
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

IMPROVED CLASS BINARIZATION MODEL WITH DATA 
OVERSAMPLING IN GAIT RECOGNITION 

 

 
 
 
 
 
 
 
 
 

ABDUL RAFIEZ BIN ABDUL RAZIFF 
 
 
 
 
 
 
 
 
 
 
 
 

FSKTM 2019 7 
 
 
 



© C
OPYRIG

HT U
PM

 

 

 

 

 

 

IMPROVED CLASS BINARIZATION MODEL WITH DATA 

OVERSAMPLING IN GAIT RECOGNITION 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

 

ABDUL RAFIEZ BIN ABDUL RAZIFF  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 

Malaysia, in Fulfilment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

February 2019 



© C
OPYRIG

HT U
PM

 

 

 

 

 

COPYRIGHT 

 

 

All material contained within the thesis, including without limitation text, logos, 

icons, photographs and all other artwork, is copyright material of Universiti Putra 

Malaysia unless otherwise stated. Use may be made of any material contained 

within the thesis for non-commercial purposes from the copyright holder. 

Commercial use of material may only be made with the express, prior, written 

permission of Universiti Putra Malaysia.  

 

 

Copyright © Universiti Putra Malaysia 

  

 

 

 

 

 

 

 

 

 

 

 

 

  



© C
OPYRIG

HT U
PM

 

 

 

 

 

DEDICATION 

 

 

 

 

 

To my beloved family. 

To my Father, Mother, Sister. 

To the Partner, Siti Nur Animah, in this life and hereafter.  

To our kids, Amzaar Rahman and Ammar Elyas 

 

 



© C
OPYRIG

HT U
PM

 
i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Doctor of Philosophy 

 

 

IMPROVED CLASS BINARIZATION MODEL WITH DATA 

OVERSAMPLING IN GAIT RECOGNITION 

 

 

By 
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Gait is a process of a complete cycle of walking that consist of two-step cycles. It 

can be said that gait has a high degree of biometric which means that every person 

has its own unique style of walking. Gait recognition using smartphone 

accelerometer has been widely used in many research and applications due to the 

cheap assembly, durability and reliability of the Inertial Measurement Unit (IMU) 

Microelectromechanical System (MEMS) technology. Gait recognition has been 

used in many areas such as biomechanics, neuro-rehabilitation, sports medicine, 

security and many others. Latest research achievement in gait recognition approach 

is the ability to sufficiently recognize a person with small variations and single data 

enrolment. 

 

 

In the standard gait recognition, there are four main workflows or levels that 

include data acquisition, pre-processing, features extraction and classification. 

However, most of the current research is concentrated on the data acquisition and 

features extractions with a minimal concentration on other workflows, hence the 

best accuracy is not fully achieved and optimized. 

 

 

In this thesis, we found several problems at the data acquisition stage, pre-

processing stage, and classification stage. At the data acquisition stage, gait data is 

obtained from predefined places such as pocket, pouch, trousers and other parts of 

the body. However, due to the limitation of the clothes and culture, the mentioned 

places may not be suitable for smartphone placement. 
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At the pre-processing stage, linear interpolation is widely used by researchers in 

order to create a fix sampling rate between data points. However, they never 

examine the best interpolation rate for usage as the rate affects the number of data 

and this would significantly affect the overall accuracy. 

 

 

At the classification stage, there are two problems that were observed. The first 

problem is the single classifier mapping applied by the current researchers which 

are not suitable because the gait recognition involved many classes and possible of 

overlapped classes boundary is high, hence multiclass classification or binarization 

of classes should be adopted. However, some researcher does apply one-vs-all 

(OVA) and one-vs-one (OVO) multiclass methods but the classes are not widely 

spread and it is not well distributed among class comparison. The second problem 

in the classification stage is the imbalance class when binarization dataset is 

performed after the multiclass classification mapping is applied. 

 

 

To overcome the problems mentioned above, we proposed new methods to tackle 

the problems at the mentioned stages. At the data acquisition stage, we proposed a 

method that uses hand as the position of the smartphone. At the pre-processing 

stage, Linear Interpolation Factor Determinator (LIFD) is proposed by using 

decision tree and cross-validation evaluation in-order to determine the best linear 

interpolation rate. At the classification stage, we proposed the used of Random 

Correction Code (RCC) as the main multiclass classifier mapping. RCC is an 

extension of Error-correcting Output Code (ECOC) that is used for multiclass 

classification. To tackle the imbalance class problem, a new oversampling method, 

Self-adjusted Synthetic Minority Over-sampling Technique (SA-SMOTE) is 

proposed to automatically assign number of samples on the minority class without 

human intervention. 

 

 

For the experimentation, gait data using hands (HHScD) is collected from 30 

subjects with three different poses. Then it is investigated whether it is viable for 

the gait recognition process. The dataset was compared with the largest gait 

database from Osaka University (OU-ISIR-2) which the data was captured from 

smartphone clipped to the waist belt from 408 subjects. Then our proposed methods 

was applied to the dataset and comparison with the existing method was evaluated. 

Our experimental results show improvements of the accuracy in comparison with 

the previous study. 
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Gait adalah proses kitaran lengkap berjalan kaki yang terdiri daripada kitaran dua 

langkah. Ia boleh dikatakan bahawa gait mempunyai ciri biometrik yang tinggi di 

mana setiap orang mempunyai gaya berjalan yang unik. Pengecaman gait 

menggunakan pecutan telefon pintar telah digunakan secara meluas dalam pelbagai 

penyelidikan dan aplikasi kerana kos pemasangan yang murah, ketahanan dan 

kebolehpercayaan teknologi Mekanik Mikroelektrik (MEMS) Unit Pengukuran 

Inertia (IMU). Pengecaman gait telah digunakan dalam banyak bidang seperti 

biomekanik, pemulihan neuro, perubatan sukan, keselamatan dan lain-lain lagi. 

Pencapaian penyelidikan terkini dalam pendekatan pengiktirafan gait adalah 

keupayaan untuk mengenali seseorang dengan variasi kecil dan pendaftaran data 

tunggal. 

 

 

Dalam pengecaman standard gait, terdapat empat aliran kerja utama atau tahap 

yang termasuk pengambilalihan data, pra-pemprosesan, ciri-ciri pengekstrakan dan 

klasifikasi. Walau bagaimanapun, kebanyakan penyelidikan semasa tertumpu 

kepada pengambilalihan data dan ciri-ciri pengekstrakan dengan kepadatan yang 

minimum pada alur kerja yang lain, maka ketepatan yang terbaik tidak dicapai 

sepenuhnya dan dioptimumkan. 

 

 

Dalam tesis ini, kami mendapati beberapa masalah di peringkat pemerolehan data, 

tahap pra pemprosesan, dan peringkat klasifikasi. Pada peringkat pemerolehan data, 

data gait diperolehi dari tempat yang telah ditentukan seperti poket, seluar dan 

bahagian lain badan. Walau bagaimanapun, disebabkan oleh had pakaian dan 

budaya, tempat-tempat yang disebutkan itu mungkin tidak sesuai sebagai 

penempatan telefon pintar. 
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Pada tahap pra-pemprosesan, interpolasi linear digunakan secara meluas oleh para 

penyelidik untuk menghasilkan kadar persampelan penetapan antara titik data. 

Walau bagaimanapun, mereka tidak pernah memeriksa kadar interpolasi yang 

terbaik untuk penggunaan kerana kadarnya mempengaruhi bilangan data dan ini 

akan memberi kesan yang ketara kepada ketepatan keseluruhan. 

 

 

Pada peringkat klasifikasi, terdapat dua masalah yang kami temui. Masalah pertama 

ialah pemetaan pengelasan tunggal yang digunakan oleh penyelidik semasa yang 

tidak sesuai kerana pengecaman gait melibatkan banyak kelas dan kemungkinan 

sempadan kelas yang bertindih adalah tinggi, oleh itu klasifikasi kelas atau kelas 

penduaan harus diterima pakai. Walau bagaimanapun, sesetengah penyelidik 

menggunakan kaedah multiclass one-vs-all (OVA) dan one-vs-one (OVO) tetapi 

kelas tidak tersebar luas dan tidak diagihkan dengan baik di kalangan perbandingan 

kelas. Masalah kedua dalam peringkat klasifikasi adalah ketidakseimbangan kelas 

ketika set data penduaan dilakukan setelah pemetaan pengelasan klasifikasi 

berbilang kelas diterapkan. 

 

 

Untuk mengatasi masalah yang disebutkan di atas, kami mencadangkan kaedah 

baru untuk menangani masalah di peringkat yang telah disebutkan. Pada peringkat 

pemerolehan data, kami mencadangkan kaedah yang menggunakan tangan sebagai 

kedudukan telefon pintar. Pada peringkat pra-pemprosesan, Penentu Kadar Faktor 

Interpolasi Linear (LIFD) dicadangkan dengan menggunakan pepohon keputusan 

dan penilaian pengesahan silang untuk menentukan kadar interpolasi linear terbaik. 

Pada peringkat klasifikasi, kami mencadangkan Kod Pembetulan Rawak (RCC) 

yang digunakan sebagai pemetaan pengelas multiclass utama. RCC adalah 

pelanjutan Kod Output Ralat-Kesalahan (ECOC) yang digunakan untuk klasifikasi 

berbilang. Untuk menangani masalah ketidakseimbangan kelas, kaedah 

pensampelan lebihan yang baru, Teknik Penyampingan Minoriti sintetik yang 

diselaraskan sendiri (SA-SMOTE) dicadangkan untuk menetapkan bilangan sampel 

secara automatik pada kelas minoriti tanpa intervensi manusia. 

 

 

Untuk eksperimen, data gait menggunakan tangan (HHScD) dikumpulkan dari 30 

subjek dengan tiga pose yang berbeza. Kemudian ia disiasat sama ada ia layak 

untuk proses pengecaman gait. Set data ini telah dibandingkan dengan pangkalan 

data gait terbesar dari Universiti Osaka (OU-ISIR-2) yang datanya diambil dari 

telefon pintar diletakkan ke atas pinggang 408 subjek. Kemudian kaedah yang 

dicadangkan telah diterapkan pada set data dan perbandingan dengan kaedah yang 

sedia ada telah dinilai. Keputusan eksperimen kami menunjukkan peningkatan 

ketepatan berbanding dengan kajian terdahulu. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Background and Motivation 

Gait is a term that refers to the complete cycle of walking that involves a collection 

of steps. Analysis of gait is an important area as a normal human being, gait poses 

a unique signature of a person which can be used as a security measure like other 

biometrics such as fingerprints, voice, iris and face (Sun et al., 2014). It is also 

considered as behavioral biometric (Galbally et al., 2010). The advantage of using 

gait unlike other biometric are: (1) user-friendly in the data capture process which 

it is unobtrusive and continuous, and (2) gait is hard to be mimicked by other 

people (Mjaaland et al., 2010; Muaaz & Mayrhofer, 2017). In health, gait is 

considered as very important as it can be used to reflect human’s health condition 

such as cerebral palsy, Parkinson’s disease, cardiopathies and after effect of stroke 

(Azevedo Coste et al., 2014; Muro-De-La-Herran et al., 2014; Pogorelc et al., 

2012). 

At present, analysis of gait is done by performing gait recognition which the gait’s 

signal data collection can be done by using two methods which are wearable and 

non-wearable based (Muro-De-La-Herran et al., 2014). The wearable based is the 

type of capturing the gait data by using a device such as an accelerometer or 

gyroscope. Non-wearable based is the type that does not require the user to wear 

anything. Usually, the data is captured from the floor sensor or by the vision based. 

With the rapid development of Microelectromechanical System (MEMS), gait data 

can be easily collected without the needs of an expensive device. Previously, to get 

the gait data, one needs to use a special accelerometer device. However, nowadays 

smartphone does equip with many sensors and one of it is inertial measurement 

unit (IMU) such as accelerometer and gyroscope which was initially created for tilt 

movement of the device. The advantage of using this kind of device is the power 

consumption is low, small in size, portable and low in development cost (Deng et 

al., 2016; Lu et al., 2017). This is actually the goal of ubiquitous computing which 

is to integrate the environment, everyday objects and activities with smartphones so 

that it can assist people’s daily life and activities (Georgievski & Aiello, 2017). 

According to Statista, in Malaysia itself, the number of smartphone penetration rate 

as share of the population in Malaysia is 65.14% in 2018 and the number will keep 

on increasing to 68.46% in the year 2022 (Statista, 2018). This statistic shows that 

more data can be captured from the user and more analysis and pattern recognitions 

can be made for a lot of task including marketing, health, transportation, logistics 

and others. 



© C
OPYRIG

HT U
PM

 

 

 

 
2 

 

At the current research application, there are still challenges in the field of gait 

recognition that needs attention in finding the best solution. The main challenges of 

the gait recognition can be divided into sensor induced and gait characteristics 

(Sprager & Juric, 2015b). Sensor induced factor is caused by the sensor itself 

including position and orientation. In the gait characteristics, the person or the 

environment do influence the gait signal such as the health of the person, 

physiology, clothing, walking surface and more (Gafurov et al., 2011). 

Generally, in order to perform gait recognition using wearable sensor, there are 

stages that need to be followed which starts from the data acquisition. At this stage, 

the smartphone is attached to the body for the gait signal recording. Then, the next 

step is to perform preprocessing that includes treatments to the dataset. After that, 

patterns transformation can be captured by performing certain algorithms in finding 

descriptive information of the gait signal. After gaining informative data, 

recognition of gait can be performed by employing pattern similarity matching or 

machine learning algorithm (Sprager & Juric, 2015b). 

In this thesis, few problems are found from the existing research work. The 

problems are found in the gait recognition stages which are: (1) data acquisition, 

(2) pre-processing, and (3) classification. The first problem is related to positioning 

of the smartphone at the data acquisition stage. In the real world application, 

clothes and culture may differ so positions that are used by the current researcher 

may not be suitable. To overcome this problem, we proposed the used of hand 

placement. To support our proposal, we compare with the largest gait dataset 

obtained from Osaka University. 

At the pre-processing stage, we identified a problem related to the linear 

interpolation application used by current researchers. It can be seen that different 

sampling rate produce different number of data which subsequently affect the 

accuracy. To overcome this situation, we proposed a factor determinator in 

choosing the best sampling rate. We compare with the current sampling rate used 

by previous researchers to support our proposal. 

At the classification stage, we observed a problem that is related to the overlapped 

class boundary issue due to the large number of people as class. At the same time, 

imbalance class problem is also noticed. To solve this problem, multiclass 

classification is proposed. At the same time, new oversampling method is 

proposed. Oversampling is a process of adding data to the existing dataset. In this 

work, the oversampling method is chosen instead of undersampling because when 

binarization is done, the goal is to retain the information on both binarized classes. 

Then experiment on the classification is performed and comparison with the 

current classification method. 
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The motivation of this thesis is to open new fundamentals in gait recognition 

especially in placing the smartphone on hand during walking for data collection. At 

the same time, if a person does not has any pocket or pouch as the clothes may not 

have it, using hand would be the best place for placement. Besides that, the 

interpolation rate should be analysed too before proceeding to further processes. In 

the classification stage, multiclass classification with automatic oversampling can 

be employed to increase the balance of dataset hence increasing the overall 

accuracy. This would save the researcher’s effort especially when they need to 

generate more features for extraction. 

 

1.2 Problem Statement 

The first problem discusses the position of the smartphone for data collection. 

Various smartphone sensor placement has been used in past research such as 

pocket (Derawi & Bours, 2013; Hoang et al., 2015; Sun et al., 2014), pouch 

(Hoang et al., 2015; Trung et al., 2014; Nickel & Busch, 2013; Sun et al., 2014), 

clipped to the waistband of the clothes (Jordan et al., 2013), ankle (Sun & Yuao, 

2012; Zhang et al., 2015), other multiple parts of body (Ren et al., 2015) and arm 

(Zhang et al., 2015). In the real world situation, not many people would be able to 

place the smartphone at the mentioned location as above due to the limitation of 

culture clothing especially in female clothing attire such as baju kurung, 

cheongsam, saree, burqa and many more. Some of ladies clothing also do not have 

an appropriate pocket (Melanie, 2017). Having said that, a smartphone that is 

handheld or on hand is never been discussed. This probe a question whether the 

handheld based signal is viable or not. 

Another problem that arises is at the preprocessing stage which is related to the 

application of the linear interpolation. Since the source of the accelerometer signal 

is from the smartphone, the linear interpolation method is considered as one of the 

most favorable methods for re-sampling at a specific frequency (Derawi & Bours, 

2013; Derawi et al., 2010; Gafurov et al., 2006; Hoang et al., 2015; Hoang et al., 

2013; Muaaz & Mayrhofer, 2013; Muaaz & Nickel, 2012; Nickel et al., 2011; 

Sprager & Zazula, 2009, 2011; Thang et al., 2012). However, according to our 

observation, there is an issue using different frequency rate which it does affect the 

overall recognition accuracy as it plays the number of samples for a particular 

person. In the past research, there is no investigation that checks the suitability of a 

specific sample rate. It means that before further pre-processing or action can be 

taken, a suitable frequency need to be determined.   

Another problem that we observed is at the classification stage which gait 

recognition does involve with many people which means many classes in the 

learning model. There are some works in gait recognition that use single classifier 

approach (Derawi & Bours, 2013; Hoang, et al., 2013; Nickel & Busch, 2013; Ren 

et al., 2015). However, using single classifier mapping does pose an overlapping 
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class issue and most of the classifier a very well suited with the binary class 

problem (Dietterich & Bakiri, 1995; Fernández et al., 2010). Hence multiclass 

classification mapping should be used to reduce the overlapped class boundary 

complexity. There is a work in gait recognition using OvO multiclass classification 

mapping (Muaaz & Mayrhofer, 2013) but it can be seen that OvO’s method do 

only compare with other class in binary mode instead of comparing with the 

combination of classes.  

Another issue that arises to us is the imbalance class problem, especially when 

using a multiclass classification problem. In general, many researchers do apply 

multiclass classification mapping for classification but they do not concentrate on 

the imbalance class problem as when generating new pairing dataset, a number of 

samples for a particular class in binary dataset do tend to be low while other class 

may be high. This problem will affect the overall accuracy as the data distribution 

among classes is not well spread (Fernández et al., 2010; Jain et al., 2014). 

 

1.3 Research Objectives 

The primary objectives of this research are to propose a new binarization 

classification method in-order to improve the efficiency of gait recognition using 

handheld based signal and at the same time reducing the problems suffered in the 

multiclass classification. In order to achieve the objective, the following sub-

objectives are adapted to form a new framework: 

1. To propose a method of data acquisition that uses hands. 

 

2. To propose a method in finding the best factor for linear interpolation. 

 

3. To propose the application of multiclass classification to overcome the 

possibility of an overlapped class boundary. 

 

4. To enhance oversampling for the binarized dataset on the current SMOTE 

method by adopting the automatic data requirement parameter. 

 

 

 

1.4 Research Scope 

The scope of this work is centralized on the gait identification application. A class 

in the dataset is referred to a person. The dataset is obtained only from the 

smartphone accelerometer sensor for both HHScD and OU-ISIR-2.  HHScD is the 

dataset that captured by placing the smartphones on hand. It is divided into three 
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types of position. OU-ISIR-2 is a dataset obtained from Osaka University that 

contains the largest gait database, consist of 408 subjects (Trung et al., 2014). So 

altogether, there will be four types of dataset that will be used to support the 

experimentation of the proposed method. 

Besides that, this research scope is focused on the preprocessing especially at the 

sampling rate and classification. The experiment is compared with several previous 

methods in the domain area. 

 

1.5 Research Contributions  

The overall contribution of this research is to present a new framework for gait 

recognition and multiclass classification. The main contributions are as follows: 

1. A new smartphone placement or position for gait signal data collection. 

 

2. A new method in linear interpolation by finding the best interpolation factor 

before further processing. 

 

3. Investigation on the performance OVA multiclass classification method in 

gait recognition 

 

4. Proposing the application of RCC multiclass classification to overcome the 

possibility of overlapped classes 

 

5. Introduction of SA-SMOTE for tackling imbalanced class issue in binarized 

classification method 

 

 

 

1.6 Organization of the Thesis 

The thesis is structured and organized into six chapters. The details are as follows: 

Chapter 1 explains a brief introduction of the background study in gait recognition 

in the view of various perspectives. The current application trend and the 

challenges are also discussed. The problem or limitations of the current systems, 

objectives, the scope and contribution are explained meticulously in this chapter. 
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Chapter 2 discusses the related works related to the field of gait recognition. At the 

same time, the challenges in gait recognition is reviewed in detailed. Besides that, 

the preprocessing methods such as linear interpolation are also discussed. The data 

acquisition, gait patterns, classification methods including imbalance are also 

discussed and reviewed in detail. 

Chapter 3 describes the overview of the conceptual research framework and the 

methodology used in gait recognition. In this chapter, the stages such as the 

proposed data collection, pre-processing, features extraction and classification are 

also described. 

Chapter 4 presents the detailed of the proposed framework that includes new 

proposed smartphone placement, linear interpolation factor deteminator, multiclass 

classification mapping using OvO, OvA and RCC. Then, self-adjusted SMOTE 

method is explained in detail together with the application of the RCC multiclass 

classification method. 

Chapter 5 explains the implementation process and all the experiments that have 

been conducted are highlighted. The performance analysis and validation results of 

the proposed method are discussed in detailed in this chapter. 

Chapter 6 depicts the discussion related to the strength and limitations of the 

proposed methods. Conclusion and future work that can be implemented in future 

are also explained. 
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