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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

A LIGHTWEIGHT AND SECURE ALGORITHM OF ELLIPTIC CURVE 
CRYPTOGRAPHY SCALAR MULTIPLICATION USING Q-NAF METHOD 

IN LOPEZ-DAHAB COORDINATE

By

WALEED KHALID AMIN ABDULRAHEEM 

April 2019 

Chairman :  Sharifah Bte Md Yasin, PhD 
Faculty  :  Computer Science and Information Technology 

Elliptic curve cryptography (ECC) is gaining increasing popularity and acceptance 
within the research community. This is because it uses shorter keys to achieve security 
level equivalent to other public-key cryptosystems. Over the years, special attention 
has been given to improving the scalar recoding algorithm, since it is the most 
computationally intensive operation of ECC.  

The general research objective of this thesis is to improve the efficiency of the scalar
multiplication algorithm of ECC in Lopez Dahab coordinate for elliptic curve over 
binary field. This is targeted at constrained-resource devices for the internet of things 
(IoT) such as field programmable gate array (FPGA), radio frequency identifications
(RFID) and smart cards. 

In literature, window w-NAF method is considered one of the best and most widely 
used methods for scalar recoding. However, this method does not stand against the 
recent side channel attack (SCA). The first objective of this thesis is to introduce a 
new scalar recoding algorithm to achieve better efficiency in terms of security and 
performance for constrained-resource devices. A new Q-NAF scalar recoding 
algorithm is proposed to improve the scalar recoding efficiency criteria. Specifically, 
these criteria includes, hamming weight HW (numbers of non-zeroes), security, and 
its performance in terms of execution time and memory consumption. To conform to
the application requirements of the IoT, the new algorithm improves w-NAF, where 
w=4. The proposed scalar recoding converts the binary scalar into {-1, 0, 1, 3, 5}-NAF 
using Q-NAF scalar recoding lookup table or a Q-NAF scalar recoding mathematical 
formula. Markov chain is used to calculate the HW of the lookup table. Q-NAF 
reduces the HW of the scalar by 81% on average for n-bit scalar rather than the 80% 
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HW for w-NAF. By coding the two algorithms, the proposed algorithm improves the 
execution time and memory consumption with a percentage of about 58% and 93% 
respectively. Theoretically, Q-NAF scalar recoding is proven to be secure against SCA 
in terms of timing and simple power attacks. 

Since the scalar recoding contains the digit 5 in the representation digits, using 
quintupling point 5P will increase the efficiency of the scalar multiplication. However, 
5P over Lopez-Dahab coordinate in the binary curve has not been considered in 
literature despite its potential to increase the scalar multiplication performance.  A new 
valid quintupling point 5P arithmetic formula is thus proposed to improve the cost of 
elliptic curve scalar multiplication method on binary curve over Lopez-Dahab 
coordinate. The proposed point is formulated as (2(2P) + P) using Al-Daoud for 
doubling and mix addition. The cost of the proposed point is 17M+12S. 

By combining the proposed scalar arithmetic and the new point arithmetic 5P, a new 
scalar multiplication algorithm was developed. This scalar multiplication algorithm is 
named Q-NAF scalar multiplication for binary curve over Lopez-Dahab coordinates. 
The proposed scalar multiplication is more efficient in term of performance than w-
NAF scalar multiplication. This is because Q-NAF method reduces the HW without 
the need to use the digit 7, which it is highly cost during point arithmetic. So, the 
proposed cryptosystem is more efficient than w-NAF while scalar recoding cost of 
points to recode and during the scalar multiplication. 

Finally, a new look-up table is proposed to optimize the formula {0, 1, 3}-NAF lookup 
table. The new lookup table reduces the size of the {0, 1, 3}-NAF lookup table from 
15X6 into 4X5. This is achieved by scanning two digits to produce one digit instead 
of three digits, which significantly reduces the time and memory with percentage of 
about 60% and 75% respectively.

In the first three contributions, a new Q-NAF scalar multiplication method is proposed 
for the three scalar levels, such that scalar recoding, point arithmetic and scalar 
multiplication. Compare to 4-NAF, Q-NAF scalar recoding gives better results in 
terms of HW, time, memory and security, Q-NAF proposed a new point quintupling 
which used in the scalar recoding. While 4-NAF used more digits in the first two 
contributions, Q-NAF scalar multiplication is better than 4-NAF scalar multiplication 
in terms of precomputed points, security, HW and performance. While for the fourth 
contribution, a modified lookup table is proposed to improve the original method in 
terms of time, memory and security. 
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Oleh 

WALEED KHALID AMIN ABDULRAHEEM 

April 2019

Pengerusi : Sharifah Bte Md Yasin, PhD 
Fakulti  :   Sains Komputer dan Teknologi Maklumat 

Populariti dan penerimaan kriptografi lengkung eliptik (ECC) dalam komuniti 
penyelidikan semakin meningkat. Ini kerana ia menggunakan kekunci yang lebih 
pendek untuk mencapai tahap keselamatan yang sepadan dengan kriptosistem utama 
awam yang lain. Selama bertahun, perhatian khas diberikan bagi meningkatkan 
algoritma pengekodan skalar, kerana perkara ini merupakan operasi yang paling 
intensif dalam komputasi ECC. 

Objektif penyelidikan umum tesis ini adalah untuk meningkatkan kecekapan 
algoritma pendaraban skalar ECC melalui Lopez Dahab bagi menyelaras lengkung 
elips ke atas bidang binari. Ini telah disasarkan pada peranti sumber daya terkurung 
untuk ‘perkara dalam internet’ (IoT) seperti jajaran pintu masuk boleh diprogram 
(FPGA), pengenalan frekuensi radio (RFID) dan kad pintar. 

Dalam literatur, kaedah tertingkap w-NAF dianggap salah satu kaedah terbaik dan 
paling banyak digunakan untuk pengekalan skalar. Walau bagaimanapun, baru-baru 
ini kaedah ini tidak menentang serangan saluran sampingan (SCA). Objektif pertama 
tesis ini adalah untuk memperkenalkan algoritma pengekalan skalar baru untuk 
mencapai kecekapan yang lebih baik dari segi keselamatan dan prestasi untuk peranti 
sumber daya terkurung. Algoritma pengekodan skalar Q-NAF telah dicadang untuk 
meningkatkan kriteria kecekapan pengimbasan skalar. Khususnya, kriteria ini 
termasuk, ‘berat hamming’ HW (bukan nombor sifar), keselamatan, dan prestasinya 
dari segi masa pelaksanaan dan penggunaan memori. Untuk mematuhi kehendak 
aplikasi IoT, algoritma baru meningkatkan w-NAF, di mana w = 4. Pengekalan skalar 
yang dicadang bagi menukar skalar binari menjadi {-1, 0, 1, 3, 5} -NAF menggunakan 
jadual carian pengimbasan skalar Q-NAF atau formula matematik berskalar yang 
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dikod Q-NAF. Rantaian Markov digunakan untuk mengira HW jadual carian. Q-NAF 
mengurangkan scalar HW sebanyak 81% secara purata untuk skalar n-bit, bukannya 
80% HW untuk w-NAF. Dengan pengekodan kedua algoritma, algoritma yang 
dicadangkan dapat memperbaiki masa pelaksanaan dan penggunaan memori dengan 
peratusan masing-masing sekitar 58% dan 93%. Secara teori, pengekalan skalar Q-
NAF terbukti selamat terhadap SCA dari segi masa dan serangan mudah kuasa. 

Oleh kerana skalar yang dikod mengandungi angka 5 dalam digit perwakilan, dengan 
menggunakan titik quintupling 5P akan meningkatkan kecekapan pendaraban skalar. 
Walau bagaimanapun, 5P di atas koordinat Lopez-Dahab dalam lengkung binari tidak 
dipertimbangkan dalam literatur, walaupun berpotensi dalam meningkatkan prestasi 
pendaraban skalar. Oleh itu, formula aritmetik 5P titik kuantiti yang sah adalah 
dicadangkan untuk menambah baik kos kaedah pendaraban skalar lengkung elips pada 
lengkung binari ke atas koordinat Lopez-Dahab. Titik yang dicadangkan formulanya 
sebagai (2 (2P) + P) dengan menggunakan Al-Daoud untuk menggandakan dan 
penambahan tambahan. Kos titik yang dicadangkan ialah 17M + 12S. 

Dengan menggabungkan aritmetik skalar yang dicadangkan dan aritmetik titik 5P 
baru, algoritma pendaraban skalar baru telah dibangunkan. Algoritma pendaraban 
skalar ini dinamakan multiplikasi skalar Q-NAF untuk lengkung binari berbanding 
koordinat Lopez-Dahab. Pendaraban skalar yang dicadangkan lebih berkesan dari segi 
prestasi berbanding pendaraban skalar w-NAF. Ini kerana kaedah Q-NAF 
mengurangkan HW tanpa perlu menggunakan angka 7, yang sangat tinggi semasa 
aritmetik titik. Oleh itu, kriptosistem yang dicadangkan adalah lebih cekap daripada 
w-NAF melalui kos pengiraan skalar untuk dikod serta semasa pendaraban skalar. 

Akhir sekali, jadual paparan baru dicadangkan untuk mengoptimumkan jadual carian 
{0, 1, 3} -NAF. Jadual carian baru mengurangkan saiz jadual carian {0, 1, 3} -NAF 
dari 15X6 ke 4X5. Ini dapat dilaksanakan dengan mengimbas dua digit untuk 
menghasilkan satu digit dan bukannya tiga digit, secara signifikan dapat 
mengurangkan masa dan memori dengan peratusan masing-masing sekitar 60% dan 
75%.

Dalam tiga sumbangan pertama, kaedah pendaraban skalar Q-NAF baru dicadangkan 
untuk tiga tahap skalar, seperti pengekalan skalar, aritmetik titik dan pendaraban 
skalar. Perbandingan antara 4-NAF dan Q-NAF, pengimbasan skalar Q-NAF memberi 
hasil yang lebih baik dari segi HW, masa, memori dan keselamatan, Q-NAF 
mencadangkan titik mata baru yang digunakan untuk pengimbasan skalar. Sementara 
4-NAF menggunakan lebih banyak digit dalam dua sumbangan pertama, pendaraban 
skalar Q-NAF pula adalah lebih baik daripada pendaraban skalar antara 4-NAF dari 
segi titik, keselamatan, HW dan prestasi. Walaubagaimanapun, untuk sumbangan 
keempat, jadual carian yang telah diubahsuai pula dicadangkan untuk memperbaiki 
kaedah asal dari segi masa, memori dan keselamatan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction     

Technological advances made in the development of smart devices and e-
communication has affected almost all facets of life. By 2020, more than 30 billion 
devices are expected to be connected to the internet in what is called Internet of Things 
(IoT). This unprecedented number of devices, along with their expected fast increase, 
puts two principal concerns, i.e. security and power consumption on the spot light. 
Constrained-resource devices are a major component of this recent technology, where 
memory and power are limited, while secure communication channel is crucial. These 
constrained-resource devices access and connection flexibility that recent technology 
makes occur with various threats and introduces the need for computational and 
performance-demanding security mechanisms (Suárez-Albela, Fraga-Lamas, & 
Fernández-Caramés, 2019).

Constrained-resource devices like RFID and sensors are applied in diverse areas to 
sense, transmit and store sensitive information. The most appropriate technique to 
ensure privacy and confidentially of the sensitive information is cryptography. 
Usually, digital signature and encryption are used to secure documents during storage 
and transmission. Due to the device limited computational strength, capability of the 
device resources such as time, memory, energy and security by encryption schemes 
must be minimized. This way, constrained-resource devices can also participate in 
secure communication channel (Aditia, 2019). 

Lightweight cryptography scheme is a branch of cryptography supported by the 
National Institute of Standards and Technology (NIST). Lightweight cryptography 
consumes minimal execution time, memory consumption, energy and bandwidth. 
Devices such as embedded frameworks, RFID, wireless sensor network (WSN) and 
field programmable gate array (FPGA) are on the lower end of the constrained-
resource devices range (Shah & Engineer, 2019). 

To secure digital information on constrained-resource devices from attackers,
different cryptosystem algorithms are implemented at the core of the cryptographic 
protocol to encrypt and decrypt the data. Two main subsets of the method are 
symmetric and asymmetric cryptography (Baccarini & Hayajneh, 2019).   

1.1.1 Cryptography 

Cryptography is mainly concerned with establishing the secrecy between the 
communication entities. The term cryptography expresses the art of writing or solving 
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the codes in this world either everything is private, or everything is public to all for 
free access. Cryptography rises from the old Greeks; it means encoding message to be 
shared with other people. This encoded message is transferred through the public 
communication way so that no eavesdropper can understand the plain message even 
he carries that cipher message (Ajith, Balaji Ganesh Kumar, Latha, Samiappan, & 
Muthu, 2018).

Recently, cryptosystem protocols are being designed to improve the strength of 
security algorithms with information transmission. Different branches of knowledge 
are involved in these cases. These include using number theory, mathematics, 
information theory, statistics and computational complexity. For the purpose of data 
transmission and data storage, these areas of knowledge applied to cryptography aims 
to provide four cryptographic services which are confidentiality, integrity,
authentication and non-repudiation. Confidentially service ensures information 
remains secret, and integrity service ensure that the information has not been changed, 
authentication service ensures the origin of the message is correctly identified, 
whereas non-repudiation service ensures that both sender and receiver will not deny 
the transmission commitment (Bhat & Kapoor, 2019).

1.1.2 Public-Key Cryptosystem

Generally, cryptology has two major types, i.e., private key and public key 
cryptography. The term private key or symmetric key cryptography refers to any 
system that utilizes one key for both encryption and decryption of the plain text for 
communicating parties involved. On the other hand, the public key cryptography 
refers to any system that utilizes a pair of keys, one is used for data encryption (the 
public key), while the other is used for data decryption (the private key). Although 
private key cryptography (symmetric) is achieving highly efficient, it has drawbacks 
with key management, non-repudiation service and efficient secure key distribution 
through a communication channel  (Hodgson, 2019).

Examples of symmetric cryptosystem Data Encryption Standard (DES), Advance 
Encryption Standard (AES), Carlisle Adams and Stafford Tavares (CAST), Blowfish, 
Two fish, International Data Encryption Algorithm (IDEA), and secure and fast 
encryption routine (SAFER) algorithms. Other cryptographic algorithms such as 
Rivest, Shamir and Adleman (RSA), digital signature algorithm (DSA), Elgamal, and 
elliptic curve cryptography (ECC) are examples of asymmetric cryptosystem 
algorithm. Asides the aforementioned categories, there is hash function, which uses a 
mathematical transformation to iterate a compression function on the input message,
such as message digest (MD) and SHA family. These categories of cryptography 
algorithms are as illustrated in Figure 1.1 (Dixit, Gupta, & Trivedi, 2018) . 
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Figure 1.1 : Classification of the cryptographic algorithm 

Public key cryptography simplifies the mechanism of key distribution, and ensures 
information can be made confidential by encrypted with public key (Baek et al., 2019).
If using asymmetric cryptosystem offers a better key distribution solution, however, 
performance is slower than symmetric cryptosystem (Baccarini & Hayajneh, 2019). 
The security of modern asymmetric cryptosystem depends on the hardness of 
mathematical problems, such as integer factoring problem (IFP), discrete logarithm 
problem (DLP), elliptic curve discrete logarithm problem (ECDLP) and others (Liu, 
Choo, & Grossschadl, 2018). 

1.2 Problem Statement 

Working on the security of constrained-resource devices is essential. Cryptography is 
one of the significant ways to ensure privacy and to protect information from 
unauthorized personel. In ECC applications and protocols, the scalar multiplication 
algorithm is considered as a major operation (Thangarasu & Selvakumar, 2018). The 
elliptic curve scalar multiplication computational process is the most time and 
resource consuming operation. 

Implementation of ECC is a challenge for constrained-resource devices such as mobile 
technology devices, personal digital assistants (PDA’s), embedded systems, sensors 
and smart cards (Bafandehkar, Yasin, Mahmod, & Hanapi, 2013). These devices have 
constraints in memory, CPU, energy consumptions and battery, while the performance 
like timing and speed are highly required with privacy (security) usage. 

The width non-adjacent form ( -NAF) method was proposed by (Okeya & Takagi, 
2003a). The main objective of this method is to provide fast scalar multiplication using 
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small memory, and to be secure against side channel attack (SCA). Recently, -NAF 
method has been still widely used to reduce the computational cost in ECC and it is 
considered as one of the best methods known so far (Dou, Weng, Ma, & Wei, 2017). 
However, -NAF, double-and-add algorithm and width-4 NAF methods are prone to
and not more secure against SCA, (Abdulrahman & Reyhani-Masoleh, 2015) &
(Järvinen & Balasch, 2017). The algorithm representation of the key in -NAF is 
vulnerable to several SCA attacks, such as cache-timing attacks. This is due to its non-
constant time execution which targeted previously using cache-timing techniques 
(Tuveri, Hassan, Garcia, & Brumley, 2018), this prove that the algorithm of -NAF 
needs to be improved in term of security. The suitable width for -NAF to be used in 
constrained-resource devices is  for its number operation required (M. F. De 
Oliveira & Henriques, 2015), since 4-NAF requires only 3P, 5P and 7P precomputed 
points. Related literature on -NAF attempted to reduce its HW such as multi-base 

-NAF method (Longa & Gebotys, 2010) and -NAF method (Méloni & 
Hasan, 2016). Reducing the HW will increase the performance of scalar multiplication 
(Musa & Xu, 2017). However, the high precomputed point also is costly in terms of 
time, memory, CPU and battery power for constrained-resource devices (Bafandehkar 
et al., 2013). Selecting less precomputing points such as 3P and 5P only in the scalar 
recoding with the same HW of 4-NAF scalar recoding will increase the efficiency of 
scalar multiplication, without losing its security characters. 

The scalar multiplication performance depends on the performance of the elliptic 
curve point operations. Point multiplication is important and dominates the execution 
time of the elliptic curve (Rashidi, 2017). Basically in the operation, there is

(  times), where  the secret (private) key is a 
positive integer, and  are two points on a curve. Binary curve according to NIST 
requires a smaller key size to be secure than the prime curve (NIST, 2013). Over binary 
curve, Lopez-Dahab (LD) coordinate gives the best performance for elliptic curve over 
the binary field (S. Yasin & Muda, 2015) (Rashidi, 2017) and it is the most studied 
coordinate system for binary elliptic curves (T. Oliveira, López, Aranha, & Rodríguez-
Henríquez, 2014). According to (Musa & Xu, 2017), the point quintupling 5P using 
LD is not available in the literature. Since scalar multiplication can be improved by 
using efficient point operations (S. Yasin & Muda, 2015), introducing point 
quintupling 5P will be efficient for scalar multiplication 

Introducing a new scalar recoding and point arithmetic should be accomplished with 
scalar multiplication algorithm. Different scalar multiplication methods have been 
proposed, however, double-and-add method has remained the most straightforward 
form to compute scalar multiplication (Mostafa, 2018). Double-and-add method 
entails doubling all scalar digits while adding the nonzero digits only (Allan, Brumley, 
& Falkner, 2016). 

{0, 1, 3}-NAF scalar recoding method is introduced by (S. M. Yasin, 2011). The 
method uses lookup table of size 15 rows and 6 columns. During the recoding process, 
the proposed lookup table scans three consecutive digits to produce one. The original 
lookup table contains two special cases during recoding execution, which require more 
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time than other, non-constant time execution of these two special cases according to 
other cases make the lookup table vulnerable to SCA. Improving a lookup table which 
reduces the scanning digits from three into two and contains no special cases will be 
more efficient and secure. 

1.3 Research Objectives 

In general, working on ECC scalar multiplication contains three levels of computation 
(Rezai & Keshavarzi, 2011) and (Bafandehkar, Yasin, & Mahmod, 2016) as shown in 
Figure 1.2. For an efficient scalar multiplication algorithm, it is necessary to 
accomplish the three levels of arithmetic operation.     

Figure 1.2 : Computational levels in the scalar multiplication 

The principal objective of this thesis is to propose a scalar multiplication algorithm 
with a simple form and less cost for elliptic curve over binary field. A number of other 
objectives must be accomplished. These objectives are discussed in what follows: 

Propose New Scalar Recoding Algorithm 

Hamming weight (HW) is the number of nonzero digit in the binary number. The 
efficiency of the scalar multiplication  depends on the number of hamming weight 
in the scalar k. The proposed Q-NAF scalar recoding algorithm converts the binary 
number of k into {-1, 0, 1, 3, 5} digits since it is the only digits use in 3 bits lookup 
table. The Q-NAF scalar recoding has the non-adjacent form (NAF) property. Q-NAF 
scalar recoding algorithm can be represented either in form of lookup table or 
mathematical formula. In order to cater for the application requirement of resource 
constrained devices The new algorithm makes a trade-off between the performances 
of the recoding algorithm with respect to hamming weight, security, time, and memory 
consumption, so as to be suitable for constrained-resource devices. Binary field is 

Level 1
• Scalar Arithmetic

Level 2
• Point Arithmatic

Level 3.
• Field Arithmatic
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chosen since its secured key size is smaller than prime key size, which is more suitable 
for constrained-resource devices. 

Propose a New Point Quintupling (5P) for General Binary Curve Using Lopez-
Dahab Coordinate 

To achieve an efficient elliptic curve scalar multiplication performance, precomputed 
points help to realize a faster computation (T. Oliveira et al., 2014) which takes away 
the need to repeat the addition process every time. Mixed addition in Affine and 
Lŏpez-Dahab is used for point formula since the mixed addition computation cost is 
better than the traditional addition in Lopez-Dahab coordinates (S. Yasin & Muda, 2015).
While using digit 5 in the scalar recoding, new point arithmetic namely Quintupling 
(5P) is proposed for the general binary curve for implementation in scalar 
multiplication. To save the quintupling (5P) cost, it is computed as (2(2P) + P) where 
two doubling and one mixed addition is required. The quintupling cost is measured by 
calculating the number of field operation in the computation. 

Propose New Scalar Multiplication Algorithm  

Scalar multiplication algorithm is the main computation in the ECC. Thus, after 
introducing a new scalar recoding arithmetic and a new point arithmetic, there is a 
need to have a new Q-NAF scalar multiplication algorithm to integrate the scalar 
recoding and the new point quintupling. The complexity of Q-NAF is measured by 
counting the number of point operations per scalar during its execution. 

Improve the lookup table of {0, 1, 3}-NAF method        

The NAF was introduced as an efficient and lightweight method used to 
recode the scalar with NAF property. The original method uses  lookup table which is 
of size 15x6, contains special cases and scan three digits to produce one through scalar 
recoding process. For more efficiency, this study aims to propose a modified lookup 
table smaller in size than the original, scanning two digits instead of three digits and 
contains no special case while recoding to be secure against SCA. The proposed 
lookup table aims to be more efficient in terms of time, memory and security.  

1.4 Research Contributions 

This research contains four contributions at different ECC computational levels as in 
Figure 1.1 above. These contributions are highlighted as following: 

1.4.1 Q-NAF Scalar Recoding Algorithm 

Q-NAF scalar recoding method is proposed as an improvement to the -NAF method 
where  for specifically caters for constrained-resource devices. The proposed 
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method recodes the scalar from binary into {-1, 0, 1, 3, 5}-NAF. Q-NAF can be 
executed using either lookup table or its associated mathematical formula. HW of Q-
NAF is  (where  is scalar size). Q-NAF is more efficient compared with 4-NAF 
in terms of time, memory and security. 

1.4.2 New Quintupling Formula for Point Arithmetic 

A new 5P point arithmetic formula for Lopez-Dahab coordinate system is proposed 
over the binary curve. The new quintupling point (5P) is introduced using the formula 
5P = 4P + P = 2(2P) + P using Al-Daoud formula (Al-Daoud, Mahmod, Rushdan, & 
Kilicman, 2002) for doubling and mix addition with cost 17M+12S. 

1.4.3 Q-NAF Scalar Multiplication Algorithm 

The Q-NAF scalar recording and the new quintupling point 5P arithmetic formula are 
integrated into the design of Q-NAF Scalar Multiplication for Lopez-Dahab 
coordinate over the binary curve using the double-and-add method.  

1.4.4 Improving the Lookup Table of {0, 1, 3}-NAF Method     

A new Lookup table is proposed to improve the {0, 1, 3}-NAF lookup table. The new 
lookup table reduces table size from 15x6 into 6x5 without special cases and with 
constant time during execution for all rows. The improved table scans two digits only, 
which improved execution time and memory consumption. 

1.5 Research Scope 

This work concentrates on the first two levels of scalar multiplication, the scalar 
recoding and point arithmetic.  It includes proposing, enhancement, and analysis of 
the scalar multiplication for an elliptic curve using LD in the binary field. For the 
improvement on scalar arithmetic, -NAF is chosen to compare where .

1.6 Thesis Outline 

This thesis is organised as follows: 

Chapter 2 introduces the related literature in general to this work and the associated 
background information on cryptography and the elliptic curve cryptography. It gives 
an introduction to each level in the computational scalar multiplication. In Chapter 3, 
the methodology of this research is proposed by introducing a general scheme which
contains four phases related to problem identification, suggested solution, analysis and 
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performance evaluation and expected results phase. Chapters 4, 5, 6 and 7 discuss the 
proposed contributions 1, 2, 3 and 4 respectively and their associated results. Diverse 
techniques used for deriving and substantiating these results such as algorithms,
lemmas, mathematical proofs and coding are also detailed in these chapters. Chapter 
8 concludes this thesis with an overall summary of these contributions and makes 
suggestions for future research. 

1.7 Summary 

Thesis implication is summarized as in Table 1.1 below.  
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