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The binary logistic regression model popularly used in medical data analysis. In 
spite of its popularity, there are only a few available robust methods for this 
model to encounter the effects of high leverage points and multicollinearity. 
Failure to address model adequacy when a combination of high leverage points 
and multicollinearity exist in data, lead to misleading and incorrect inferences. 
This study is aimed to develop new robust diagnostic and estimation for logistic 
regression (overlap cases) and hidden logistic regression (non-overlap cases). 
 
 
A new robust diagnostic called Logistic Influential Outlier Nominator (LION) is 
developed to identify influential outliers and the LION successfully detect the 
outliers in both 𝑥 and 𝑦 directions. Then, second robust diagnostic, namely 
Diagnostic Influential Observations (DIO) is developed, specifically to identify 
high leverage influential observations (HLIO). The DIO introduces two 
important stages whereby the initial stage employs the LION procedure and the 
confirmation stage comprises combine measures of Generalized Distance from 
the Mean and Generalized Standardized Pearson Residual to flag the HLIO. 
 
 
Adjusted Weighted Bianco and Yohai (AWEBY) is an improvisation on the 
Weighted Bianco and Yohai (WBY) robust estimator. The AWEBY is proposed 
to increase the efficiency of WBY estimator by constructing a "smooth 
rejection" to replace the "hard rejection" weight function. In the AWEBY, new 
robust weights are formulated based on the DIO and found to properly reduce 
the effect of HLIO whilst protecting the good leverage points. In combined 
problems of HLIO and multicollinearity for overlap cases, the AWEBY estimator 
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is integrated for computing robust ridge parameter and formed Robust Ridge 
Logistic (RRL) iterative update scheme. By using the updated robust weights, 
the impact of the HLIO and multicollinearity will be toned down immensely. 
 
 
Adjusted Weighted Maximum Estimated Likelihood (AWEMEL) in hidden 
logistic regression is proposed to rectify the HLIO in separation problem. New 
robust weights in the AWEMEL is designed based on DIO which particularly 
down weighs the HLIO but not the good leverage points. Finally, Robust Ridge 
Hidden Logistic (RRHL) is proposed to remedy both HLIO and multicollinearity 
for separation problem. In RRHL's iteration, the AWEMEL estimator is 
employed to compute robust ridge parameter which is resistance towards the 
bad impacts of HLIO. 
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Model regresi binari logistik popular digunakan dalam analisis data perubatan. 
Di sebalik kepopularitiannya, hanya terdapat beberapa kaedah teguh bagi 
model ini untuk menangani kesan tuasan tinggi dan multikolinearan. Kegagalan 
untuk menangani kecukupan model bila kombinasi tuasan tinggi dan 
multikolinearan wujud dalam data, membawa kepada kekeliruan dan 
pentadbiran yang salah. Kajian ini bertujuan untuk membangunkan diagnosis 
dan penganggaran teguh yang baru untuk regresi logistik (kes-kes bertindih) 
dan regresi logistik tersembunyi (kes-kes tidak bertindih). 
 
 
Satu diagnostic teguh yang baru dipanggil penama terpencil berpengaruh 
logistik (LION) dibangunkan untuk mengenalpasti terpencil berpengaruh dan 
LION berjaya mengesan terpencil dalam kedua-dua arah 𝑥 dan 𝑦. Kemudian, 
diagnosis teguh kedua dinamakan diagnosis cerapan berpengaruh (DIO) 
dibangunkan, khusus untuk mengenalpasti tuasan tinggi cerapan berpengaruh 
(HLIO). DIO memperkenalkan dua peringkat penting di mana peringkat awal 
menggunakan prosedur LION dan peringkat pengesahan melibatkan gabungan 
ukuran pengitlakan jarak dari purata dan pengitlakan piawai Pearson reja untuk 
menandakan HLIO. 
 
 
Ubahsuai pemberat Bianco dan Yohai (AWEBY) adalah penambahbaikan ke 
atas penggangar teguh pemberat Bianco and Yohai (WBY). AWEBY 
dicadangkan untuk meningkatkan kecekapan penganggar WBY dengan 
membina "penolakan licin" untuk menggantikan "penolakan keras" fungsi 
pemberat. Dalam AWEBY, pemberat teguh yang baru diformulasi berdasarkan 
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DIO dan didapati menurunkan secara tertib kesan HLIO juga memelihara 
tuasan tinggi baik. Dalam masalah gabungan HLIO and multikolinearan untuk 
kes-kes bertindih, penganggar AWEBY digabungkan untuk mengira parameter 
Ridge teguh dan membentuk logistik Ridge teguh (RRL) lelaran kemaskini 
skema. Dengan menggunakan pemberat teguh terkini, kesan HLIO dan 
multikolinearan akan diturunkan segera. 
 
 
Ubahsuai pemberat maksimum kebarangkalian bolehanggar (AWEMEL)  
dalam regrasi logistik tersembunyi dicadangkan untuk membetulkan HLIO 
dalam kes-kes tidak bertindih. Pemberat tenguh yang baru dalam AWEMEL 
direka berdasarkan DIO yang terutamanya menurunkan HLIO tetapi bukan 
tuasan tinggi baik. Akhir sekali, logistik tersembunyi Ridge teguh (RRHL) 
dicadangkan untuk merawati kedua-dua HLIO dan multikolinearan untuk 
masalah kes-kes tak bertindih. Dalam lelaran RRHL, penggangar AWEMEL 
digunakan untuk mengira parameter Ridge teguh yang rintang terhadap kesan 
buruk HLIO. 
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CHAPTER 1 
 
 

INTRODUCTION  
 
 

1.1 Research Background 
 
 
A logistic function was developed in the 19th century by Verhulst, who made an 
investigation of the population growth in the United State of America. The 
expression or word “logistic” was not applied until Verhulst’s research was re-
developed, which was immediately after Pearl and Reed first article that was 
published in the year 1920 (Cramer, 2002). The logistic function as an 
alternative to normal probability function is a research of Berkson (1944), who 
showed how the model could be fitted using iterative weighted least squares. 
Meanwhile, comparisons between logistic and probit transformation made by 
Chambers and Cox (1967) and Berkson (1951) which the difference mainly in 
the link function and distribution of the errors. Continuity of Berkson’s work, 
Cox (1958a, 1958b) developed the logistic function for a binary response. 
 
 
This thesis covers the case of binary response for logistic regression model 
where it can take only two values of outcome, such as success or failure, 
survive or dead, effective or impotent and etc. The binary logistic regression is 
a special case of the generalized linear model. This model measures a 
relationship between the binary response with both continuous and categorical 
predictor variables by estimating probabilities using the logistic function, which 
is the cumulative logistic distribution. 
 
 
The binary logistic regression model, however, is based on quite different 
assumptions from those of linear regression model. In particular, the key 
differences between these two models can be seen in the following two 
features of binary logistic regression. First, the conditional mean 𝐸(𝑌|𝑋) is a  
Bernoulli distribution rather than a  Gaussian distribution. Second, the predicted 
values are probabilities and the conditional mean lies between the ranges of 
0 ≤ 𝐸(𝑌|𝑋) ≤ 1 where the change in 𝐸(𝑌|𝑋) per unit change in 𝑋 become 
progressively smaller as the conditional mean gets closest to 0 or 1 (Hosmer 
and Lemeshow, 2000). It resembles a plot of a cumulative distribution of a 
random variable. Therefore, the binary logistic regression model can be 
graphically illustrated by a S-curve for one regressor and a hyperplane in the 
case of two regressors (Croux et al., 2002). 
 
 
The parameters of binary logistic regression are usually estimated by the 
Maximum Likelihood (ML) estimator due to tradition and ease of computation 
(Albert and Anderson, 1984). However, the ML estimator is not robust against 
unusual observation (or known as an outlier) and it has a zero breakdown point 

https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Gaussian_distribution
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towards the outlier (Croux et al., 2002). Even a single outlier can drastically 
change the ML estimate very badly (Pregibon, 1981).  
 
 
The ML estimator also becomes inefficient when there is a high degree of 
correlation among the continuous predictor variables that we refer to 
multicollinearity problem (Schaefer et al., 1984; Schaefer, 1986). 
Multicollinearity can result in a wrong sign problem and expand the magnitude 
of estimated regression coefficients, lead to erroneous interpretation and cause 
the estimated regression estimates have unduly large variances (Mackinnon 
and Puterman, 1989; Marx and Smith, 1990; Weissfeld and Sereika, 1991; 
Segerstedt and Nyquist, 1992; Lesaffre and Marx, 1993; Barker and Brown, 
2001). Furthermore, Lesaffre and Marx (1993) remarked that inter-correlation 
problem in the binary model happens to occur in two situations i.e. correlation 
among predictor variables (𝑋′𝑋) and correlation among weighted predictor 
variables (𝑋′𝑊𝑋) related to the Fisher information matrix. 
 
 
Another problem arises from the binary logistic regression model is when the 
maximization of log-likelihood function fails to converge. In most cases, this 
failure is a consequence of data patterns known as quasi-complete separation 
(little overlap cases) and complete separation (non-overlap cases) (Albert and 
Anderson, 1984). The ML estimates simply do not exist in complete separation 
while quasi-complete separation can cause biased estimates with enormous 
standard errors. Separation in logistic regression frequently occurs when the 
binary response can be completely separated by a single predictor variable or 
by a linear combination of the predictor variables (Christmann and Rousseeuw, 
2001b). Heinze and Schemper (2002) mentioned that the possibility of 
separation to occur is highly depends on the number of sample sizes, the 
number of dichotomous predictor variables and the magnitude of the odds 
ratios. 
 
 
In the situations where finite ML estimates is not existing, Rousseeuw and 
Christmann (2003) introduced a Maximum Estimated Likelihood (MEL) as an 
alternative solution to the ML estimator. Rousseeuw and Christmann (2003) 
called this model as a Hidden Logistic Regression (HLR) model. It is evident 
that the MEL estimator is robust against separation and the MEL estimates 
always exist. Unfortunately, the MEL still has the disadvantage, that it is not 
robust to the presence of outliers and the influential observations because the 
impact of these observations is unbounded since the pseudo-observations,  𝑌̃𝑖  
is fitted to the MEL using the similar approach to the ML algorithm. Moreover, 
multicollinearity is also a common problem happen in the HLR model 
particularly when dealing with a small dataset. 
 
 
In the next section, the shortcomings of classical diagnostic and estimation 
methods are addressed when handling with more complicated problem i.e. the 
combination of high leverage influential observation (HLIO) and multicollinearity 
which later becomes our motivations for this study. 
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1.2 Importance of the Study 
 
 
Problem and Motivation One: This thesis concerned on the diagnostic 
method for identifying influential outliers in binary logistic regression. The 
influential outlier is defined as an observation that lies with abnormal distance 
from the majority of observations in covariate space and it has large residual. 
The influential outlier is strongly influencing the fitted equation, in such cases, 
both the intercept and slope of regression are severely affected. Therefore, the 
detection method is imperative because the influential outliers accountable for 
inaccurate prediction and invalid inferential statements as the influential outliers 
have a large impact on the computed values of various estimates. Literature is 
abundant with detection method for a single and multiple outlier in univariate 
data. To date, most of the diagnostic methods available for binary logistic 
regression model identifies outliers in 𝑥 and 𝑦 directions separately, which are 
not successful in detecting "genuine" influential outliers.  
 
 
Billor et al. (2000) proposed Blocked Adaptive Computationally Efficient Outlier 
Nominator (BACON) for multivariate 𝑥-outliers and 𝑦-outliers in linear 
regression model. Meanwhile Müller and Neykov (2003) proposed Fast 
Trimmed Likelihood (FTL) for detecting 𝑦-outliers in Generalized Linear Model 
(GLM). Both methods exploit the concentration-steps (C-Step) iterative 
algorithm by Rousseeuw and Van Driessen (1999). The BACON method 
possesses good properties with affine equivariance, 50% high breakdown 
point, bounded influential function and surpasses minimum covariance 
determinant (MCD) method proposed by Rousseeuw and Van Driessen (1999) 
in term of fast convergence rate. The multivariate part (mvBACON) estimates 
the location and scatter matrix to compute Mahalanobis distances (MD), while 
regression part (regBACON) computes internal and external Studentized 
residuals derived from Ordinary Least Square (OLS) estimates. The BACON 
major drawback is that the mvBACON has to reimburse with low statistical 
efficiency and it gives bias estimates for a small data. Meanwhile, regBACON 
cannot be applied directly to binary logistic regression data due to different 
residuals measure. Thus, by applying only mvBACON to binary logistic 
regression data will not detect "genuine" influential outliers.  
 
 
In GLM, Müller and Neykov (2003) proposed the FTL estimator where 
identification of regression 𝑦-outliers is based on log-likelihood measure. At first 
thought, it seems attractive to use the FTL in binary logistic regression. 
However, when applied trimming in C-steps, most probably the trimmed 
observations that are considered as 𝑦-outliers are the same observations that 
provide some overlap in the data. Therefore, trimming these observations 
eliminate the overlap cases, thus maximum log-likelihood value is 
undetermined (Christmann and Rousseeuw, 2001b). 
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The shortcomings of BACON and FTL have inspired us to develop a new 
diagnostic method to identify multivariate 𝑥-outliers and 𝑦-outliers in binary 
logistic regression model, namely Logistic Influential Outlier Nominator (LION) 
 
 
Problem and Motivation Two: Depth investigation on leverage outlier (LO) or 
high leverage point (HLP), residual outlier (RO) and influential observation (IO) 
is important since outliers and IO are strongly related to one another but not 
interrelated. The first condition was mentioned by Chatterjee and Hadi (1988) 
where the IO need not to be outlying in the sense of having a large residual. 
Second, the inlying IO distort the shape of the fitted equation, though it has a 
small residual. Therefore, similar measures applied to detect HLP and RO are 
not relevant to detect IO.  
 
 
Cook’s Distance (CD) and Difference in Fits (DFFITS) are the commonly used 
methods for identifying IO. Nonetheless, Pregibon (1981) recommended using 
the DFFITS as it combines both the leverage and the residual components. 
Even though DFFITS is successful in detecting a single IO, it is not effective 
enough when multiple IOs are present in a data and the DFFITS becomes 
ineffective for identification of multiple IOs due to masking and swamping 
effects (Nurunnabi et al., 2010). 
 
 
Nurunnabi et al. (2010) developed the generalized version of DFFITS, denoted 
as GDFFITS which combined both measures of the group deleted leverage 
and residual components. Although the GDFFITS can detect multiple IOs, it is 
not effective enough in identifying the exact number of IO. It has a tendency of 
detecting lesser IO as it should be and produce several masking IOs. This is 
most probably due to the determination of the initial subset of the GDFFITS 
which is not adequately effective in classifying the deletion and the remaining 
groups. The GDFFITS exploits the BACON method to identify a set of 
suspected IOs, denoted as set 𝐷. Although the expression for GDFFITS is 
available for any arbitrary set of deleted cased 𝐷, the choice of such a set is 
the most important component in diagnostic procedure since the omission of 
set 𝐷 determines the correct GDFFITS values for both set 𝐷 and the remaining 
set 𝑅. As we already mentioned, the regression BACON (regBACON) is 
inadmissible for binary response and by only depending on multivariate 
BACON (mvBACON), there is a high possibility for suspected IO remains in the 
set 𝑅, thus the entire GDFFITS value is wrongly calculate. Moreover, no further 
discussion on whether the detection of IO by GDFFITS classified a good or bad 
IO. However, the GDFFITS method has inspired us to classify IO into good and 
bad IO.  
 
 
The weakness of Nurunnabi et al. (2010) approach has motivated us to 
propose a new robust diagnostic method, namely Diagnostic Influential 
Observations (DIO) whereby the suspected high leverage influential 
observations (HLIO) in set 𝐷 are identified using the LION method. 
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Problem and Motivation Three: Abundant of studies has been carried out in 
developing robust estimators without paying much attention whether or not 
influence function of robust estimators were bounded to good leverage point 
(GLP) or bad leverage points (BLP). It is imperative to distinguish between the 
GLP and BLP as the BLP extremely influential to fitted model while not the 
GLP. 
 
 
In this regard, we take initiative to improve the Weighted Bianco and Yohai 
(WBY) estimator proposed by Croux and Haesbroeck (2003). The WBY applies 
Robust Mahalanobis Distance (RMD) based on MCD estimator which is less 
efficient as it downweight all detected HLPs irrespective of whether it is GLP or 
BLP. Moreover, Croux and Haesbroeck (2003) implemented hard rejection 
weight based RMD-MCD to reduce the effect of HLPs. Referring to this 
approach, HLPs were assigned to zero weight and excluded before estimation. 
It is evident that deleting the GLPs reduces the precision of estimates and 
increase the possibility for cases to be separated (Croux, 2006).  
 
 
In this situation, we proposed an Adjusted Weighted Bianco and Yohai 
(AWEBY) estimator with a modification of weighting scheme. A smooth 
rejection weight is formulated based on the DIO values. By applying the new 
weight, elimination is restricted to the BLPs while the GLPs are protected, thus 
significantly improves the precision of AWEBY estimates. 
 
 
Problem and Motivation Four: Montgomery and Peck (1982) and Gunst 
(1983) pointed out that there are different sources of multicollinearity such as 
data collection, method employed constraint on the model, model specification 
and over determined model. To remedy multicollinearity problem which is due 
to these sources, Mansson and Shukur (2011) proposed using Ridge Logistic 
(RL) estimators.  Nevertheless, Mansson and Shukur (2011) did not discuss 
any method of how to rectify the problems when both multicollinearity and 
outliers occur together in data. The presence of outlier in multicollinear data 
creates misleading conclusion on RL estimates.  
 
 
Since not much research has been done in exploiting these issues, this 
motivates us to come up with a new Robust Ridge Logistic (RRL) estimator for 
binary logistic regression model. The RRL incorporates the AWEBY estimator 
to obtain robust ridge parameter towards the BLPs which later is used in ridge 
iterative update scheme to reduce the variance inflation due to multicollinearity. 
We expect that the newly developed method would be more efficient than the 
existing RL estimates, since we would remove the influence of outliers and 
multicollinearity problems by the robust AWEBY estimator which will be 
embedded in the RRL estimator. 
 
 
Problem and Motivation Five: Rousseeuw and Christmann (2003) proposed 
Weighted Maximum Estimated Likelihood (WEMEL) estimator to rectify the 
problem of HLPs and separation cases. It is evident that the WEMEL estimator 
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is resistant against separation, bounded to the HLPs and the estimates always 
exist. Unfortunately, the WEMEL uses the similar approach with the WBY in 
treating HLPs where non-hard rejection weight is computed based on RMD-
MCD.  
 
 
The weakness of RMD-MCD is that it is prone to swamping effect where some 
of GLPs are detected as BLPs. Thus, decrease the efficiency of the WEMEL 
estimates. This inspired us to propose an Adjusted Weighted Maximum 
Estimated Likelihood (AWEMEL) whereby the GLPs are not downweighted.  
 
 
Problem and Motivation Six: Studies that investigate the multicollinearity in 
separation problem is still in infant stage. The most current method which 
provides a solution to both problems of separation and multicollinearity is a 
Double Penalized Likelihood Estimator (DPL) proposed by Shen and Gao 
(2008). The DPL method applied Jeffrey’s non-informative prior and the ridge 
type method and the computation of ridge parameter is by a cross validation 
process which minimizes the mean squared error (MSE) of DPL estimate. 
Godínez-Jaimes et al. (2012) claimed that the DPL estimator is not actually 
remedy the effect of multicollinearity in separation data. According to simulation 
experiment conducted by Godínez-Jaimes et al. (2012), ridge logistic type 
estimator proposed by Le Cessie and Van Houwelingen (1992) defeats the 
DPL estimator, evident by lower biases and MSEs. Moreover, there is a lack of 
literature dealing with simultaneous problem of outliers and multicollinearity for 
separation cases in binary logistic regression model. 
 
 
This has motivated us to investigate such complex scenario whereby both 
collinear and separated data simultaneously occurs in the presence of HLPs. In 
order to remedy these problems, we proposed a Robust Ridge Hidden Logistic 
(RRHL) by incorporating the AWEMEL estimator to compute robust ridge 
parameter for variance reduction of highly correlated predictors while handling 
the outlier-separation issues.     
 
 
1.3 Research Objectives 
 
 
The major purpose of this thesis is to investigate the effect of HLIO on the 
parameter estimation of binary logistic regression model for overlap and non-
overlap cases. Then, we extend the work of investigating a combined problem 
of multicollinearity and HLIOs for overlap and non-overlap cases. The current 
diagnostic procedures and robust estimation methods deal with one type of 
outlier at a time. Thus, the development of proposed robust diagnostic and 
estimation methods are crucial. The foremost objectives of our research can be 
outlined systematically as follows: 
 

1. To develop a new robust diagnostic procedure for identifying influential 
outliers in multivariate data. 
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2. To develop a new robust diagnostic procedure for identifying high 
leverage influential observations. 

3. To propose a new robust estimator in the presence of high leverage 
influential observations when cases are overlapping. 

4. To propose a new robust ridge estimator having both multicollinearity 
and high leverage influential observations when cases are overlapping. 

5. To propose a new robust estimator in the presence of high leverage 
influential observations when cases are separating. 

6. To propose a new robust ridge estimator having both multicollinearity 
and high leverage influential observations when cases are separating. 

 
 
1.4 Scope and Limitation of the Study 
 
 
The robust diagnostic procedures and robust estimation methods for this model 
is limited to binary response with continuous predictor variables. For a 
comprehensive evaluation of the proposed methods, several factors are 
investigated which include the number of observations, 𝑛, number of 
continuous predictor variables, 𝑝, number of contaminations, 𝑒,  and the degree 
of correlations, 𝜌.  
 
 
In this thesis, we consider a matrix 𝑋 with dimension 𝑛 × 𝑝  where 𝑝 < 𝑛. For 
data with overlap cases, simulation experiments vary with sample sizes within 
range of 100 ≤ 𝑛 ≤ 1000 while data with non-overlap cases start with smaller 
sample size 20 ≤ 𝑛 ≤ 1000. The continuous predictor variables are set as  
2 ≤ 𝑝 ≤ 10. The percentages of contaminations plugged in data with 
1% ≤ 𝑒 ≤ 10% out of 𝑛 where good observations are replaced with 
contamination values and the degree of correlations varies within range 
0.75 ≤ 𝜌 ≤ 0.99.  
 
 
We use benchmark datasets for the identification of outliers and 
multicollinearity in binary logistic regression. However, some of the real 
datasets are not within the scope of simulation studies, particularly for 
overlapping cases. It is difficult to obtain dataset which has a combined 
problem of multicolinearity and HLPs in overlap and non-overlap cases, since 
not much work have been focused to deal with these problems. Therefore, for a 
small real dataset and small random generated data which prone to have 
separation cases, we suggest to apply the RRHL-AWEMEL estimators. 
 
 
1.5 Outline of the Thesis 
 
 
This thesis pursues with the newest robust diagnostic procedures and the new 
robust estimation methods for overlap and non-overlap cases in the presence 
of both HLIOs and multicollinearity for logistic regression model with binary 
response. Our contribution chapters begin from Chapter 3 to Chapter 8. The 
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new proposed methods are extensively investigated by simulation studies (due 
to little theoretical justification on proposed methods) and application on 
datasets available from literatures. The remainder of this thesis is organized as 
follows. 
 
 
Chapter Two: This chapter reviewed on the estimation methods for logistic 
regression (overlap cases) and hidden logistic regression (non-overlap cases) 
and violation of model assumptions due to the presence of outliers, influential 
observations and multicollinearity. Detailed definitions of various types of 
outliers, current diagnostic procedures and effect of outliers on parameter 
estimations are also discussed. The review on multicollinearity covered the 
types of ill-conditioning, sources and effects, current diagnostic measures and 
ridge regression estimation. Furthermore, the effect of collinearity influential 
observations on multicollinearity diagnostic procedure is also highlighted. 
Finally, basic concepts of good robust estimation and some important existing 
robust estimators are also included.  
 
 
Chapter Three: The development of a new proposed LION method is shown in 
this chapter. The LION is designed to identify the influential outliers where 
detection procedure tackles both 𝑥 and 𝑦 outliers. 
 
 
Chapter Four: A new diagnostic method to identify HLIO is proposed in this 
chapter. The development of DIO method consists of two stages. The initial 
stage employs the LION procedure and the confirmation stage comprises a 
combine measures of GDM and GSPR to flag the HLIO. 
 
 
Chapter Five: In this chapter, the WBY estimator is improved by constructing a 
smooth rejection weight function to replace a hard rejection one. In the 
development of a new AWEBY estimator, the DIO is incorporated to formulate 
the new weight, which properly reduce the effect of the HLIO while protecting 
the GLP for more precise AWEBY estimates. 
 
 
Chapter Six: This chapter deals with the development of a new RRL estimator 
for a combined problem of multicollinearity and HLIO in overlap cases. In the 
RRL iterative update scheme, the AWEBY estimator is integrated in computing 
robust ridge parameter which plays an important role to handle the HLIO-
multicollinearities dataset.  
 
 
Chapter Seven: In this chapter, a new AWEMEL estimator in HLR is proposed 
to rectify the HLIO in separation problem. The WEMEL is a good estimator 
despite of its estimation is less precise compared to AWEMEL. A new weight in 
the AWEMEL is designed based on DIO where only BLP are downweighted 
instead of HLP.  
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Chapter Eight: This chapter involves proposing a new estimator, the RRHL to 
remedy both multicollinearity and HLIO for separation problem. In ridge's 
iteration, the AWEMEL estimator is employed to compute robust ridge 
parameter which resistance to the HLIO. 
 
 
Chapter Nine: This chapter provides summaries and conclusions on proposed 
methods. Areas for further research are also discussed. 
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Figure 1.1: Flowchart of the study 
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