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Malaysia experiences high total rainfall intensity, which increases soil erosion on steep 

slopes and causes a reduction in soil fertility, pollution of fresh and groundwater, and 

the degradation of adjacent lands. Although Malaysia has high rainfall, oil palm may 

still experience water stress due to high rainfall intensity which results in fast 

downslope water movement and little time for water to infiltrate into the soil. One of 

the most effective measures of soil and water conservation in Malaysia is the use of 

silt pits. The function of a silt pit is to control the runoff, trap and settle down the 

sediments, increase soil moisture or recharge the groundwater, reduce the effect of 

slope length and further reduce soil erosion and fertiliser losses. However, what is the 

optimal size and dimensions of a silt pit to enable the water to reach the farthest roots 

and empty slowly to release the water over the most extended period? What is the 

effect of the slope, runoff (volume of water), the volume of the pit, and type of soil of 

the spatial silt pit size? The study aimed to use the HYDRUS 2D/3D models and to 

formulate the simulation results as equations to select the optimal size and dimensions 

of a silt pit depending on the rainfall and soil properties. The treatments used in this 

study included the following four factors: seven type of soils (sand, sandy loam, loam, 

silt, sandy clay, silty clay, clay), six surface slopes (0˚, 5˚, 10˚, 15˚, 20˚, and 25˚), three 

silt pits sizes (3, 4, and 5 m3), each size having three depth levels (50, 75, and 100 cm), 

and several levels to cater for the volume of water available in the silt pit. Three stages 

were adopted in this study. The first stage utilised the software HYDRUS 2D/3D 

models to simulate the soil water content, wetting front, and time-to-empty from a silt 

pit of various sizes on different soils and slopes. The second stage distinguished the 

trend and determined the best fit by using statistical methods (Multiple linear 

regression (MLR) and Artificial neural network (ANN)) to estimate the optimal silt 

pit size. The last stage applied the fitted model to find the optimum silt pits in some 

areas of Peninsula Malaysia. From the simulation results, all parameters (distance of 

wetting front, water content, and time-to-empty) were affected by nearly all the factors 
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(water head in the pits (H), pit width (W), amount of water applied (Vw), pit volume 

(Vp), and surface slope (Slope)). For instance, increasing the slope will slightly 

increase the wetting front distance (from 130.54 to 136.45 cm) and soil water content 

(from 0.374 to 0.375 m3/ m3) with downslope, but decrease significantly the upslope 

wetting front and soil water content (130.53 to 101.26 cm and 0.373 to 0.333 m3/m3, 

respectively). However, there was no effect on the time-to-empty. The reduction of 

unfavourable results of the increasing slope was compensated by manipulating the 

values of H and Vp. The MLR models did not perform adequately especially for time-

to-empty (Mean Squared Error (MSE) = 85.83; R2 = 0.632) compared with the ANN 

models (MSE = 10.33; R2 = 0.977), mostly due to the non-linear relations between the 

factors. The results demonstrated that despite requiring the same input data, the ANN 

models could favourably be used for all parameter predictions. However, process-

based numerical models are undoubtedly a better choice for predicting the results with 

lower uncertainties when the required data are available. The fitted problem was then 

used to select the optimum sizes of the silt pit in Peninsula Malaysia, based on the soil 

texture and rainfall intensity. The results show that some types of the soils (sand, loam 

sand, and sandy loam) which have high values of hydraulic conductivity make the 

rainwater infiltrate into the soil. So, for these land, there is no need to construct the silt 

pits. While in the case of soils (sandy clay loam, clay loam, silt clay loam, sandy clay, 

silty clay, and clay) which have low values of hydraulic conductivity, a large volume 

of runoff water will be caught in those land compared to the sizes of silt pit used in 

the experiment.  Therefore, length of the pit during construction must be extended to 

avoid flooding of water. 
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Malaysia mengalami intensiti hujan yang tinggi, ini meningkatkan hakisan tanah di 

cerun yang curam dan menyebabkan pengurangan kesuburan tanah, pencemaran air 

tawar dan air bawah tanah, serta pencuraian sifat tanah. Walaupun Malaysia 

mempunyai jumlah taburan hujan yang tinggi, pokok kelapa sawit boleh mengalami 

kekurangan air disebabkan pengaliran air yang pantas dan air tidak sempat untuk 

meresap ke dalam tanah. Salah satu langkah pemuliharaan tanah dan air yang paling 

berkesan di Malaysia adalah menggunakan perangkap kelodak. Fungsi perangkap 

kelodak adalah untuk mengawal air larian permukaan, memerangkap dan 

memendapkan sedimen, meningkatkan kelembapan tanah atau memperbaiki air 

bawah tanah, mengurangkan pengaruh panjang cerun dan seterusnya mengurangkan 

hakisan tanah dan kehilangan baja. Walau bagaimanapun, apakah saiz dan dimensi 

optimum parit kelodak untuk membolehkan air mencapai akar dan secara perlahan 

melepaskan air untuk jangka masa yang panjang Apakah kesan cerun, aliran air 

(isipadu air), isipadu lubang, dan jenis tanah dalam perangkap kelodak tersebut Kajian 

ini bertujuan untuk menggunakan model HYDRUS 2D/3D untuk merumuskan hasil 

model simulasi sebagai persamaan untuk memilih saiz optimum dan dimensi 

perangkap kelodak bergantung kepada hujan dan sifat tanah. Rawatan yang digunakan 

dalam kajian ini termasuk empat faktor berikut: tujuh jenis tanah (pasir, lom berpasir, 

lom, kelodak, lempung berpasir, kelodak berlempung dan lempung), enam kecerunan 

tanah (0˚, 5˚, 10˚, 15˚, 20˚, dan 25˚), tiga ukuran parit kelodak (3, 4, dan 5 m3) setiap 

lubang mempunyai tiga tahap kedalaman (50, 75, dan 100 cm), dan beberapa peringkat 

untuk memenuhi jumlah air yang ada dalam lubang tersebut. Tiga peringkat digunakan 

dalam kajian ini. Peringkat pertama menggunakan perisian HYDRUS 2D / 3D model 

untuk mensimulasikan kandungan air tanah, barisan depan pembasahan, dan masa-

mengosong dari pelbagai saiz di tanah dan cerun yang berlainan. Tahap kedua 

membezakan trend dan menentukan yang terbaik dengan menggunakan kaedah 

statistik (Regresi Linear Berganda (MLR) dan Rangkaian Neural Buatan (ANN)) 
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untuk menganggarkan saiz parit kelodak yang optimum. Peringkat terakhir 

menggunakan kaedah statistik untuk menentukan lubang perangkap kelodak yang 

optimum di Semenanjung Malaysia. Dari hasil simulasi, semua parameter (jarak 

barisan depan pembasahan, kandungan air, dan masa pelepasan air) dipengaruhi oleh 

faktor-faktor dalam eksperimen (permukaan air dalam lubang (H), lebar lubang (W), 

jumlah air digunakan (Vw), isipadu lubang (Vp), dan permukaan cerun (Slope). 

Sebagai contoh, peningkatan cerun akan sedikit meningkatkan jarak barisan depan 

pembasahan  (dari 130.54 hingga 136.45 cm) dan kandungan aliran air (dari 0.374 

hingga 0.375) ke bawah cerun, tetapi mengurangkan kandungan air ke atas cerun 

(130.53 hingga 101.26 cm dan 0.373 hingga 0.333). Walau bagaimanapun, tidak ada 

kesan kepada masa pengaliran air. Model-model MLR adalah kurang tepat, 

terutamanya untuk masa pengaliran air (Mean Squared Error (MSE) = 85.83; R2 = 

0.632) berbanding dengan model ANN (MSE = 10.33; R2 = 0.977), terutamanya 

disebabkan oleh hubungan bukan linear antara faktor-faktor. Keputusan menunjukkan 

walaupun model ANN memerlukan data input yang sama, ianya dapat digunakan 

dengan tepat untuk semua ramalan parameter. Walau bagaimanapun, model 

berasaskan proses merupakan pilihan yang lebih baik untuk meramalkan keputusan 

dengan ralat yang lebih rendah jika ada data yang diperlukan. Keputusan dari model 

tersebut telah digunakan untuk memilih saiz optimum lubang perangkap kelodak di 

Semenanjung Malaysia, berdasarkan tektur tanah, topografi dan taburan hujan 

tahunan. Keputusan menunjukkan bahawa beberapa jenis tanah yang mempunyai nilai 

kekonduksian hidraulik yang tinggi menyebabkan air hujan menyusup ke dalam tanah. 

Oleh itu, bagi tanah-tanah ini, perangkap kelodak tidak perlu dibina. Walau 

bagaimanapun, dalam keadaan tanah yang mempunyai nilai kekonduksian hidraulik 

yang rendah, sejumlah besar isipadu aliran air akan menjadi kawasan tadahan di 

kawasan tersebut berbanding dengan saiz lubang perangkap kelodak yang digunakan 

dalam eksperimen ini. Oleh itu, dimensi panjang perangkap kelodak perlu dibesarkan 

untuk mengelakkan limpahan air keluar. 
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CHAPTER 1 

 INTRODUCTION 

 Background and Problem Statement 

One of the earth’s resources being cultivated and consumed is arable land. Without 

addressing the problem of land degradation, food security will not be achieved and 

thereby foregoing biodiversity, climate change, and the necessities of life. Given the 

rapid increase in global population, this has resulted in the necessity for usable land 

areas. 

There has been a significant rise in the demand for palm oil due to its usage in the 

production of edible, non-edible, and biodiesel products (Thoenes, 2006). It is 

estimated that the need for vegetable oils will grow significantly to about 240 million 

tons in 2050. One advantage of palm oil is that its production cost is low, besides high 

productivity compared to other oil crops (Corley, 2009). For that reason, it is advisable 

to increase plantation areas as well as employing the necessary technologies to prevent 

the shortage of oils in the future. This is especially relevant for planting palm oil trees 

in Malaysia to grow on sloping land. 

Malaysia experiences high total annual rainfall (2000-3000 mm) and high rainfall 

intensity. Sloping farmland under heavy rains will experience overland flow and 

cumulative water runoff (Mu et al., 2015) that leads to the increase of accelerated soil 

erosion, reduced soil water storage, reduced soil fertility, fresh and groundwater 

pollution, and degradation of adjacent lands. 

Oil palm trees grow in warm and wet conditions. Corley & Tinker (2008) stated that 

this type of tree needs 2000-2500 mm of annual rainfall and a minimum of 100 mm 

monthly. However, when the annual precipitation of 4000 mm is exceeded, the 

spreading of diseases will result. A rainfall value of 5000 mm and above is considered 

as the upper limit of palm oil tree planting (Nachtergaele et al., 2009). 

Water management is an important aspect of growing oil palm trees, as water shortage 

presses palm oil trees and destroys crop productivity significantly. Water management 

objectives help to reduce the effects of drought by improving the use of rainwater by 

adding it to irrigation water and applying soil water conservation practices (Comte et 

al., 2012). Accordingly, annual oil palm yield could increase by 13 – 23 % when 

additional water for irrigation between 120 and 240 L palm-1 day-1 is provided, 

compared with no irrigation (rain-fed) (Palat et al., 2000). However, irrigation is 

expensive and often impractical. So, water needs to be carefully conserved in oil palm 
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plantations. Hence, using steep land is not encouraged for oil palm plantations unless 

there are improvements in soil productivity and in conserving soil and water. 

The primary goal of soil conservation is to benefit the maximum sustained production 

capacity from a farm and consequently prevent soil loss below its threshold. Therefore, 

by applying sound practices based on a scientific assessment of both the soil and 

vegetation, this will help to reduce soil erosion by up to 99 % (Labrière et al., 2015). 

There are many methods to conserve water and soil on steep lands, one of which is 

through constructing terraces. Terraces may be defined as ground embankments built 

across the slope to lower surface runoff and guide it to a stable outlet at the velocity 

to prevent soil erosion, through the shortest path (Morgan, 2005). 

In some cases, the construction of terraces has many limitations. For instance, on steep 

hill slopes, the mere reduction of slope length by contour bonding may not be able to 

reduce the intensity of the scouring action of runoff water (Afandi et al., 2017). In this 

case, it is essential to modify the degree of the slope (Haridas, 2005). Notwithstanding 

the important effect of terracing to reduce runoff and erosion for slopes between 6-20 

degrees (Hammad et al., 2006), terracing loses its efficiency on gentle slopes and 

should instead, be replaced by others soil conservation practices (Corley & Tinker, 

2003a). In Malaysia, tree crops are grown (usually rubber or oil palm) with the terraces 

widely spaced, and the shelves likewise are widely spaced for one row of plants 

(Morgan, 2005), that will lead to soil compaction and removal of the fertile layer of 

topsoil during construction that thereby reducing soil productivity (Hamdan et al., 

2000).  

The compaction and removal of the layers of soil across terraces result in harmful 

consequences on the physical attributes of soil like: decrease in hydraulic conductivity 

and overall stability as well as capacity of water retention (Ramos et al., 2007). Hill 

levelling is not recommended on granular, thin layer of soil or soil containing a large 

number of stones (Troeh et al., 2004). Bench terraces are inapt for thin layer of soils 

since their composition can uncover infertile subsoil (Morgan, 2005). 

Another approach for soil and water conservation is through building trenches or silt 

pits. Contour trenches are constructed by trenching using a uniform level across the 

slope of the land in the upper reaches of the catchment area. The soil excavated from 

the trenches may be used to construct bunds that are required to be made in the lower 

reaches and transitions. 

The primary function of slit pits is to reduce soil erosion by dividing the length of the 

sloped farm into many sections for retarding the runoff rate as well as the erosion of 

soil. Water trapped in these pits helps in increasing moisture content and vegetation 

growth. Further, contour trenches help to reduce the runoff velocity which leads the 

file:///C:/Users/husam/Desktop/Husam%20Thesis/Thesis%202018-6-21.docx%23_ENREF_6
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water to penetrate slowly in the soil. Notably, this will protect and enhance soil fertility 

by reducing the loss of nutrients, returning lost nutrients, and redistributing eroded 

nutrients. Furthermore, contour trenches help in the protection of land contour bunds 

from upper catchments runoff   (Figure 1.1). Contour trenches are not only used in hill 

slopes and degraded and wasted lands but also on all slopes regardless of rainfall 

conditions, soil types, and depth (Haridas, 2005; Bohluli et al., 2014). However, over 

time, these trenches become filled with soil. So promotion of grass beds in the 

intermittent spaces among the trenches and plantation of soil stabilising trees on the 

upper edges of the trenches is beneficial (Haridas, 2005).  

 

Figure 1.1 : Silt pits collect the runoff and sediments flowing overland and 

redistribute the water and nutrients through the root zone of the oil palms 

(Bohluli et al., 2014). 

 

 

In Malaysia, the silt pit is considered as one of the most recommended soil and water 

conservation practices (Teh et al., 2011) and is one of the most marked procedures 

used in erosion control and increasing of yield. Indeed, the maximum production can 

be increased through yield intensification with the efficient management of land such 

as using a silt pit (Goh et al., 1994). Silt pits are narrow, long, close-ended, and deep 

trenches that are dug between palm rows (Roslan & Haniff, 2004). 

Historically, silt pits have been implemented over many decades to coincide with oil 

palm planting, however, there are limited studies that have investigated the interaction 

of this method on the quality of soil and water especially when compared to other 

methods in the conservation of soil and water (Bohluli et al., 2015). The larger the silt 
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pit, the greater volume of water it can store. However, a silt pit should be able to 

capture all runoff water that is generated from rainfall for the catchment area and then 

redistribute the collected water into the oil palm active root zone rather than the water 

being lost through deep percolation through the pit floor. Another point is that the 

water should possibly be stored for long periods so that the water can be used during 

dry periods where rainfall is less.  

Therefore, this raises the following question: "What is the optimum dimension of a 

silt pit to increase the following factors; water content, distance of wetting, time to 

empty in different conditions, such as soil types, slope steepness, and rainfall 

intensity?". The answer will accordingly be solved using a numerical model using the 

HYDRUS software package. HYDRUS is a well-known software package used for 

modelling and simulation of two- and three-dimensional water movement in a 

dynamically saturated media in the presence of heat and solutes (Šimůnek et al., 2006; 

Sejna & Simunek, 2007). The software is used to simulate processes like irrigation, 

precipitation, evaporation, infiltration, soil water storage, root water uptake, deep 

drainage, groundwater recharge, capillary rise, and finally lateral flow in 2D/3D 

(Šimunek et al., 2012). 

Over the years, many different software packages have originated from the HYDRUS 

family (e.g., HYDRUS (2D/3D), HYDRUS-2D, SWMS-2D, HYDRUS-1D, CHAIN-

2D, UNSATCHEM, and CW2D, HP1). Moreover, these software packages have been 

widely deployed and used to assess water flow and dissolved movement in soil and 

groundwater (Šimunek et al., 2012). The official website of HYDRUS lists around 

one thousand references in which HYDRUS packages have been implemented 

(www.pc-progress.com).  

 Objectives of the Study 

The objectives of this study were: 

1. To determine the sensitivity of some selected parameters on the silt pit sizing 

using HYDRUS 2D/3D. 

2. To distinguish the trend of all experimental elements and find the best-fit 

curves for the simulation results to select the optimal size of a silt pit by 

employing statistical models. 

3. To develop a fitted statistical model for silt pit sizing in some areas of 

Peninsula Malaysia. 
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