprocessing phase: which are uploading SRS documents

from users in English as input, Processing phase: which focusing on processing the SRS

documents by reads the NL text line by line and Post-processing phase: which displays the

detected lexical, syntactic, and syntax ambiguities as output. In order to detect ambiguities in

SRS, this research proposed a tool which detects lexical, syntactic and syntax ambiguities by

using a POS tagging technique with dictionary. In addition to that, the research used ambiguity

words from ambiguity handbook to mark lexical ambiguities in SRS by stored these words in a

dictionary. In parallel, POS tagging technique was applied to detect syntactic and syntax

ambiguities.

© C
OPYRIG

HT U
PM

5

1.5 Dissertation organization

The remaining chapters of this research are ordered as follows:

CHAPTER 2 discusses general overview about requirement engineering and its activities. Also

the chapter discusses how software requirements are documented in NL format. In addition to

that, this unit also covered the related work of the study and listing Natural language Processing

Tools for detecting ambiguity in software requirements and finally summarises the chapter.

CHAPTER 3 presents the overall methodology used to conduct this research in order to achieve

the main goal of the research. It contains two main parts: first part provides the general overview

of the methodology and divided into five phases by providing short explanations of each phase.

Second parts, discusses in detail the components and how covered each phase.

CHAPTER 4 this unit also contains two main sections: explaining the framework of the

proposed tool in this study and implementation section of the framework of the proposed tool.

CHAPTER 5 provides the evaluation of the study or research. This evaluation conducted used

same documents into the human and the tool itself, in order to see the human capacity of

detecting ambiguity in the SRS. Then the result from the human test compared the result

generated the developed tool are takes on.

CHAPTER 6 gives explanation about the conclusion, future work and recommendations. It also

provides the achievements of the study such: objectives, research questions and the limitations of

the research are covered.

© C
OPYRIG

HT U
PM

60

References

1. Bettini, L., & Crescenzi, P. (2015, July). Java-meets eclipse: An IDE for teaching Java

following the object-later approach. In Software Technologies (ICSOFT), 2015 10th

International Joint Conference on (Vol. 2, pp. 1-12). IEEE.

2. Inayat, I., Salim, S. S., Marczak, S., Daneva, M., & Shamshirband, S. (2015). A

systematic literature review on agile requirements engineering practices and challenges.

Computers in human behavior, 51, 915-929

3. Sabriye, A. O. J. A., & Zainon, W. M. N. W. (2017, May). A framework for detecting

ambiguity in software requirement specification. In Information Technology (ICIT), 2017

8th International Conference on (pp. 209-213). IEEE.

4. Anuar, U., Ahmad, S., & Emran, N. A. (2015, December). A simplified systematic

literature review: Improving Software Requirements Specification quality with

boilerplates. In Software Engineering Conference (MySEC), 2015 9th Malaysian (pp. 99-

105). IEEE.

5. Fockel, M., & Holtmann, J. (2015, August). ReqPat: Efficient documentation of high-

quality requirements using controlled natural language. In Requirements Engineering

Conference (RE), 2015 IEEE 23rd International (pp. 280-281). IEEE.

6. Nigam, A., Nigam, B., Bhaisare, C., & Arya, N. (2012A, March). Classifying the bugs

using multi-class semi supervised support vector machine. In Pattern Recognition,

Informatics and Medical Engineering (PRIME), 2012 International Conference on (pp.

393-397). IEEE.

7. Ribeiro, C., Farinha, C., Pereira, J., & da Silva, M. M. (2014). Gamifying requirement

elicitation: Practical implications and outcomes in improving stakeholders collaboration.

Entertainment Computing, 5(4), 335-345.

8. Shah, T., & Patel, V. S. (2014). A review of requirement engineering issues and

challenges in various software development methods. International Journal of Computer

Applications, 99(15), 36-45.

9. Bano, M. (2015, August). Addressing the challenges of requirements ambiguity: A review

of empirical literature. In Empirical Requirements Engineering (EmpiRE), 2015 IEEE

Fifth International Workshop on (pp. 21-24). IEEE.

10. Haron, H., & Ghani, A. A. A. (2015). A Survey on Ambiguity Awareness towards Malay

System Requirement Specification (SRS) among Industrial IT Practitioners. Procedia

Computer Science, 72, 261-268.

11. Cheng, B. H., & Atlee, J. M. (2007, May). Research directions in requirements

engineering. In 2007 Future of Software Engineering (pp. 285-303). IEEE Computer

Society.

12. Laplante, P. A. (2017). Requirements engineering for software and systems. Auerbach

Publications.

13. Elsaid, A. H., Salem, R. K., & Abdul-kader, H. M. (2015, December). Automatic

framework for requirement analysis phase. In Computer Engineering & Systems

(ICCES), 2015 Tenth International Conference on (pp. 197-203). IEEE.

14. Pandey, D., Suman, U., & Ramani, A. K. (2010, October). An effective requirement

engineering process model for software development and requirements management. In

Advances in recent technologies in communication and computing (artcom), 2010

international conference on (pp. 287-291). IEEE.

© C
OPYRIG

HT U
PM

61

15. Georgiades, M. G., & Andreou, A. S. (2010, November). Automatic generation of a

software requirements specification (SRS) document. In Intelligent Systems Design and

Applications (ISDA), 2010 10th International Conference on (pp. 1095-1100). IEEE.

16. Takoshima, A., & Aoyama, M. (2015, December). Assessing the Quality of Software

Requirements Specifications for Automotive Software Systems. In Software Engineering

Conference (APSEC), 2015 Asia-Pacific (pp. 393-400). IEEE.

17. Gill, K. D., Raza, A., Zaidi, A. M., & Kiani, M. M. (2014, May). Semi-automation for

ambiguity resolution in Open Source Software requirements. In Electrical and Computer

Engineering (CCECE), 2014 IEEE 27th Canadian Conference on (pp. 1-6). IEEE.

18. Gause, D. C., & Weinberg, G. M. (1989). Exploring requirements: quality before design

(pp. 152-164). New York: Dorset House Pub..

19. Sandhu, G., & Sikka, S. (2015, May). State-of-art practices to detect inconsistencies and

ambiguities from software requirements. In Computing, Communication & Automation

(ICCCA), 2015 International Conference on (pp. 812-817). IEEE.

20. Gleich, B., Creighton, O., & Kof, L. (2010, June). Ambiguity detection: Towards a tool

explaining ambiguity sources. In International Working Conference on Requirements

Engineering: Foundation for Software Quality (pp. 218-232). Springer, Berlin,

Heidelberg.

21. Hagal, M. A., & Alshareef, S. F. (2013, December). A systematic approach to generate

and clarify consistent requirements. In IT Convergence and Security (ICITCS), 2013

International Conference on (pp. 1-4). IEEE.

22. Gulia, S., & Choudhury, T. (2016, January). An efficient automated design to generate

UML diagram from Natural Language Specifications. In Cloud System and Big Data

Engineering (Confluence), 2016 6th International Conference (pp. 641-648). IEEE.

23. Beg, R., Abbas, Q., & Joshi, A. (2008, July). A method to deal with the type of lexical

ambiguity in a software requirement specification document. In Emerging Trends in

Engineering and Technology, 2008. ICETET'08. First International Conference on (pp.

1212-1215). IEEE.

24. Shah, U. S., & Jinwala, D. C. (2015). Resolving ambiguities in natural language software

requirements: a comprehensive survey. ACM SIGSOFT Software Engineering Notes,

40(5), 1-7.

25. Arendse, B. (2016). A thorough comparison of NLP tools for requirements quality

improvement (Master's thesis).

26. Génova, Gonzalo, José M. Fuentes, Juan Llorens, Omar Hurtado, and Valentín Moreno.

"A framework to measure and improve the quality of textual requirements." Requirements

engineering 18, no. 1 (2013): 25-41.

27. Popescu, D., Rugaber, S., Medvidovic, N., & Berry, D. M. (2007, September). Reducing

ambiguities in requirements specifications via automatically created object-oriented

models. In Monterey Workshop (pp. 103-124). Springer, Berlin, Heidelberg.

28. Femmer, H., Fernández, D. M., Juergens, E., Klose, M., Zimmer, I. & Zimmer, J. Rapid

Requirements Checks With Requirements Smells: Two Case Studies. Proceedings of the

1st International Workshop on Rapid Continuous Software Engineering, 2014. ACM, 10-

19.

29. Korner, S. J., & Brumm, T. (2009, September). Resi-a natural language specification

improver. In Semantic Computing, 2009. ICSC'09. IEEE International Conference on (pp.

1-8). IEEE.

© C
OPYRIG

HT U
PM

62

30. Umber, A., Bajwa, I. S., & Naeem, M. A. (2011, July). NL-based automated software

requirements elicitation and specification. In International Conference on Advances in

Computing and Communications (pp. 30-39). Springer, Berlin, Heidelberg.

	CHAPTER 2:
	LC
	Appendix
	LA

