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Abstract of dissertation presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Software Engineering  

A TOOL FOR DETECTING AMBIGUITY IN SOFTWARE REQUIREMENT 

SPECIFICATION 

 

ABSTRACT 

 

This thesis is about detecting ambiguities in software requirements' specification (SRS). 

Specifically, most of the software requirement documents are written in Natural languages 

(NLs). NLs are basically ambiguous. Ambiguity is a statement of requirements, which have 

more than one interpretation. However, Ambiguity can be considered as an issue of software 

requirement documents because it can lead the software developers to develop software, 

which is different what the customers’ need. The aim of this research is to propose a tool 

which detects lexical, syntactic and syntax ambiguities in SRS. In this thesis, ambiguity 

words from the ambiguity handbook have been used to detect lexical ambiguity. In parallel, 

Parts of speech (POS) tagging technique has been applied to detect syntactic and syntax 

ambiguous. The proposed tool was evaluated in order to check its performance by comparing 

human detection capacity and the proposed tool. The aim of this evaluation also was to see if 

the humans face complexities in detecting ambiguity in SRS, and the result shows that the 

humans have difficulties detecting ambiguities in SRS compared to the proposed tool, 

particularly, lexical ambiguity and requirements that contains lexical, syntactic and syntax 

ambiguities in one sentence. The proposed tool can facilitate both software analysts and 

developers to detect the ambiguities in software requirements' specification easily. 
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Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia sebagai memenuhi 

keperluan untuk ijazah Sarjana Kejuruteraan Perisian 

TOOL UNTUK MENGESAN KEKABURAN DALAM REQUIREMENT 

SPECIFICATION 

 

       ABSTRAK 

 

Tesis ini adalah untuk mengesan kekaburan dalam software requirement specification (SRS). 

Secara spesifik, kebanyakan dokumen keperluan perisian ditulis dalam Natural Languanges  

(NLs). NLs secara asasnya adalah kabur. Kekaburan berlaku apabila pernyataan keperluan 

mempunyai lebih satu daripada makna. Kekaburan merupakan satu isu dalam dokumen 

keperluan perisian kerana ia boleh menyebabkan pembangun perisian membangunkan 

perisian yang berbeza daripada keperluan pengguna. Tujuan kajian ini ialah untuk 

mencadangkan satu alat untuk mengesan kekaburan leksikal, sintaktik and sintak dalam SRS. 

Di dalam tesis ini, perkataan-perkataan kabur daripada ambiguity handbook digunakan untuk 

mengesan kekaburan leksikal. Pada masa yang sama, teknik penandaan Parts of speech 

(POS) telah digunakan untuk mengesaan kekaburan sintaktik and sintak. Prestasi alat yang 

dicadangkan akan dinilai dengan membuat perbandingan keupayaan mengesan kekaburan 

antara manusia dan alat yang dicadangkan. Penilaian ini juga bertujuan untuk melihat 

sekiranya manusia mengalami kesukaran dalam mengesan kekaburan dalam SRS berbanding 

alat yang dicadangkan, terutamanya, kekaburan leksikal dan pernyataan keperluan yang 

mengandungi kekaburan leksikal, sintaktik dalam satu ayat.  Alat yang dicadangkan akan 

memudahkan penganalisis dan pembangun perisian untuk mngesan kekaburan dalam SRS 

dengan mudah.  
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CHAPTER 1: INTRODUCTION  

1.1 Background  

 

At the moment, software systems become the backbone of every organization such as: education, 

manufacturing, governments, social networking, insurance, banking and health care.  Developing 

software system requires: time, cost, tools, idea, infrastructure and experts. Lack of correct 

requirements can cause the failure of the project. 

The success of any software development depends on how it meets and answers the needs of its 

stakeholders (Cheng and Atlee, 2007). Requirement engineering (RE) becomes the backbone of 

establishing the needs of the stakeholders. RE is the process of understanding the system’s 

requirements through predefined activities of eliciting the needs of the users by:  gathering, 

analyzing, modeling, validating, documenting and managing the requirements. It involves a 

systematic process of defining, analyzing, modeling, evaluating and documenting the requirement 

of the system and the users in which the system will use (Inayat at el, 2015).    

A payroll system was designed in 1970s, it was developed to store the last two digits of the year 

rather than four digits for the purpose of the saving the memory space. Conversely, the year of 

Millennium (year 2000) a bug happened. To fix that bug, hundreds of US dollars were spent 

(Nigam et al., 2012a).Moreover, ERP software failure in Jordan: the cause of this problem was 

due to unmatched the assumptions of the problem with system requirements. It means the 

software requirements engineers don’t executed the system as expected and the issues of this 

system that is sizeable gap between the system requirements and assumptions was built in the 

project caused the loss of capital and immoral  of the clients. A recent survey, participated more 

than 800 information systems managers showed that more than 60% of the projects failed 

different issues. Another example is automated airport baggage handling system failure: this 



© C
OPYRIG

HT U
PM

2 
 

project failed to forecast how many carts are properly resulted in interruptions in picking up bags 

and that means this system failed to meet the requirements of the system and lastly, cause 

monthly of correction which caused exceeded the time and the cost (Ribeiro, 2014). 

  SRS document is a crucial document which contains system and user's requirements with their 

descriptions. It is very important since it describes the stakeholder’s requirements together with 

the system modeling. Briefly, it is a contract among stakeholders to clarify the key contents about 

the software in order to design and develop (Anuar, Ahmad and Emran, 2015). Moreover, SRS is 

an agreement report as well as written by the stakeholders of the developed system.  

There a lot of problems cause natural languages (NLs) in software requirements specifications 

(SRS) such as incomplete, incorrect inconstancies, and ambiguity (Shah and Patel, 2014). 

Furthermore, this study focus on ambiguity of natural language in SRS, specially three types of 

ambiguities which are lexical, syntax and syntactic. 

NL is the human language which is used to describe software specification such as English 

language (Fockel and Holtmann, 2015). The majority of NL documents are ambiguous. (Sabriye 

and Zainon, 2017) Ambiguity is the possibility to understand a phrase or word in several different 

means. The purpose of this study is to propose a tool which detects ambiguity in software 

specification documents using words from ambiguity handbook as dictionary.  
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1.2 Problem statements 

 

The failed software development projects have become commonplace, due to, incomplete and 

ambiguous software requirement specification (SRS), since most of the requirement documents 

written in natural language (NL), (Bano, M. 2015).  Ambiguity considered as a challenge of the 

SRS than other requirements’ defects which have more frequently results in misunderstanding 

(Bano, M. 2015). Detecting and addressing ambiguity during RE can be more cost-effective than 

fixing it at later stages of development. Multiple interpretations of the requirements can lead to 

incorrect implementation, especially in case of unacknowledged ambiguity (Haron and Ghani, 

2015).  

In addition to that, several researchers tried to solve the issues of the requirements specification 

ambiguities using different tools and techniques including UML (unified modeling language) 

based techniques, ontology based techniques and NLP based techniques  (Sabriye and Zainon, 

2017). However, until now, Syntactic and Syntax ambiguities are more prominent than other 

types of ambiguities such as lexical (Bano, M. 2015).  Moreover, there is limited research tried to 

solve lexical, syntax and syntactic ambiguities using POS tagging technique and dictionary with 

ambiguity handbook.  
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1.3 Research objectives 

 

To overcome the mentioned problems, the main objectives of this research are:  

i) To formulate ambiguity detection based on the existing approaches  

ii) To propose a tool for detecting requirement ambiguity in requirement specification  

iii) To evaluate the effectiveness of the proposed tool  

 

1.4 Scope of the study  

 

The scope of this research is limited detecting syntax, syntactic and lexical ambiguities in SRS. 

This study consists of three phases: Preprocessing phase: which are uploading SRS documents 

from users in English as input, Processing phase: which focusing on processing the SRS 

documents by reads the NL text line by line and Post-processing phase: which displays the 

detected lexical, syntactic, and syntax ambiguities as output. In order to detect ambiguities in 

SRS, this research proposed a tool which detects lexical, syntactic and syntax ambiguities by 

using a POS tagging technique with dictionary. In addition to that, the research used ambiguity 

words from ambiguity handbook to mark lexical ambiguities in SRS by stored these words in a 

dictionary.  In parallel, POS tagging technique was applied to detect syntactic and syntax 

ambiguities. 
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1.5 Dissertation organization 

 

The remaining chapters of this research are ordered as follows: 

CHAPTER 2 discusses general overview about requirement engineering and its activities. Also 

the chapter discusses how software requirements are documented in NL format. In addition to 

that, this unit also covered the related work of the study and listing Natural language Processing 

Tools for detecting ambiguity in software requirements and finally summarises the chapter. 

CHAPTER 3 presents the overall methodology used to conduct this research in order to achieve 

the main goal of the research.  It contains two main parts: first part provides the general overview 

of the methodology and divided into five phases by providing short explanations of each phase. 

Second parts, discusses in detail the components and how covered each phase.  

CHAPTER 4 this unit also contains two main sections:  explaining the framework of the 

proposed tool in this study and implementation section of the framework of the proposed tool. 

CHAPTER 5 provides the evaluation of the study or research. This evaluation conducted used 

same documents into the human and the tool itself, in order to see the human capacity of 

detecting ambiguity in the SRS. Then the result from the human test compared the result 

generated the developed tool are takes on. 

CHAPTER 6 gives explanation about the conclusion, future work and recommendations. It also 

provides the achievements of the study such: objectives, research questions and the limitations of 

the research are covered.   
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