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STRUCTURE-PROPERTY RELATIONSHIP OF POLYESTER AND PALM 
OIL POLYOLS AND THEIR EVALUATION IN SOLID POLYURETHANES 

 

By 

TUAN NOOR MAZNEE BINTI TUAN ISMAIL 

April 2019 

Chair: Nor Azowa Ibrahim, PhD 
Faculty: Science 
 

Understanding on the structure-property relationship between raw materials 
and the resultant polyurethane (PU) products is very crucial, especially for PU 
formulators. PU formulation is a trade secret, therefore, in development of PU 
products for specific target applications and performances, skill and expertise 
are required. To gain these skill and expertise, a lot of formulations need to be 
done which definitely involve cost and very time-consuming. However, these 
problems can be minimized with an availability of a systematic study on 
structure-property relationship between raw materials and their resultant PU 
products. Therefore, a systematic study on structure-property relationship of 
polyester and palm oil-based polyols in solid polyurethanes (SPUs) were 
conducted. SPUs made from polyester and palm oil-based polyols were 
characterized in terms of physico-mechanical and thermal properties as well as 
their morphologies. It was found that, in azelate polyols, resilience and 
durability of SPUs can be optimized by selecting azelate polyols with odd 
carbon number in the linear diols and by using shorter chain linear diols. In 1,4-
butanediol-based polyester polyols, these properties can also be achieved by 
selecting polyester polyols from dicarboxylic acids (n-DCAs) with odd carbon 
numbers. It was also found that, the SPUs with maximized material strengths 
can be obtained from polyester polyols with even carbon numbers in both linear 
diols and n-DCAs. Phase interaction through formation of hydrogen bondings 
was the contributing factor to the properties of SPUs observed. For SPUs 
made from palm olein-based polyols, there were no significant changes in 
properties of SPUs observed, with regards to different types of reactants used 
during ring-opening reaction of epoxide groups. Thus, the findings could 
provide a guidance to PU formulators to choose the right raw materials to be 
used in their formulations. Through suitable choice of raw materials, a huge 
range of PU products could be made. Therefore, the findings from this study 
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could have practical significance in the selection and synthesis of polyester and 
palm oil-based polyols for PU applications.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai mematuhi keperluan untuk ijazah Doktor Falsafah 

 

HUBUNGAN DI ANTARA STRUKTUR-SIFAT POLIOL POLIESTER DAN 
POLIOL SAWIT, DAN PENILAIANNYA DALAM POLIURETANA PEJAL 

 
Oleh 

TUAN NOOR MAZNEE BINTI TUAN ISMAIL 

April 2019 

Pengerusi: Nor Azowa Ibrahim, PhD 
Fakulti: Sains 
 

Memahami hubungkait di antara struktur-sifat bahan-bahan asas di dalam 
formulasi poliuretana adalah sangat penting. Formulasi poliuretana adalah 
rahsia perniagaan, oleh itu, di dalam pembangunan produk poliuretana untuk 
kegunaan yang spesifik dan berprestasi tinggi, kepakaran dan kemahiran 
individu diperlukan. Kepakaran dan kemahiran ini boleh diperolehi melalui 
pengalaman dengan penghasilan banyak formulasi-formulasi poliuretana yang 
menjurus kepada peningkatan kos dan tempoh masa yang lama. Walau 
bagaimana pun, masalah ini boleh diminimumkan jika ada satu panduan yang 
boleh digunakan untuk memilih bahan asas yang betul bagi membangunkan 
produk poliuretana mengikut spesifikasi tertentu. Oleh yang demikian, kajian 
secara sistematik ke atas hubungkait di antara struktur poliol poliester dan 
poliol sawit ke atas sifat poliuretana pejal telah dilakukan untuk memenuhi 
keperluan tersebut. Poliuretana pejal yang dihasilkan daripada poliol poliester 
and poliol sawit telah dicirikan sifat-sifat fiziko-mekanikal dan terma serta 
morfologinya. Didapati, sifat lantunan dan tahan lasak poliuretana pejal boleh 
dioptimumkan melalui pemilihan poliol azelat dengan diol bernombor karbon 
ganjil dan diol berantai karbon pendek. Bagi poliol poliester berasaskan 1,4-
butandiol, sifat-sifat tersebut boleh dicapai dengan memilih asid dikarboksilik 
bernombor karbon ganjil. Untuk menghasilkan poliuretana pejal dengan 
kekuatan bahan yang maksimum, poliol poliester dengan nombor karbon 
genap bagi kedua-dua bahagian diol dan asid dikarboksilik hendaklah 
digunakan. Interaksi di antara fasa melalui pembentukan ikatan hidrogen telah 
mempengaruhi sifat-sifat poliuretana pejal. Bagi poliuretana pejal yang 
dihasilkan daripada poliol sawit olein, tiada perubahan ketara diperhatikan 
dengan perbezaan jenis reaktan yang digunakan di dalam penghasilan poliol 
sawit. Melalui pemilihan poliol dan isosianat yang sesuai, pelbagai jenis produk 
poliuretana boleh dihasilkan. Oleh itu, penemuan hasil kajian ini secara 
praktikal boleh digunakan di dalam pemilihan dan sintesis poliol poliester dan 
poliol sawit untuk menghasilkan produk poliuretana mengikut kegunaannya. 
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CHAPTER 1 

 
INTRODUCTION 

 
1.1  Background of study 

In general, solid polyurethanes (SPUs) are segmented linear block copolymers 
formed by alternating hard and soft segments. The hard segment (HS) is 
composed of diisocyanate moiety, urethane groups and chain extender(s), 
displaying strong hydrogen bonding between urethane groups, which form 
physical cross-linked networks, while the soft segment (SS) consists of a flexible 
polyol chain (Costa et al., 2015; Cruz & Viana, 2015; Chattopadhyay et al., 2006; 
Velankar & Cooper, 1998).  
 

The great interest on SPUs is due to their functional properties that can be tuned 
by the choice of raw materials (polyol, isocyanate and chain extender), 
preparation and processing conditions. The variability of the composition of 
polyol (SS) such as polyether, polyester and polycarbonate, and the chain length 
of the SS; chemical nature of diisocyanates such as aromatic, aliphatic and 
cycloaliphatic, and a wide range of chain extenders, short chain diols such as 
1,3-propanediol (1,3-PDO), 1,4-butanediol (1,4-BDO), 1,6-hexanediol (1,6-
HDO) and diamines, together with the possibility to modify the preparation 
procedure, offer an almost infinite variety in end-use properties of SPUs 
(Norhayati et al., 2016; Tharcis et al., 2016; Costa et al., 2015; Saralegi et al., 
2013; Rinaldi et al., 2010; Oprea, 2009; Xie et al., 2009). 
 

Thermodynamic phase separation or interaction between the HS and the SS 
dictates many properties of SPUs. The HS acts as physical crosslinks which 
gives the material strength, stiffness and upper use temperature. The SS imparts 
elastomeric properties such as resilience, toughness, low-temperature 
properties and resistance to water and oils (Beuhler et al., 2015; Cruz & Viana, 
2015; Beuhler, 2014; Drobny, 2007).   
 

Of all the SPU materials, polyurethane (PU) elastomers have gained the largest 
market acceptance. PU elastomers have found wide applications in virtually 
every industry because of their very special properties. The most important of 
which are their: 

 High elasticity over the entire hardness range 
 Flexibility over a wide temperature range 
 Good weather resistance 
 Good resistance to oil, grease and many solvents’ excellent wear 

resistance and 
 A high Young’s modulus compared with rubbers of a similar hardness. 
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PU elastomers are used widely in the manufacture of gaskets for both hydraulic 
and pneumatic apparatus such as piston and cylinder gaskets. Materials used in 
this application would have Shore hardness in the range of 85 Shore A to 60 
Shore D. This application requires wear resistance, rigidity and resistance to oil 
and grease. In this case, PU elastomers made from polyester polyols are of the 
better option as it shows excellent compatibility with hydraulic fluids based on 
mineral oils, as evidenced by the low swelling rates in these types of media 
(Drobny, 2007; Oertel, 1993). Commonly used polyols and their general trends 
in properties (both polyols and their corresponding PU elastomers) are shown in 
Table 1.1. 
 

Table 1.1: Thermal properties of important polyols1 and their 
corresponding PU elastomers2 (Drobny, 2007) 

Polyols Thermal properties 
of polyols 

Properties of PU 
elastomers 

Te, °C Tm, °C Te, °C Hydrolytic 
stability 

Poly(ethylene adipate) -46 52 -25 Fair 
Poly(butylene adipate) -71 56 -40 Good 
Poly(ethylene-butylene 
adipate) 

-60 17 -30 Fair/Good 

Poly(hexamethylene-2,2’-
dimethylpropylene 
adipate) 

-57 27 -30 Good 

Polycaprolactone -72 59 -40 Good 
Poly(diethylene glycol 
adipate) 

-53 - -30 Poor 

Poly(hexanediol-1,6 
carbonate) diol 

-62 49 -30 Very good 

Poly(oxytetramethylene) 
glycol 

-100 32 -80 Very good 

Note: 1Molecular weight 2000 g mol-1, 2Hardness approx. 85 Shore A, Te – Lower end of 
glass transition range. 
  

Factors such as molecular weight (Brokenbrow et al., 1971 and Costa et al., 
2015), chemical nature of repeating unit (Xu et al., 2015; Mohammadnia et al., 
2012; Drobny, 2007; Zhang & Feng, 2004), HS and SS concentrations (Costa et 
al., 2015; Drobny, 2007; Chattopadhyay et al., 2006) and incorporation of fillers 
(Cruz & Viana, 2015; Drobny, 2007) have important influenced on morphology, 
mechanical, and thermal properties of polyurethanes (PUs). Most of the studies 
on the above-mentioned factors were conducted on SPUs or PU elastomers 
because of their well-defined chemical structure (Hepburn, 1992), which 
effectively and in most cases, directly illustrates the structure-property 
relationship. 
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SPUs can be obtained via a one-shot  or two-shot method. In the one-shot 
method, all reactants (diisocyanate, polyol, chain extender), at the desired 
stoichiometric ratios are mixed together and then, the reaction mixture is poured 
into the mold where the crosslinking reaction occurs. In the two-shot method, 
which is also called the prepolymer method, diisocyanate is reacted with 
oligomer (e.g. polyester and polyether polyols) to obtain prepolymer. The 
resulting prepolymer is terminated by the isocyanate groups. After that, the 
prepolymer is reacted with chain extender which is usually short chain diols and 
diamines. Both methods possess advantages and disadvantages. The one-step 
polymerization (one-shot method) gives more random block polymers as 
compared to two-step process (Datta & Kasprzyk, 2018; Prisacariu, 2011). For 
prepolymer method, linear oligomer (e.g. polyester polyol diol) with an average 
functionality close to 2 is usually used (Drobny, 2007).   
 

In this study, one-shot method was used because this method can be applied to 
both polyester and palm oil-based polyols since the palm oil-based polyols are 
not linear in structures and they have relatively high functionality.   
 

1.1.1 Polyester polyols and solid polyurethanes 

Polyester polyols are widely used in thermoplastic PU elastomers (Ionescu, 
2005). They are typically produced via polyesterification reaction between diols 
and dicarboxylic acids. The most common polyester polyols are adipate polyols 
produced from the polyesterification reaction of adipic acid with short chain diols 
(Bacaloglu et al., 1998; Chang & Karalis, 1993; Saunders & Frisch, 1962).  
 

Depending on the types of diols used in the polyesterification reaction, adipate 
polyols can be crystallizable (symmetrical) or non-crystallizable (non-
symmetrical) as indicated in Table 1.2. 

 

Table 1.2: Adipate polyols produced from different types of diols 
(Sendijarevic, 2008) 

Crystallizable (Symmetrical)   Non-crystallizable (Non-
symmetrical)  

Poly(hexamethylene adipate) 
or 1,6-hexanediol adipate 

 Poly(methylethylene adipate) or 
1,2-propanediol adipate 

Poly(butylene adipate) or 1,4-
butanediol adipate 

 Poly(dimethylpropylene adipate) or 
neopentyl glycol adipate 

Poly(ethylene adipate) or 1,2-
ethanediol adipate 

 Poly(propylene adipate) or 1,3-
propanediol adipate 

 

With increasing demand and awareness on green and bio-based products, 
development of bio-based thermoplastic PU products, such as from succinate, 
azelate, and sebacate polyols, are highly desirable. Bio-based polyester polyols 
could be obtained from renewable resources either through biotechnological 
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process (succinic and adipic acids) (Pellis et al., 2016), or chemical pathways 
(azelaic and sebacic acids) (Köckritz & Martin, 2011; Tuszynski & Bessette, 
2008). Oleic acid as a feedstock for the production of azelaic acid has an 
economic feasibility due to abundant supply of oleic acid from vegetable oils, 
especially palm oil (Kushairi et al., 2018).  
 

Many researchers have focused on the effect of SS type and length, HS type 
and concentration, hard domain crystallinity, and the extent of microphase 
segregation on structure-property relationships in segmented PUs (Tharcis et 
al., 2016; Fernández-ďArlas et al., 2014; Xie et al., 2012; Bagdi et al., 2011; Kojio 
et al., 2010). Structure-property relationships of polyester polyols prepared from 
one or mixture of dicarboxylic acids and with different diols have also been 
extensively evaluated (Xu et al., 2015; Sonnenschein et al., 2010; Zhang & Feng, 
2004). However, systematic study on SPUs based on polyester polyols at 
controlled molecular weight is still limited. Therefore, there is a need to establish 
a comprehensive structure-property correlation in polyester polyols and SPUs in 
order to speed up the development of PU products especially for specific target 
applications. In addition, PU formulation is a trade secret. 
 

1.1.2 Palm oil-based polyols and solid polyurethanes 

Vegetable oils have attracted increasing attention as one of the most important 
platform chemicals for the chemical industry due to their availability, relatively 
low cost and environmental sustainability (Chen et al., 2015; Caillol et al., 2012; 
Lligadas et al., 2010). Vegetable oils, mainly triglycerides (TAG) constituted by 
glycerol and three fatty acid chains, commonly contain unsaturated carbon-
carbon double bonds (-C=C-) or alkene groups that are available for modification 
to form more reactive functional groups (Omonov et al., 2016; Chen et al., 2015; 
Desroches et al., 2012). Many modifications of vegetable oils have been 
described including epoxidation, carbonation, esterification and/or 
transesterification, ozonolysis, etc. (Omonov et al., 2016; Desroches et al., 
2012). There are several approaches available for the epoxidation of the alkene 
groups to make epoxide groups, however, the most widely used method is the 
classical epoxidation reaction proposed by Prileschajew (Omonov et al., 2016). 
It takes place in two stages, whereby, in the first stage, peroxy acid is formed 
and in the second stage, the peroxy acid reacts with alkene groups to form 
epoxide groups. Indeed, epoxidation of vegetable oils is an industrial process, 
mature, well controlled and less expensive (Omonov et al., 2016; Caillol et al., 
2012). 
  

Palm oil like other vegetable oils, is made up of hydrocarbons (fatty acid chains) 
attached to a glycerol back bone through ester linkages. The hydrocarbon 
moieties of the TAG molecules are made up of saturated and unsaturated carbon 
chain. Palm oil itself is not reactive to be used as polyols, therefore, hydroxyl 
group need to be introduced into molecular structure of palm oil. This can be 
done through modification of alkene groups  or ester group (Desroches et al., 
2012; Lligadas et al., 2010; Sharma & Kundu, 2006).  
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The development of palm oil-based polyols in Malaysia was first started by 
Malaysian Palm Oil Board (MPOB) in early 1990s. Epoxidation and alcoholysis 
are two main chemical reactions used to produce polyols, which involve 
modification of alkene groups of palm oil. Severals feedstock have been used to 
produce polyols such as palm oil, refined, bleached, deodorized palm olein 
(POo), used frying oil, oleic acid and winter grade biodiesel (fatty acid methyl 
ester (FAME)). Most of the polyols processes have been patented, for examples, 
polyols prepared from palm oil has been patented in Malaysia with a patent 
number MY-114189-A. Meanwhile, polyols made from refined, bleached, 
deodorized palm olein, used frying oil and oleic acid have been patented in 
United States with patent numbers US7932409, US8501826 and US7629478, 
respectively. 
 

Depending on their feedstock, palm oil-based polyols with variable 
functionalities, hydroxyl numbers and viscosities could be produced. Research 
and developmental work conducted by MPOB indicated that the palm oil-based 
polyols could be used in rigid PU foams (Tuan Noor Maznee et al., 2001) as 
insulation materials, in flexible PU foams (Srihanum et al., 2017) as bedding and 
mattresses, cushioning foams and as coatings and adhesives (Mohd Norhisham 
et al., 2017). The PU coatings and adhesives are of SPUs. 
 

Despite all the palm-based PU products developed so far, there is a need for a 
comprehensive study on properties of SPUs made from palm oil-based polyols 
in order to better understand the structure-property relationship of palm-based 
PU products. This understanding will help in speed up the development of palm-
based PU products, which have commercial viability. 

 

1.2 Problem statement 

PUs are very versatile polymeric materials with a wide range of applications. It 
has been used in all aspects of our daily life. PUs can be found in furniture and 
mattresses, transportation, building construction, technical insulation, 
automotive, footwear, etc. (Oertel, 1962).  Versatility of PUs is due to the unique 
chemistry of isocyanates which react with compound containing active hydrogen. 
Understanding on the structure-property relationship between raw materials and 
the resultant PU products is very crucial, especially for PU formulators. PU 
formulation is a trade secret, therefore, in development of PU products especially 
for specific target applications and performances, skill and expertise are 
required. To gain these skill and expertise, a lot of formulations need to be done 
which definitely involve cost and very time-consuming. However, these problems 
can be minimized with an availability of a systematic study on structure-property 
relationship between raw materials and their resultant PU products. Therefore, 
a systematic study on structure-property relationship of polyester and palm oil-
based polyols in SPUs was conducted. 
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1.3 Objectives of study 

The main objectives of the study are: 

i. To synthesize and to characterize azelate polyols based on azelaic acid 
and diols of different chain lengths and structures (both linear and 
branched diols), 

ii. To synthesize and to characterize 1,4-butanediol-based polyester 
polyols using 1,4-butanediol and dicarboxylic acids of different chain 
lengths, 

iii. To synthesize and to characterize palm oil-based polyols using refined, 
bleached, deodorized palm olein and fatty acid methyl ester with 
different types of reactants, 

iv. To prepare and to characterize solid polyurethanes using polyester and 
palm olein-based polyols. 
 

1.4 Overview of thesis 

The present thesis aims to understand, by means of systematic study, the effects 
of varying chemical composition in polyols on model SPUs.   
 

In this thesis, the study was divided into two main parts: the first part involved 
preparation of polyester polyols from diols and dicarboxylic acids of various chain 
lengths, followed by evaluation of the obtained polyester polyols in SPUs; and  
the second part involved preparation of palm oil polyols from ring-opening of 
epoxide groups with reactants of different types, followed by evaluation of the 
obtained palm oil polyols in SPUs. Results were related to the structure-property 
correlation, on the basis of evidence from Fourier transform infra-red (FTIR), 
differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), 
physico-chemical, mechanical and dynamic measurements, atomic force 
microscopy (AFM), wide angle X-ray diffraction (WAXD) and solvent resistance 
test.  
 

The thesis is organized into 8 chapters. Chapter 1 describes an introduction to 
SPUs, polyester and palm oil-based polyols as a background of the study, 
followed by a problem statement and objectives of study. Chapter 2 represents 
literature review on general aspects of polyurethane chemistry, types of 
polyurethanes, types of polyols, structure-property correlation in polyurethanes 
and applications of SPUs. In addition, general overview of polyurethanes market 
is briefly described in Chapter 2. Materials and methods used in the preparation 
and characterization of polyester and palm oil polyols and their SPUs are 
presented in Chapter 3.  
 

Chapter 4 discusses structure-property correlation of azelate polyols prepared 
from azelaic acid and diols of various chain lengths (C2 to C6), including 
branched structure diols (C3 and C5) and their evaluation in SPUs. SPUs were 
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prepared by reacting the azelate polyol with 4,4’-methylene diphenyldiisocyanate 
(4,4’-MDI). Results were discussed in terms of structural studies using AFM and 
WAXD revealing particularities on the SPUs morphology, thermal behavior of the 
SPUs were investigated using DSC and DMA. Mechanical performance of SPUs 
is strongly affected by higher-ordered structure of the HSs (isocyanate-chain 
extender) on the macromolecular chain. Crystallizable polyol chains (SSs) could 
also affect the mechanical performance of the SPUs. Mechanical properties of 
SPUs were determined using mechanical analyzer (Instron). Deconvulated FTIR 
was used to reflect  intermolecular interaction in SPUs. In Chapter 5, 1,4-
butanediol (1,4-BDO)-based polyester polyols were prepared from 1,4-BDO and 
linear dicarboxylic acid (n-DCA) of various chain lengths (C4 to C10), followed 
by evaluation of the prepared polyester polyols in SPUs. Structure-property 
correlation of the 1,4-BDO-based polyester polyols and SPUs were evaluated 
similarly as in Chapter 4. In addition, SPUs made from co-polyester polyols 
prepared using mixture of n-DCAs were also investigated. The use of mixture of 
n-DCAs and branched diols in the preparation of polyester polyols have widen 
the properties of the polyester polyols, which in turn, have broaden the properties 
of SPUs. This will open a broad spectrum for PU formulators to tailor-make the 
PU products according to their specific target applications.  
 

Chapter 6 describes palm olein-based polyols made from ring-opening reaction 
of epoxide groups with different types of reactants (water, monol and diols). In 
acid-catalyzed condition, ring-opening reaction of epoxide groups favored 
oligomerization as witnessed in chromatograms of gel permeation 
chromatography (GPC). SPUs prepared using palm olein-based polyols were 
investigated similarly as SPUs in Chapters 4 and 5. In Chapter 7, fatty acid 
methyl ester polyols were prepared using the same epoxide ring-opening 
reaction with the same reactants used in the preparation of palm olein polyols. 
Similarly, formation of oligomers were observed. The prepared polyols were also 
used to make SPUs. However, the prepared SPUs exhibited cracked throughout 
the specimen due to high HS concentration. Therefore, these SPUs could not be 
used for further evaluation.  
 

Finally, in Chapter 8, recommandations for future work are addressed. This study 
has shown that polyester polyols with a wide range of properties could be 
prepared by changing the diols and n-DCAs chain lengths, including branched 
diols and mixture of n-DCAs. With a wide range of properties of polyester polyols, 
PU with a broad range of applications could be produced. On the other hand, for 
palm olein-based polyols, no significant difference in the properties of the SPUs 
were observed when different types of reactants used during ring-opening 
reaction of epoxide groups. This finding could be useful, from commercial 
perspective, as a guideline to choose the most economical polyol to be 
produced. In regards to fatty acid methyl ester polyols, these polyols can be 
reacted with different types of isocyanates to produce PU products. Previous 
study showed that the fatty acid methyl ester polyols have potential applications 
in soft elastomers and pressure sensitive adhesives (Mohd Norhisham et al., 
2017). 
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