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Machine vision has become an indispensable tool in automated steel surface 
inspection. Such technologies are able to facilitate or replace manual inspection 
methods with benefits such as manpower reduction and operator error 
minimization. In the last two decades, researchers have actively explored 
computer extractable visual features for steel surface inspection. However, 
existing approaches suffer from certain limitations that cause ineffectiveness. 
Specifically, (i) non-discriminating feature choices lead to poor inter-class 
separability; and (ii) classifier complexity coupled with high numbers of training 
epochs. Therefore, this research aims to propose two frameworks to improve the 
inspection performance of steel surface types.  
 
 
The first framework performs two tasks for machined surface texture 
classification and identification. The first task generates the most discriminating 
feature representation for surface texture. This is achieved through the proposed 
feature extraction method DST-GLCM, which integrates the Discrete Shearlet 
Transform (DST) and the Gray Level Co-occurrence Matrix (GLCM), producing 
a compact yet discriminative feature representation. A two-level classification 
scheme is then proposed combining the capabilities of the Support Vector 
Machine (SVM) and a proposed Consecutive Training with Collective Testing 
Artificial Neural Network (CTCT-ANN) technique. The SVM-level classifies the 
surface images into six categories based on surface texture features. This is 
followed by the CTCT-ANN-level where each of the surface textured images are 
further classified into sub-categories according to their surface roughness. 
Finally, the surface roughness parameters for all classified images are 
estimated. 
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The second framework extracts and combines different features (global and 
local) from hot-rolled steel surface images of different forms into different 
domains (spatial and frequency). This improves the image content description 
and offers a variant representation of the surface image. This is useful for surface 
defect detection and classification. The global features are extracted from the 
input image using the proposed DST-GLCM (from Framework-1). Local features 
are extracted after dividing each input image into four blocks. Then, local 
features/descriptors namely the GLCM, Uniform Local Binary Pattern (ULBP) 
and Speeded-Up Robust Features (SURF) are extracted from every block. All 
the extracted global and local features are combined in a high dimensional 
feature vector, whose dimensionality is later reduced using Principal 
Components Analysis (PCA). The final classification is accomplished using an 
SVM. 
 
 
Both frameworks are evaluated using two different datasets of steel surface 
images. The first framework uses Engineering Machined Textures (EMT) 
workpiece surface images produced using several machining processes. The 
second framework uses the Northeastern University (NEU) standard database 
that comprises surface images of hot-rolled steel strips with different defect 
types. The results in this research show improvement when compared with 
previous related studies. The maximum accuracy achieved in surface 
classification of EMT dataset was up to 100%, with a maximum error in surface 
roughness estimation of 0.004 micrometer. In addition, the maximum accuracy 
achieved in defect detection of NEU dataset was up to 99.34%. 
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September 2018

Pengerusi : Profesor Madya Fatimah Binti Khalid, PhD 
Fakulti  : Sains Komputer dan Teknologi Maklumat 
 
 
Teknologi penglihatan mesin menjadi alat yang sangat diperlukan dalam 
pemeriksaan permukaan keluli secara automatik. Teknologi sedemikian mampu 
membantu atau menggantikan kaedah pemeriksaan manual dengan faedah-
faedah seperti pengurangan tenaga kerja dan pengurangan kesilapan operator. 
Dalam dua dekad yang lalu, para penyelidik dengan aktifnya telah meneroka ciri-
ciri visual yang dapat diekstrak oleh komputer bagi pemeriksaan permukaan 
keluli. Walau bagaimanapun, pendekatan yang sedia ada mempunyai beberapa 
kelemahan yang mengakibatkan ketidakberkesanan. Secara khususnya, (i) 
Pilihan ciri yang tidak diskriminatif membawa kepada pemisahan antara kelas 
yang lemah; dan (ii) kerumitan pengelas dipadankan dengan bilangan epoch 
latihan yang tinggi. Oleh itu, penyelidikan ini bertujuan meneroka pilihan ciri yang 
paling diskriminatif di samping mencadangkan satu rangka kerja pengkelasan 
permukaan, identifikasi dan pengesanan kecacatan. Dalam tesis ini, dua rangka 
kerja dicadangkan; yang pertama adalah untuk pengkelasan dan pengenalan 
tekstur permukaan sementara yang kedua adalah untuk pengesanan dan 
pengkelasan kecacatan permukaan keluli. 
 
 
Kerangka pertama bertujuan menyelesaikan dua tugas. Tugas pertama adalah 
untuk menghasilkan perwakilan fitur yang paling diskriminatif untuk tekstur 
permukaan. Ini dicapai melalui kaedah pengekstrakan fitur yang dicadangkan 
iaitu DST-GLCM, yang merupakan penyepaduan Transformasi Shearlet Diskret 
(DST) dan Matriks Co-occurrence Aras Kelabu (GLCM) yang menghasilkan 
vektor fitur padat dan diskriminatif. Satu skema klasifikasi dua peringkat 
kemudiannya dicadangkan yang menggabungkan keupayaan Mesin Vektor 
Sokongan (SVM) dan satu teknik cadangan iaitu Latihan Berturut-turut dengan 
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teknik Rangkaian Neural Buatan Kolektif-Ujian (CTCT-ANN). Peringkat 
pengkelas SVM mengkelas imej permukaan kepada enam kategori berdasarkan 
fitur tekstur permukaan. Ini diikuti oleh peringkat CTCT-ANN di mana setiap imej 
bertekstur permukaan seterusnya dikelaskan lagi kepada subkategori mengikut 
nilai kekasaran permukaan. Akhirnya, parameter kekasaran permukaan untuk 
semua imej terkelas dianggarkan. 

 
 

Rangka kerja kedua bertujuan mengekstrak dan menggabungkan fitur dari 
bentuk imej permukaan yang berbeza (secara global dan tempatan) ke dalam 
domain yang berbeza (spatial dan frekuensi). Ini adalah untuk meningkatkan 
penerangan kandungan imej dan menawarkan variasi perwakilan imej 
permukaan yang berguna untuk pengesanan kecacatan dan klasifikasi. Fitur 
global diekstrak daripada imej input menggunakan kaedah DST-GLCM yang 
dicadangkan pada rangka kerja pertama. Fitur tempatan diekstrak selepas 
membahagikan setiap imej input kepada empat blok. Kemudian, kaedah GLCM 
tempatan, Corak Perduaan Tempatan Seragam (ULBP), dan kaedah Fitur 
Berkualiti Berkelajuan Tinggi (SURF) digunakan untuk mengekstrak fitur dari 
setiap blok. Semua fitur global dan tempatan yang diekstrak daripada setiap imej 
digabungkan dalam vektor ciri dimensi tinggi. Saiz vektor ini kemudiannya 
dikurangkan dan klasifikasi akhir dicapai berdasarkan SVM. 

 
 

Kedua-dua rangka kerja dinilai menggunakan dua set data permukaan gambar 
keluli yang berbeza. Rangka kerja pertama menggunakan imej permukaan 
bahan kerja Tekstur Mesin Kejuruteraan (EMT) yang dihasilkan menggunakan 
beberapa proses pemesinan. Rangka kerja kedua menggunakan pangkalan 
data standard Northeastern University (NEU), yang terdiri daripada imej 
permukaan jalur keluli yang beroperasi dengan pelbagai kecacatan yang 
berlainan. Keputusan dalam kajian ini menunjukkan peningkatan berbanding 
dengan kajian yang berkaitan sebelumnya. Ketepatan maksimum yang dicapai 
dalam pengkelasan permukaan bagi set data EMT adalah sehingga 100%, 
dengan ralat maksimum dalam pengukuran kekasaran permukaan 0.004 
mikrometer. Tambahan lagi, ketepatan maksimum yang dicapai dalam 
pengesanan kecacatan bagi set data NEU adalah sehingga 99.34%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Steel is the material used in a large number of industrial applications. The steel 
surface and its texture are considered to be the essential components in creating 
high quality steel strips (Davim 2010). Automatic steel surface inspection 
systems are the key element of quality control in modern steel industry. The 
quality of flat steel surface is the most important parameter to ensure the quality 
of the final product (Neogi et al. 2014). In traditional inspection, surface quality 
of the flat steel products, which are in coil form, is judged manually by cutting a 
small sample of a random coil in a batch and inspected by an expert. Typically, 
in this process the inspected surface is not sufficient to judge the whole produced 
material (Neogi et al. 2014). The manual inspection process is considered to be 
speed limited and can be influenced by fatigue, errors, inconsistency and other 
adverse factors of human’s capabilities (Smith 1991). Thus, the manual 
inspection process is insufficient to guarantee the surface quality of steel 
products with reasonable degree of confidence and naturally, need for 
automated surface inspection grew. During the last two decades, automated 
vision-based inspection techniques of steel surfaces have been found to be very 
effective to replace the manual-based methods (Xie 2008; Song et al. 2014; 
Neogi et al. 2014). In manufacturing, machine vision systems are usually applied 
for inspection of surface defects, sheet metal formed parts, monitoring and 
control of rolling process and most widely used in tool condition monitoring of 
conventional machining (Dutta et al. 2014).  

Generally, in order to recognize an image accurately in surface texture 
classification and defect detection problems, different types of features are 
required to be extracted from the desired image (Tuceryan and Jain 1993). 
Insufficient features extracted from an image may lead to the shortcomings of 
the current systems such as low detection rate of various defects (images are 
classified incorrectly), and high rate of false alarms (images are misclassified as 
defective) (Kutyniok 2012; Neogi et al. 2014). Image texture can be seen as an 
image area containing repeated patterns of pixel intensities arranged in some 
structural way (Baaziz et al. 2010). The spark for this research came from the 
industry’s lack of effective automated visual inspection on the steel profile 
surfaces. This is due to the complexity of detecting the specific surface texture 
roughness of the machined steel and the surface defects on the hot-rolled steel 
strips during manufacturing. 
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1.2 Problem Statement  

i. Non-discriminating Properties of Global Descriptors Extracted from 
Machined Surface Images: Machining processes produce unwanted 
surface features during manufacturing due to several reasons e.g. tool  
work system deflection, chatter, cutting tool wear, built up edge, chip flow, 
and the thermal effects of the cutting process (Dutta et al. 2014). Since, 
every machining process is different, these features, which are part of the 
general surface topology, are unique and characteristic to each machining 
process. These characteristic surface textures can, thus, be used to 
identify the type of machining process and determine important 
information such as the machine tool's kinematics, cutting tool geometries, 
and machining errors (Patwari et al. 2012). This salient information, about 
the particular machining process, are vital in meeting the basic goal of any 
modern manufacturing process, namely, productivity and product quality 
(Datta et al. 2012). The existing global feature approaches applied to 
machined steel surface images suffer from certain limitations. For instance 
the features extracted using Continuous Wavelet Transform (CWT) in 
Abu-Mahfouz et al. (2017) has limited directional properties to three 
dimensions only (vertical, horizontal and diagonal), where the surface 
texture information may lay in multiple directions. This causes loss of the 
desired texture information extracted from an image which can lead to 
poor classification accuracy. Moreover, many frameworks such as in 
Singhka et al. (2016), Chondronasios et al. (2016), Simunovic et al. (2016) 
and Samtaş et al. (2014) used statistical feature approaches like Gradient-
only Co-occurrence Matrices (GOCM), traditional GLCM, or binary image 
representation. Although these methods are significant for surface texture 
representation besides implementing those features can be fast and 
simple, but the effectiveness of such approaches can still be questionable 
due to the lack of spectral information. 
 

ii. Limitation of Learning Algorithms Leading to Poor Texture 
Roughness Estimation: Accurate roughness estimation of machined 
surface texture is mainly depending on two important steps of 
discrimination. Firstly, machining-process type classification, secondly 
texture roughness identification. Recently, Artificial Neural Networks have 
been playing a significant role in textures classification and recognitions 
(AlQoud et al. 2016; Wang et al. 2015; Rekha & Shahin 2015; Yuce et al. 
2014). Many researches in the past have reported the effectiveness and 
the good performance of Artificial Neural Networks (ANN) in texture 
classifications (Rekha & Shahin 2015; Yuce et al. 2014; Singhka et al. 
2014) and object recognition (Maria & Balaji 2016; Wang et al. 2015; 
Nagathan & Mungara 2014). Nevertheless, when large datasets are used, 
traditional ANNs have not become the best choice for this domain (Nayak 
et al. 2015), where in order to reach a high performance (accuracy) the 
network architecture must be more complex and thus number of learning 
epochs that a network takes in training phase will increase. Many existing 
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researches of surface roughness estimation considered the use of single 
classification scheme for machined texture. For example Abu-Mahfouz et 
al. (2017) and Xu et al. (2015) used the Support Vector Machine (SVM) 
which was able to classify images into its machining classes. However, 
SVM-based classification methods usually assign images into its 
corresponding classes without giving any actual numerical output to 
measure the extent of similarity between the classified image and its 
corresponding class. As an alternative way Singhka et al. (2016) and 
Singhka et al. (2014) used ANN in classification, but the discrimination 
between various texture roughness types requires a complex model of 
ANN to increase the learning process. Overall, the main issue of the 
aforesaid single-based approaches lies in the accuracy, where some 
texture roughness classes can share similar feature description, which 
causes certain algorithms to detect false alarms. Another issue is 
regarding model training time, which is a very lengthy process and 
normally requires tweaking of model parameters.  
 

iii. Inaccurate Detection of Surface Defects, and Less Description of 
Extracted Image Features: Hot-rolled steel surface defects are 
multivariate (e.g. in types, shapes, and orientations) (Zhou et al. 2017; 
Neogi et al. 2014; Song et al. 2014) so detecting these defects accurately 
in images requires extracting features in different perspectives (e.g. locally 
and globally) (Li et al. 2013), as well as in different domains such as spatial 
and frequency (Xiao et al., 2017). Furthermore, a robust defect detection 
process is the one which can be relying on extracting the most relevant 
features from input images in both spatial domain and frequency domain 
locally and globally. Although spatial domain features extraction methods 
are significant in detecting the statistical low-level features such as colors, 
edges, corners, blobs, spots, and size of line segments (El-Gayar & 
Soliman 2013), nevertheless it miss to capture the multi-orientation and 
scale information which are extracted by frequency domain feature 
methods (Baaziz et al. 2010). Thus, depending on feature extraction 
methods in one single domain means; discarding the features produced 
by the other domain and those features might be useful in the final 
discrimination between different defects on the surface image. 
Consequently, this allows to detect the surface defects under specific 
detection conditions only, such as obvious defect contours with strong 
contrast and low noise, at certain scales, or under specific illumination 
conditions. 

 
 
1.3 Research Questions  

Based on the discussed problem statements, follows are the research questions 
addressed in this research work. 
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 What are the best multi-directional feature extraction methods to 
increase the surface texture classification accuracy of the engineering 
machined workpiece? 

 Is it applicable for one standalone feature to accomplish the above 
tasks or does it requires combination of multiple features?  

 How to extract multiple global and local features from hot-rolled steel 
images to increase the effectiveness of surface defect detection 
process?  

 Are the SVM, ANN and k-NN classifiers accurate enough for steel 
surface recognition and discrimination problem?  

 Are the existing ANNs techniques suitable for surface roughness 
identification problem in terms of accuracy, and complexity?  

 How to build multi-level classifier based on SVM and ANN for accurate 
surface discrimination of engineering machined textures.  

 
 
1.4 Main Aim and Objectives

The main aim of this research is to formulate two effective frameworks for steel 
surface images that leads to; (i) Classification of the machined surface texture 
and identification of its roughness value. (ii) Detection and classification of the 
surface defects in hot-rolled steel strips. To achieve this, the following tasks are 
to require: 

1. To increase the classification accuracy of machined steel surface images by 
extracting multiple global texture features. 

2. To improve the performance of machined steel surface texture roughness 
estimation by using two-level discrimination scheme. 

3. To improve the inspection performance of hot-rolled steel strips surface to 
produce high-quality steel products with defect-free surfaces. 

1.5 Scope of Research 

The two steel surface datasets used in this work are; the Engineering Machined 
Textures (EMT) workpiece surface images, referred as EMT dataset, and the 
Northeastern University (NEU) standard database (Song & Yan 2016) referred 
as NEU dataset. The former dataset was collected and prepared typically for the 
purpose of conducting this research. It is divided into six classes of Turning, 
Grinding, Lapping, Horizontal-Milling, Vertical-Milling and Shaping. Each class 
comprises 48 images which are divided into six sub-classes. The images of each 
sub-class are equal in roughness value but different in machining parameters 
(i.e. cutting speed, feed rate, and depth of cut). In the latter dataset, 1800 
samples are divided equally into six classes of typical surface defects of the hot-
rolled steel strips. The six types of defects are collected as; Rolled-in Scale (RS), 
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Patches (Pa), Crazing (Cr), Pitted surface (PS), Inclusion (In) and Scratches 
(Sc). 

1.6 Research Significance

The product quality of steel is mainly controlled by the process of machining. 
Machined surface finish, is one of the key attributes to determine the product 
quality which are dependent mainly on the condition of cutting tool wear. Tool 
wear is dependent on machining conditions, machine tool condition, combination 
of cutting tool and work piece material, work piece geometry, tool geometry, 
alignment of work piece and cutting tool, cutting chip condition etc. (Dutta et al. 
2014). Thus, it is required to monitor the steel surfaces to control the condition 
of cutting tool wear to achieve better performance of machining, avoiding 
machine tool damage and accomplishing the required product quality. 

The main significance of this work is the ability to extract the most suitable, 
effective, and minimized features’ set from steel surface images, which leads to 
higher classification accuracy of different surface texture types, roughness 
values, and defects. In engineering machined surface texture classification, the 
surface texture features are extracted and consequently analyzed to help 
engineers semi- or fully-automatically identify specific machining processes 
used during production. This allows the important information that characterize 
the surface roughness finish grade to be acquired such as the machining 
technique used, the specific tool kinematics, and the identification of possible 
material defects or anomalies (Dutta et al. 2014).  The various surface defects 
or imperfections produced on the hot-rolled steel during manufacturing 
processes may not only affect the product appearance, but may also reduce 
corrosion resistance, wear resistance and fatigue properties (Singhka et al. 
2014). The dimensional size of the extracted features can be reduced to the 
lowest suitable size, which is done by removing redundant and irrelevant 
features without losing the essential variability present in the original data 
representation.  

Optimizing the architecture model (complexity) of the classifier by performing the 
training phase in series (successive manner) can also play a major role in 
increasing the number of true positives (TP), and reducing the training time 
consumed during classification process. 

1.7 Contributions 

The work in this thesis presents two main frameworks that led to three salient 
contributions which are: 
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1. Introducing a new global features extraction method DST-GLCM that 
integrates the Discrete Shearlet Transform (DST) and the Gray level Co-
occurrence Matrix (GLCM) for machined steel surface texture classification. 

2. Proposing a two-level discrimination scheme using SVM and Consecutive 
Training and Collective Testing-ANN (CTCT-ANN) to improve the machined 
steel surface texture roughness estimation. 

3. Improving the inspection performance of hot-rolled steel surface images by 
combining the global and local features in both spatial and frequency 
domains. 
 

 
1.8 Thesis Outline 

This thesis consists of six chapters as illustrated in Figure 1.1. This chapter 
presents the research motivation, research background, problem statement, 
main aim and objectives, research questions, overview of research method, 
scope of research and research significance. The remainder of this thesis is 
organized as follows: Chapter 2 presents a background and literature review of 
the related studies in surface image recognition and classification. It introduces 
the techniques used for steel surface texture classification and roughness 
identification. This is reviewed along with the existing defect detections and 
feature extraction techniques.  

 
Figure 1.1 : Thesis Outline 
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Additionally, the chapter presents the techniques and accuracy results of 
previous researches implemented using the standard database of NEU hot-
rolled steel strips surface. Other related works were presented also in order to 
cover the most relevant work that has been performed recently. Depending on 
the analysis of the state of art, solutions were proposed and concluded in the 
chapter. Chapter 3 describes the research methodology used to conduct this 
study, where the proposed framework’s artifact and its evaluation methods are 
explained and discussed. At the end, a summary of this chapter is presented. 
Chapter 4 presents the first framework, where the process of acquiring EMT 
images and converting them into numerical representation is explained.  
Moreover, the EMT model implementation of the multi-directional features 
extraction methods is described along with the features reduction step. The 
multi-level classification and identification scheme based on SVM and CTCT-
ANN is also presented and evaluated in this chapter against other existing 
classifiers. Results achieved, evaluation of the results, and discussions of overall 
results are also included in the chapter. At the end, a summary of this chapter is 
presented. Chapter 5 presents the second framework and model implementation 
of the local and global integrated features for the surface defects detection using 
the NEU hot-rolled steel strips database. Results achieved, evaluations, and 
discussions of overall results are also included in the chapter. At the end, a 
summary of this chapter is presented. Finally, Chapter 6 concludes this thesis 
with remarks regarding limitations and possible future directions.  
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