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December 2018

Chair: Associate Professor Muhammad Rezal Kamel Ariffin, PhD
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The major RSA underlying security problems rely on the difficulty of factoring a
very large composite integer N into its two nontrivial prime factors of p and q in
polynomial time, the ability to solve a given Diophantine equation ed = 1+ kφ(N)
where only the public key e is known and the parameters d, k and φ(N) are un-
known and finally the failure of an adversary to compute the decryption key d
from the public key pair (e,N). This thesis develops three new strategies for the
factorization of RSA modulus N = pq through analyzing small prime difference
satisfying inequalities |b2 p− a2q| < Nγ , |bi p− a jq| < Nγ and |b j p− a jq| < Nγ for
1
4 ≤ γ ≤ 1
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This research work also focuses on successful factorization of t RSA moduli Ns = psqs.
By using good approximation of φ(N) and generalized key equations of the form
esd− ksφ(Ns) = 1, esds− kφ(Ns) = 1, esd− kφ(Ns) = zs and esds− kφ(Ns) = zs for
s = 1,2, . . . , t. This method leads to simultaneous factoring of t RSA moduli Ns = psqs
in polynomial time using simultaneous Diophantine approximation and lattice basis
reduction techniques for unknown integers d, ds, k, ks, and zs.

The thesis presents new cryptanalysis attack of factoring prime power modulus
Ns = pr

sqs for r ≥ 2 in polynomial by taking the convergents of the continued
fraction expansion of e

N−

⌈
2

2r+1
r+1 N

r
r+1

⌉ which gives decryption exponent bound

d < 1√
2

√
N−2

2r+1
r+1 N

r
r+1 .

Furthermore, this research work develops four successful cryptanalysis attacks of fac-
toring t prime power moduli Ns = pr

sqs by transforming equations esd− ksφ(Ns) = 1,
esds− kφ(Ns) = 1, esd− kφ(Ns) = zs and esds− kφ(Ns) = zs for s = 1,2, . . . , t into
simultaneous Diophantine problem by using LLL algorithm to get the reduced basis
(d,ks) and (ds,k) which can be used to calculate unknown parameters φ(N) and later
simultaneously factor (ps,qs) in polynomial time. This research work also makes com-
parisons of its findings with existing literature. The bound of this research work was
found to be better than the short decryption exponent bound within some of the existing
literature.
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Asas keselamatan RSA yang utama bergantung kepada kepayahan memfaktorkan
nombor gubahan N yang sangat besar kepada dua faktor perdananya iaitu p dan
q dalam masa polinomial, keupayaan untuk menyelesaikan persamaan Diophan-
tine yang diberikan ed = 1 + kφ(N) di mana hanya kekunci awam e diketahui
dan parameter d, k dan φ(N) tidak diketahui dan akhirnya kegagalan pihak lawan
untuk menghitung kekunci penyahsulitan d daripada pasangan kekunci awam
(e,N). Tesis ini membangunkan tiga strategi baharu untuk memfaktorkan mod-
ulus RSA N = pq dengan menganalisis perbezaan kecil nombor perdana yang
memenuhi ketaksamaan |b2 p− a2q| < Nγ , |bi p− a jq| < Nγ dan |b j p− a jq| < Nγ

dimana 1
4 ≤ γ ≤ 1
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i = 3, . . . , j.

Kajian ini juga memberi tumpuan kepada kejayaan pemfaktoran terhadap t modulus-
modulus RSA Ns = psqs. Melalui penggunaan anggaran φ(N) yang terhampir dari
persamaan kekunci umum dalam bentuk esd − ksφ(Ns) = 1, esds − kφ(Ns) = 1,
esd−kφ(Ns) = zs dan esds−kφ(Ns) = zs untuk s = 1,2, . . . , t. Kaedah-kaedah tersebut
membawa kepada pemfaktoran secara serentak t modulus-modulus RSA t dalam
masa polinomial menggunakan teknik penghampiran serentak Diophantus dan teknik
penurunan asas kekisi untuk integer anu d, ds, k, ks, dan zs.

Tesis ini persembahkan serangan analisis-kripto baharu terhadap pemfaktoran modulus
Ns = pr

sqs untuk perdana berkuasa r ≥ 2 dalam masa polinomial melalui perhitungan
penumpuan pengembangan berselanjar e

N−

⌈
2

2r+1
r+1 N

r
r+1

⌉ yang memberikan eksponen

penyahsulitan dibatasi d < 1√
2

√
N−2

2r+1
r+1 N

r
r+1 . Seterusnya, kajian ini memban-

gunkan empat serangan analisis-kripto yang berjaya memfaktorkan t moduli Ns = pr
sqs

dengan mengubah persamaan esd−ksφ(Ns) = 1, esds−kφ(Ns) = 1, esd−kφ(Ns) = zs
dan esds− kφ(Ns) = zs untuk s = 1,2, . . . , t kepada masalah persamaan serentak Dio-
phantus dengan menggunakan algoritma LLL untuk mendapatkan penurunan asas kek-
isi (d,ks) dan (ds,k) yang boleh digunakan untuk mengira parameter anu φ(N) dan
seterusnya memfaktorkan (ps,qs) secara serentak dalam masa polinomial. Kajian ini
juga membuat perbandingan diantara penemuannya dengan kesusasteraan yang sedia
ada. Batas eksponen penyahsulitan yang terhasil dari kajian ini didapati lebih baik
daripada batas eksponen pendek penyahsulitan dalam kesusasteraan sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Cryptography

The importance of keeping information secret except to those who are authorized
to have access to it cannot be overemphasized especially as information becomes
an increasingly valuable commodity, and as communication revolution changes our
society. The process of encoding messages, known as encryption will continue to
play an increasing role in our everyday life. Nowadays, our phone calls bounce off
satellites and our emails pass through computers and networks and both forms of
communications can be intercepted with ease by unauthorized parties also known
as an eavesdropper. Hence, jeopardizing our privacy. Similarly, as more and more
business transactions are conducted over the internet, measures must be in place to
protect companies and clients from eavesdroppers. The only way to ensure privacy
of our communication is through encryption. The art of secret writing known as
cryptography, will provide the locks and keys of the information age, as reported by
Singh (2000).

Cryptography can also be considered as a science that applies complex mathematics
and logic to design strong encryption schemes. The rapid increase of information
transmitted through electronic means and need to provide security for these communi-
cations make cryptography an inevitable discipline in today’s world. Cryptography is
also considered to be the study of mathematical systems of solving two kind of security
problems: privacy and authentication. A privacy system prevents the extraction
of information by unauthorized parties from the message transmitted over a public
channel, thus assuring the sender of the message that, it will only being access and
read by the trusted party (intended recipient). An authentication system prevents the
alteration of a message by insertion or deletion of a message into a public channel,
assuring the receiver of the message of the legitimacy of its sender.

Basically, there are four goals of cryptography. These include: confidentiality/privacy,
data integrity, authentication and non-repudiation. We will briefly discuss them as fol-
lows:

1. Confidentiality/Privacy: This is one of the goals of cryptography that refers to the
process of keeping the content of information secret from all except those who
are authorized to see/have it. Confidentiality denies an adversary access to in-
formation and ensures that only intended parties have access to the information.
There are numerous approaches to providing privacy in communication channels
ranging from physical protection of the content to design of mathematical algo-
rithms which render data incomprehensible. One of the goals of Cryptography is

1
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to ensure confidentiality in communications between entities which is considered
as the central issue in the field of information security.

2. Data Integrity: This refers to the ability of the designed system to prevents data
modification by an adversary and detect data manipulations by unauthorized par-
ties in the communication channels. To ensure data integrity, one must be able
to detect data manipulation which includes such thing as insertion, deletion and
substitution.

3. Authentication: This can also be viewed as identification of parties and infor-
mation involved in the communication. Entities entering into a communication
should be able to identify each other and information transfered over a commu-
nication channel should be authenticated as to the origin, data content, time sent,
etc.

4. Non-repudiation: This is a service which prevents an entity from denying previ-
ous commitments or actions. For instance, whenever disagreements arise when
an entity denies being involve in a certain action, the need to resolve such con-
troversies is necessary. The disputes can be resolved by engaging a trusted third
party.

1.2 Cryptanalysis

Cryptanalysis can be defined as the science of revealing/knowing the content of
a message by an adversary without the full knowledge of the key(s) involved in
encrypting a message. Cryptanalysis can also be viewed as the study of ciphertexts,
ciphers and cryptosystems with the sole aim of understanding how they work and
finding their weaknesses that will render them insecure which can be achieved through
the use of mathematical formulas to search for algorithms vulnerabilities. One of
the main goal/motive of a cryptanalyst is to identify weaknesses or threats within
cryptosystems. Professional cryptanalysts perform an important role in evaluating
and validating the weaknesses of cryptosystems and any cryptosystem that withstand
significant cryptanalysis is considered to be a secure system. Cryptanalysts also have
many ways, procedures, techniques and in fact can use strong and powerful computing
machines to mount a successful attack against the cryptosystems.

Some of the major types of cryptanalysis attacks can be categorized as follows:

1. Ciphertext Only Attack: This is a cryptanalytic attack in which the cryptanalyst
has access to only encrypted message. The cryptanalyst does not know anything
about the contents of the message and must work from known ciphertext collec-
tions only to mount an attack.

2. Known Plaintext Attack: This is a type of attack in which the cryptanalyst has
some knowledge about the plaintext and its corresponding ciphertext which en-
ables him to decrypt the encrypted message.
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3. Chosen Plaintext Attack: This is another type of attack in which the attacker has
access to both the ciphertext and its corresponding plaintext and can also select
the plaintext to be encrypted.

4. Chosen Ciphertext Attack: In this type of attacks, the cryptanalyst can select
different ciphertexts to be decrypted and also has access to the decrypted plain-
text. This type of attack is generally applicable to attacks against public key
cryptosystems.

5. Adaptive Chosen-Plaintext Attack: This is another cryptanalytic attack whereby
the cryptanalyst has access to both the plaintext and its corresponding encryption
and can also ammends the plaintext to suit his need in connection with the results
of the previous encryptions.

6. Man-in-the-Middle Attack: This is a cryptanalytic attack which involves two
parties communicating in a channel which is seems to be secured by the parties
but it is being hijacked by an adversary by intercepting any message that passes
through the channel and performs key exchanges with the trusted parties via the
same channel which enables him to get access to the proper key that will lead
to decryption of the encrypted message. The parties think that they are commu-
nicating via a secure channel without knowing that an adversary is reading their
conversations.

7. Brute Force Attack: This is another attack in which an attacker keeps on test-
ing all possible keys until he finds the correct one which reveals the expected
plaintext. This type of attack is time-consuming.

Definition 1.1 (Cryptology) Cryptology can be viewed as a broad term that encom-
passes both cryptography and cryptanalysis. It is the scientific study of cryptography
and cryptanalysis. Cryptology can be defined as a branch of mathematics that focused
on the practice of protecting sensitive information from an adversary by using mathe-
matically intractable problems. Researcher who is involve in developing new ciphers
and devising techniques of breaking others is considered to be cryptologist.

1.3 Public Key Cryptography

A public-key cryptography is a cryptosystem that was first used/developed by Diffie and
Hellman (1976), in order to provide a solution to the problem of key distributions which
is considered to be the major drawback in symmetric encryption. The development
of public key cryptography is considered to be the greatest and perhaps the only true
revolution in the entire history of cryptography, Diffie and Hellman (1976). A public
key encryption uses two different keys known as public and private keys in which a
public key is used for encrypting messages while the private key is used for decrypting
messages. The public key is always publish for public consumption while the private
key is kept secret.
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Definition 1.2 (Public-Key Cryptography) (Hinek, 2009) A public-key cryptosystem
can be defined as a five-tuple (P,C,K,E,D), satisfying the following seven conditions:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K is a finite set of possible keys. K is called the keyspace.

4. For each key in the keyspace K ∈ K, there is an encryption rule encK ∈ E and a
corresponding decryption rule decK ∈ D. Each encK : P→C and decK : C→ P
are functions such that decK(encK(m)) = m for every plaintext m ∈ P.

5. For each key K ∈K and each plaintext m∈ P, both encK(m) and decK(encK(m))
are easy to compute.

6. For almost every key K ∈ K, each easily computable algorithm equivalent to
decK is computationally infeasible to derive from encK . That is, it is difficult to
decrypt without decK .

7. The encryption rule encK is made public and the decryption rule decK is kept
private.

A public-key cryptosystem can also be viewed as a cryptosystem that is made up of
three efficiently computable algorithms: a key generation algorithm, an encryption
algorithm, and a decryption algorithm. Here, the key generation algorithm defines the
key space K and the encryption and decryption algorithms define the plaintext and
ciphertext spaces P and C respectively.
The public key encryption plays an important role in information security by providing
essential services such as confidentiality (privacy) and authentication of entities
involved in communication channels which can be achieved through the use of digital
signatures. The security of public key cryptosystems depend largely on the hardness
(difficulty) of certain computational problems in mathematics and solving those
computational problems require a substantial knowledge in areas of algebra, number
theory and geometry.

1.4 Complexity Theory

In this section, we give brief definitions of some terms that will be used in this research
which are related to computational problems.

Definition 1.3 (Complexity Theory) This can be viewed as a branch of mathematics
and theoretical computer science that is aimed at classifying computational problems
which can theoretically be solved by computers in terms of their practical difficulties
involved in finding their solutions. The most important resources to be considered by
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most computers while dealing with a computational problem is the time and space
needed by an algorithm in running the given problem. The computational problem is
specified by an input (of a certain form) and an output satisfying certain properties
relative to input. An instance of a computational problem refers to a specific input and
the number of bits required to represent an instance is termed as input size whereas
the number of bits necessary to represent the output is known as outputsize. For more
details see Galbraith (2012), Talbot and Welsh (2006).

Definition 1.4 (Algorithm) An algorithm can be defined as a well-defined step by step
procedures that takes a variable input and terminates with an output. It can also be
seen as a sequence of bit operations. The running time of an algorithm is the number
of bit operations or step executed and it is usually measured in terms of the number of
basic operations performed. The running of an algorithm will normally depends on the
size of the input. An algorithm to solve a computational problem is called deterministic
if it does not make use of any randomness. A deterministic algorithm should terminate
after a finite number of steps. In cryptography, it is a tradition to consider an algorithm
whose running time is bounded (typically by a polynomial in the input size).

Definition 1.5 (Asymptotic Complexity) The asymptotic complexity of a determinis-
tic algorithm refers to the process of counting the number of bit operations performed
by the algorithm expressed as the function of the input size. Upper bound on the com-
plexity are represented using the ”big O ” notation. When giving complexity estimates
using big O notation we implicitly assume that there is a countably infinite number of
possible input to the algorithm.

Definition 1.6 (Worst-Case) The worst-case running time of an algorithm refers to the
upper bound of the running time for any input, expressed as a function of the input size.

Definition 1.7 Let h1,h2 :N→ R>0. Write h1 = O(h2) if there are c ∈ R>0 and N ∈N
such that

h1(n)≤ ch2(n)

for all n≥ N where R>0 denotes set of positive real numbers.

Definition 1.8 Let h1,h2 : N→ R>0. Write h1 = o(h2) if

lim
n→∞

h1(n)
h2(n)

= 0

Definition 1.9 (Order notations) It is always difficult to derive the exact running time
of an algorithm. In such situation, one is allowed to use approximations of the running
time, and usually may only derive the asymptotic running time. That is, one studies how
the running time of an algorithm increases as the size of the input increases without
bound.
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1. Asymptotic upper bound f (n) = O(g(n)) if there exists a positive constant c and
a positive integer n0 such that 0≤ f (n)≤ cg(n) for all n≥ n0.

2. Asymptotic lower bound f (n) = Ω(g(n)) if there exists a positive constant c and
a positive integer n0 such that 0≤ cg(n)≤ f (n) for all n≥ n0.

3. Asymptotic tight bound f (n) = Θ(g(n)) if there exists a positive constants c1 and
c2 and a positive integer n0 such that c1g(n)≤ f (n)≤ c2g(n) for all n≥ n0.

4. (o−notation) f (n) = o(g(n)) if for any given positive constant c > 0 there exists
a constant n0 > 0 such that 0 ≤ f (n) < cg(n) for all n ≥ n0. For more details
on complexity theory see Galbraith (2012), Menezes and Vanstone (2001), and
Talbot and Welsh (2006).

Definition 1.10 (Worst case asymptotic complexity) Let A be a deterministic algorithm
and let t(n) be a bound on the running time of A on every problem of input size n bits.
Then the following holds

1. A is polynomial-time if there exists an integer k such that

t(n) = O(nk).

2. A is superpolynomial-time if t(n) = σ(nc) for all c ∈ R>1.

3. A is exponential-time if there is a constant c1 > 1 such that

t(n) = O(cn
1).

4. A is subexponential-time if t(n) = O(cn) for all c ∈ R>1.

Definition 1.11 (One-Way Function) A function g : {0,1}∗→ {0,1}∗ is called a one-
way function if it satisfies the following two conditions:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A
such that on input x algorithm A output g(x) (i.e;A(x) = g(x));

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every pos-
itive polynomial p(·) and all sufficiently large n′

pr[A′(g(Un),1n) ∈ g−1(g(Un))]<
1

p(n)
.

where Un denotes a random variable uniformly distributed over {0,1}n. Hence, the
probability in the second condition is taken over all the possible internal coin tosses of
A′, with uniform probability distribution.
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It should be noted that, one does not require A′ to output a specific pre-image f (x); any
element in the set f−1( f (x)) will do. In situation where f is one-to-one, the string x is
the only pre-image of f (x) under f , but in general there may be other pre-images. For
more details on one-way function see Oded (2001).

Definition 1.12 (Trapdoor One-way Function) A trapdoor one-way function also
refers to collections of those functions that can be computed easily in a forward di-
rection but it is hard to find their inverses except with some secret information. Mathe-
matically, a trapdoor one-way function is a family of invertible functions fk, such that

1. y = fk(x) easy to compute if k and x are known.

2. x = f−1
k (y) easy to compute if k and y are known.

3. x = f−1
k (y) infeasible to compute if y are known but k is not known.

Thus, the development of a practical public-key scheme depends largely on discovery
of a suitable trapdoor one-way function, Stallings (2005). Most of the public-key
cryptosystems hardness are considered to be trapdoor-one-way function; for examples
discrete log problem, integer factorization problem, etc.

1.5 Primality Testing

Prime numbers has many applications in today’s world as it has been used in setting up
some parameters of certain cryptographic protocols. This makes prime numbers to have
more applications in public key cryptography. Primality testing refers to the procedures
and techniques adopted in order to determine whether a given random number (large) is
a prime or not. There are many algorithms for primality testing, but in this section, we
will give two probabilistic algorithms for primality testing which are: Solovay-Strassen
algorithm and Rabin-Miller algorithm. Before discussing these algorithms in details,
we give the following definitions:

Definition 1.13 (Legendre Symbol) Let p be an odd prime and x be an integer such
that the gcd(x, p) = 1. Then the Legendre symbol,

(
x
p

)
, is defined by

(
x
p

)
=

{
1, if x is a quadratic residue mod p
−1, if x is a quadratic non–residue mod p

Definition 1.14 (Jacobi Symbol) Let x be an integer and n > 1 be an odd positive
integer. If n = p

α1
1 p

α2
2 . . . , p

αk
k , then the Jacobi symbol,

( x
n
)
, is defined by

( x
n

)
=

(
x
p1

)α1
(

x
p2

)α2
. . .

(
x
pk

)αk
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where
(

x
pi

)
for i = 1,2, . . . ,k is the Legendre symbol for the odd prime pi. The Jacobi

symbol turns to Legendre symbol if n is an odd prime instead of an odd positive integer.

Both Legendre and Jacobi symbols have certain properties. More details can be found
in Song (2002), Wang et al. (2016).

1.5.1 Solovay-Strassen Algorithm

This is one of the probabilistic algorithms for primality testing that uses Jacobi function
in testing whether or not a given random number p is prime. The method has the
following steps:

Algorithm 1.1 Solovay-Strassen algorithm

1: Randomly select a number x that is less than p.
2: Compute the greatest common divisor (gcd) of x and p. If gcd (x, p) 6= 1, then p

must be a composite number and the test fails. Return “p is a composite number.”

3: Compute j = x
p−1

2 (mod p).

4: Compute the Jacobi symbol
(

x
p

)
.

5: If j 6=
(

x
p

)
, then p is not a prime number and p is prime if j =

(
x
p

)
6: If p passes the test, randomly select another x and repeat steps 1− 5, if p passes

all the test t times, then the largest probability that p is a composite is 1
2t where the

number t can be determined based on the security requirements.

1.5.2 Rabin-Miller algorithm

This is also another probabilistic algorithm which is considered to be simple and also
widely used algorithm for primality testing. Firstly, let p be the number to be examined,
then we compute a positive integer k and an odd integer m such that p = 2km. Then
perform the following steps:

Algorithm 1.2 Rabin-Miller algorithm

1: Randomly select a number c < p.
2: Initialize the number of steps j = 0 and let z≡ cm (mod p).
3: If z = 1 or z = p−1, then p is probably a prime, and passes the test.
4: Increase the variable of number of steps by one, if j < k and z 6= p−1, set z−→ z2.
5: If z = 1, then p is not a prime. If z = p−1, then p is a probable prime, otherwise

repeat step 4.
6: If j = k and z 6= p−1, then p is not a prime
7: [Exit] Terminate the algorithm.
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1.6 Integer Factorization Problem (IFP)

Integer Factorization Problem (IFP) started during ancient Greece and many algorithms
were developed as a result of the advent of computers which can factor very large num-
bers into their prime factors. It can also be defined as given a large positive integer
N, then its prime factorization can be written as N = p

a1
1 , p

a2
2 , . . . , p

ak
k where pi are

defined to be pairwise distinct primes and each ai ≥ 1. This means in another way,
integer factorization problem refers to the study of algorithms that split a composite
number N into a non-trivial prime factors say a and b such that N = ab. The integer
factorization problem plays a significant role in modern communication as the security
of many cryptographic protocols such as RSA public-key, encryption, RSA digital sig-
nature scheme and the Rabin public key encryption rely on the intractability of integer
factorization problem. This means if someone can find two prime factors of a very large
composite integer N in polynomial time, then this implies that any design cryptosystem
whose intractability relies on integer factorization problem is consider to be insecure.

There are many methods and algorithms developed for factoring very large composite
integers N ranging from classical methods of trial division, Pollard ρ to modern factor-
ing algorithms of quadratic sieve, elliptic curve method and number field sieve but there
is no known deterministic polynomial-time algorithm for integer factorization problem.
This section will discuss briefly some of these factoring methods and their algorithms
where necessary. For more details on integer factorization methods see Cohen (1996),
Song (2002) and Hoffstein et al. (2008).

1.6.1 Trial Division Method

This is consider to be one of the oldest factoring method that brute force a given com-
posite integer into its prime factors by keeps on dividing with small primes up to the
square root of the given composite integer. This simply means given a composite in-
teger N, trying small primes p1, p2, . . . , pk where pk ≈

√
N, if a prime pk is found to

divide N, then it leads to factorization of the integer N. To test for every integer less
than bNc is of time complexity O(

√
N) = O(2N/2) which is exponential time. The

complexity time of division is O(N2). Hence, the complexity time of trial division is
O(N22N/2) = O(N2√N) Hoffstein et al. (2008). In what follows, we present an algo-
rithm that tries to factor an integer N > 1 using trial division by all possible divisors of
N.

Algorithm 1.3 Trial Division Method of factoring a composite integer N > 1

1: [Initialization] Input N and set a← 0, b← 2.
2: [N = 1?] If N = 1, then go to step 5.
3: [Compute remainder] q← N

b and r← N (mod b). If r 6= 0, go to step 4. a =
a+1, pa← b,N← q, go to step 2.

4: [Factor found?] If q > b, then b← b+1, go to step 3
5: a← a+1; pa← N
6: [Exit] Terminate the algorithm.

9



© C
OPYRIG

HT U
PM

1.6.2 Pollard’s ρ Factoring Method

Pollard’s ρ method was introduced in 1975 by John M. Pollard which is aimed at find-
ing a relatively small factors of an integer N, Pollard (1975). The method uses an
iteration of the form

xo = random (0,N−1),

xi ≡ f (xi−1) (mod N)

where x0 is a random starting value, N is the number to be factored, and f ∈ Z[x]
is a polynomial with integer coefficients, usually is chosen to be f (x) = x2± a with
a 6= −2,0. Then starting from some initial value x0, a random sequence x1,x2, . . . is
computed modulo N as follows:

x1 = f (x0),

x2 = f ( f (x0)) = f (x1),

...
xi = f ( f (i−1)).

Let d be nontrivial divisor N such that d is smaller than N. Since there are relatively few
congruent classes modulo d (namely, d of them) , probably, there exists some integers
xi and x j that lie in the same congruence class with modulo d but belong to different
class modulo N which can be written as follows:

xi ≡ x j (mod d)

xi 6≡ x j (mod N)

Since d | (xi−x j) and N - (xi−x j), then it follows that the gcd (xi−x j,N) is a nontrivial
factor of N. The possibility exists that when a gcd greater than 1 is obtained, it may
turn out also to be equal to N but this happens in a very rare case. The complexity of
the algorithm has an expected running time of O(p1/2(logN)2). In what follows, we
present the Pollard’s ρ algorithm of factoring an integer N > 1 and using a polynomial
f (x) = x2 +1 as presented by Song (2002).

10



© C
OPYRIG

HT U
PM

Algorithm 1.4 Pollard’s ρ Method of factoring a composite integer N > 1

1: [Initialization] Choose a seed, x0 = 2, a generating function f (x) = x2 + 1
(mod N). Choose also a value for t not much bigger than

√
d, perhaps t < 100

√
d

2: [Iteration and computation] Compute xi and yi as follows

x1 = f (x0),

x2 = f ( f (x0)) = f (x1),

...
xi = f ( f (i−1)).

y1 = x2 = f (x1) = f ( f (x0)) = f ( f (y0))

y2 = x4 = f (x3) = f ( f (x2)) = f ( f (y1)),

y3 = x6 = f (x6) = f ( f (x3)) = f ( f (y2))

...
yi = x2i = f ( f (yi−1)).

and simultaneously compare xi and yi by computing the d = gcd(xi− yi,N)
3: [Factor Found?] If 1 < d < N, then d is a nontrivial factor of N, print d, and go to

step 5.
4: [Another Search?] If xi = yi (mod N) for i or i≥

√
t, then go to step 2 to choose

a new seed and a new generator and repeat.
5: [Exit] Terminate the algorithm.

1.6.3 Pollard’s p−1 Factoring Method

The Pollard’s p− 1 algorithm was invented by J.M. Pollard (1974) . It is a special-
purpose algorithm, this means that it is only suitable for integers with specific types of
factors. Suppose that we are given the product of two distinct prime numbers N = pq
and our task is to find the prime factors p and q. Assume that by luck or hard work or
some other method, we manage to find an integer L with the following properties

p−1 divides L and q−1 does not divide L.

This means that there are integers i, h, and j with j = q−1 satisfying

L = i(p−1) and L = h(q−1)+ j.

Now, we choose a random integer a and compute aL modulus p. From Fermat’s little
theorem we can write
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• aL = ai(p−1) = (ap−1)i ≡ 1i ≡ 1 (mod p)

• aL = ah(q−1)+ j = a j(aq−1)h ≡ a j ·1h ≡ a j (mod q)

which showed that

p divides aL−1 and q does not divide aL−1

Observed that since p|N and we showed that p|(aL−1), then one can recover p through
the following simple computation

p = gcd(aL−1,N).

But one may ask, how can we find L that is divisible by p−1 and not by q−1? Pollard
consider that if p− 1 is to be the product of several small primes, then we can make
use of the first few primes, and calculate the product of those primes and the result is
multiple of p−1.

Similarly let p|N such that is a product of many small primes. Then there exists an
integer L = B! such that p− 1|B! for some not-too-large value of B. This shows that
B! = (p−1) j for some integer j. Hence, we can compute the following relation

b≡ aB! ≡ (ap−1) j ≡ 1 (mod p)

which gives p = gcd(aB!− 1,N). In practice, one might simply choose a = 2. If the
gcd(aB!−1,N) happens to be equal to 1, then we try the next value of B. And if happens
to be number between 1 and N, then we have found a nontrivial factor of N.

Algorithm 1.5 Pollard’s p−1 factorization of composite integer N > 1

1: Input N = pq as a compute integer to be factored.
2: Choose an integer a > 1. Often 2 is used.
3: Choose a bound B.
4: Compute aB!−1 modulo N.
5: Compute d = gcd(aB!−1,N).
6: Check if 1 < d < N.
7: If yes, we have found a nontrivial factor of N.
8: If no, loop again at Step 3 with (B+h) for h = 1,2,3,4, . . . until we compute the

gcd in step 3 such that 1 < d < N.

Remark 1.1 Note the following

• To compute aB!−1 is not feasible. Even if a = 2 with moderate values of B say
B = 100, hence to compute the number 2100! has more than 10157 digits, which
is more than the number of particles in the universe.
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• We need to compute gcd(aB!−1,N). Then it suffices to calculate
aB!−1 (mod N) = µ and evaluate gcd(µ,N) = p. Thus we do not want to work
with numbers which is greater or larger than N.

• Also, a(n+1)! ≡ (aB!)n+1 (mod N). Then, we can efficiently compute µ

Remark 1.2 It takes at most 2log2 j steps in order to compute a j (mod N) using
fast exponentiation algorithm. In other words, we can say that, the running time of
computing a j (mod N) is in O(log j) steps. Then, to compute aB! (mod N), it takes
approximately 2n log2(n) steps for some reasonable large values of n . One can choose
p and q in such a way that both p−1 and q−1 can not be expressed into small primes
decompositions which make the Pollard’s p−1 method to fail, Hoffstein et al. (2008).

Remark 1.3 Note that the Pollard p− 1 method of factoring is not useful to all num-
bers, it works if at least one of p−1 or q−1 factors entirely into the product of small
prime powers. This means p−1 is even, so we can pull off a factor of 2. But the quan-
tity 1

2 (p−1) behave more or less like random number of size approximately 1
2 p which

is consider to be a hard problem. Also, to avoid Pollard’s p−1 method, one can choose
p and q in such a way that both p− 1 and q− 1 can not be expressed as a product of
small prime powers.

1.6.4 Elliptic’s Curve Method

This is another method of splitting a composite integer into its prime factors invented
by Lenstra (1987) that uses elliptic curves. This method uses the idea of Pollard’s
p− 1 method except that the multiplicative group is replaced by the group of points
in a random elliptic curve. If we can choose a random group G with order g close to
p, we may be able to perform computation similar to that involved in Pollard’s p− 1
algorithm but working with G rather than Fp. The factors of an integer N can be found
if all prime factors of g are less than the bound B otherwise we make a new choice
of g and repeat the process until a factor is found. The running time of this method
is O(e

√
(2+0(1)) log p log log p) which is subexponential and works substantially faster for

small p. Let N > 1 be a composite integer with gcd(N, 6) = 1, the algorithm below
tries to find a nontrivial factor of N.
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Algorithm 1.6 Elliptic Curve Method of factoring a composite integer N > 1

1: [Choose an Elliptic Curve] Select a random pair (E,P), where E is an elliptic curve
y2 = x3+ax+b over Z/NZ, and P(x,y)∈E(Z/NZ) is a point on E. That is choose
a,x,y∈Z/NZ at random, and set b← y2−x3−ax. If gcd(4a3+27b2,N) 6= 1, then
E is not an elliptic curve, then start over by choosing a new pair (E,P) and repeat
the process.

2: [Choose an integer k] Select a positive integer that is divisible by many prime
powers, say k = lcm (1,2, . . . ,B) or k = B! for a suitable bound B (as B becomes
larger, the chances of producing a successful factor increases but the time taking
will be long).

3: [Compute kP] Compute the point kP ∈ E(Z/NZ) by using the following formula
to compute P3(x3,y3) = P1(x1,y1)+P2(x2,y2) mod N:

(x3,y3) = (λ 2− x1− x2 (mod N), λ (x1− x3)− y1 (mod N)),

where

λ =


3x2

1+a
2y1

(mod N), if P1 = P2
y1−y2
x1−x2

(mod N), otherwise

The computation of kP (mod N) can be done in O(log k) doubling and additions
4: [Compute gcd] If kP ≡ OE ( (mod N)), then set m2 = z and compute d =

gcd(z, N), else go to step1 to make a new choice for a or even for a new pair
(E, P).

5: [Factor Found?] If 1 < d < N, then d is a nontrivial factor of N, output d and go
to step 7.

6: [Start Over?]If d is not a nontrivial factor of N and want to try more elliptic curve,
then go to step 7 and repeat the procedures again, else go to step 7.

7: [Exit] Terminate the algorithm.

1.6.5 Factorization via Difference of Squares

One of the most powerful factorization methods known today begins with the simplest
identities

x2− y2 = (x+ y)(x− y)

The formula above says that a difference of squares is equal to a product. In order to
factor a number N, we look for an integer b such that quantity N+b2 is a perfect square,
say equal to a2. That is N +b2 = a2, then

N = a2−b2 = (a+b)(a−b)

which yield the factorization of N.
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However if N is large, then it is unlikely that a randomly chosen value of b will give
N + b2 into a perfect square. We want to give a clever method of selecting b. An
important thing to consider is that we don’t want to write N itself as a difference of two
squares. It is sufficient to write some multiple kN of N as a difference of two squares,
since

kN = a2−b2 = (a+b)(a−b).

Hence to show that the factors of N are separated from the right-hand side of the equa-
tion, that is, N has a nontrivial factor in common with each of a+ b and a− b. It
is then very easy to recover the successful factorization of integer N by evaluating
gcd(N, a+ b) and gcd(N, a− b). Thus, the running time of this method is given as
O(
√

N). Since N ≈ 22n, then O(
√

N) = O((22n)1/2) = O(2n) which is exponential.
The multiples of N are the numbers that are congruent to 0 modulo N , so rather than
searching for a difference of squares a2− b2 that is a multiple of N, we may instead
search for distinct numbers a and b such that

a2 ≡ b2 (mod N).

In practice it is not feasible to search directly for integers a and b that satisfy the above
congruence relation. We give some steps that will aid the factorization of a composite
integer N > 1.

Algorithm 1.7 Factorization of N > 1 via Difference of Squares Method

1: [Relation Building] Find many integers a1,a2,a3, . . . ,ar with the property that the
quantity ci ≡ a2

i (mod N) factors as a product of small primes.
2: [Elimination] Take a product ci1ci2 . . . ,cis of some of the ci’s so that every prime

appearing in the product appears to an even power. Then ci1,ci2, . . . ,c′is = b2 is a
perfect square.

3: [gcd Computation] Let a= ai1ai2 . . . ,ais and compute the greatest common divisor
d = gcd(N,a−b). Since

a2 = (ai1ai2 · · ·ais)
2 ≡ a2

i1a2
i2 · · ·a

2
is ≡ ci1ci2 · · ·cis ≡ b2 (mod N),

there is a reasonable chance that d is a nontrivial factor of N . If 1 < d < N is a
nontrivial factor of N, then go to step 4, else make a new choice and go to step 1
and repeat the process.

4: [Exit] Terminate the algorithm.

For other methods on integer factorization refer to Hoffstein et al. (2008), Song (2002),
and Cohen (1996).

The following table gives a summary of the running time of some of the integer factor-
ization problems:
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Table 1.1: Running Time of Algorithms for Solving IFP

Algorithm Running Time Remark
Trial Divisions O(n2√N) Exponential
Pollard p− 1 Factorization Algo-
rithm

O(logm) Logarithmic

Factorization Via Difference of
square

O(
√

N) Exponential

Quadratic Sieve Factoring O(
√

n · logn) Subexponential
Pollard ρ Method O(p1/2(logn)2) Subexponential
Continued Fraction Method O(c

√
log p log log p) Subexponential

Number Field Sieve O(e((c+0(1)) 3√logn 3√(log logn))) Subexponential

Elliptic Curve Method O(e
√

(2+0(1)) log p log log p) Subexponential

1.6.6 Modulus N = pq

This section presents the RSA modulus whose hardness relies on the difficulty of
solving the integer factorization problem. Let N = pq be an RSA modulus where a
composite integer N is the product of two large random prime numbers p and q of
the same bit size. Let (e,N) be the public key tuple where the parameter e is used for
encryption and let d be a private exponent used for decryption. Then the parameters
e and d are related in the form ed ≡ 1 (mod φ(N)) where φ(N) is known as Euler’s
totient function defined as φ(N) = (p− 1)(q− 1). The above modular relation can
be written as ed = 1+ kφ(N) for k ∈ Z known as key equation with only one known
parameter e and three unknown parameters d, k and φ(N).

This RSA modulus suffers from various attacks such as common modulus attacks,
small public exponent attacks, short decryption exponent attacks, side channel attacks,
Boneh and Durfee lattice attack, partial key exposure attacks and many more which
can be found in Hinek (2009).

This research work focuses on constructing new strategies of factoring moduli N = pq
and N = prq for r ≥ 2 in polynomial time and in relation to short decryption exponent
attacks. As such, it will briefly report some attacks that factor the modulus N = pq
efficiently as a result of using short decryption exponents.

The first to report about an attack upon short decryption exponents was by Wiener
(1990). He showed that the modulus N = pq can be factored efficiently into its prime

factors p and q if the short decryption exponent d < 1
3 N

1
4 using continued fraction

method.
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Varheul and van Tilborg extended the boundary of the Wieners attack by exhaustive
search for the short decryption exponent d using continued fraction method. In their
findings, they showed that the cost of exhaustive search for d having modulus N = pq
is 2r+ 8 when extending the Wiener’s boundary to r bits where r = ln2

d
N0.25 with

a complexity of about ln2(N)22r which yielded the results in polynomial time, Verheul
and van Tilborg (1997).

In 1999, Boneh and Durfee proposed a heuristic attack on the modulus N = pq using
lattice construction technique which factored the modulus into its prime factors with
an improved bound of short decryption exponent d < N0.292, see ( Boneh and Durfee
(1999)). B. D. Weger also reported an attack on N = pq where he showed that the
modulus is insecure if the prime difference |p−q|< Nγ for 1

4 ≤ γ ≤ 1
2 using continued

fraction method, de Weger (2002). Maitra and Sarkar proved that the N = pq can be
factored in polynomial if |2q− p| ≤ Nγ

16 where q < p < 2p and balanced primes, Maitra
and Sarkar (2008). Another cryptanalysis attacks on N = pq using ratio of primes was
carried out by Chen’s et al (2009) where they proved that the modulus N = pq can
be factored efficiently if |ap− bq| = Nγ where q < p < 2p, (a,b) are small positive
integers less than logN and 1

4 ≤ γ ≤ 1
2 .

Furthermore, Nitaj (2012) also reported attack on the modulus N = pq using continued

fraction method that improved the short decryption exponent bound to d <

√
6
√

2
6 N0.25

which factor the modulus in polynomial time, ? . Mu-En, Chien-Ming, Yue-Hsun and
Hung-Min (2014) proposed another attack on N = pq through exhaustive searching of
MSBs of p+q as many as possible which is equivalent to estimating p+q as accurately
as possible, Wu et al. (2014). The result of their findings reduced the cost of exhaustive
search to 2r+ 2 which is an extension of Wiener’s boundary r bits and 26 faster than
Verheul and van Tilborg (1997) attack. Other proposed attacks on modulus N = pq can
found in Hashimoto (2010) , Asbullah and Ariffin (2015), Bunder and Tonien (2017)
and Akchiche and Khadir (2018).

1.6.7 Modulus N = p2q

In order to make encryption and decryption work faster and more efficient, some pro-
posed cryptosystem were developed with modulus N = p2q where p and q are prime
factors of a composite number N. Fujioka and Miyaguchi (1991) was the first to used
the modulus N = p2q for digital signature whose computational speed is faster than
the original RSA scheme. Also in 1998, Okamoto and Uchiyama proposed a public
key cryptography scheme whose security is considered to be as difficult as factoring an
RSA modulus of the form N = p2q Okamoto and Uchiyama (1998). HIME(R) cryp-
tosystem proposed a modulus of the form N = p2q where p and q are prime numbers
which was found to be faster in decryption than the modulus N = pq and the security
of this cryptosystem is based on the hardness of factoring a composite integer N = p2q
, see Hitachi (2001). In 2013, Sarkar reported the use of short decryption exponent at-
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tack on prime power with modulus N = p2q which he showed that the cryptosystem is
insecure if the bound d < N0.395 and he successfully factored the prime power modulus
N = p2q into its prime factors p and q, Sarkar (2013).

In 2013, Ariffin developed a new scheme based on the hardness of factoring integers of
the form N = p2q (Ariffin et al. 2013). The Ariffin scheme uses a combination of mod-
ular linear and modular squaring. They showed that the decryption is 1-to-1 which is of
great advantage over Rabin’s cryptosystem. Its encryption speed has a complexity order
faster than RSA and ECC. For decryption its speed is better than RSA and is marginally
behind ECC. Also the scheme was constructed using a simple mathematical structure,
and it has low computational requirements which enable communication devices with
low computing power to deploy secure communication procedures efficiently, Ariffin
et al. (2013). In 2015, Asbullah and Ariffin also showed that the prime power modulus
of the form N = p2q can be successful factored by taking the term N− (2N2/3−N1/3)
as a good approximation of φ(N) satisfying the key equation ed−kφ(N)= 1, (Asbullah
and Ariffin (2015)).

1.6.8 Modulus N = prq

The modulus N = prq for r ≥ 2 is known as the prime power modulus whose security
depends on the difficulty of factoring the modulus N into its prime factors p and q of the
same bit size. The first person to report the security threat for this type of scheme was
Takagi in 1991 where he proved that the cryptosystem is insecure if the short decryption

exponent d ≤ N
1

2(r+1) for r≥ 2, the modulus N = prq can be factored efficiently using
lattice based technique Takagi (1998). May (2004) reported an improvement on the
bound of Takagi where he showed that the modulus N = prq is insecure if the short

decryption exponent d <N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}
, May (2004) . More reports on factoring

the modulus N can be found in Sarkar (2014), Lu and Lin (2014), Shehu and Ariffin
(2017).

1.7 RSA Cryptosystem

The RSA key generation involves random selection of two distinct large prime numbers
such that their product is represented as N = pq and called the RSA modulus. The
Euler totient function φ(N) is computed as φ(N) = (p− 1)(q− 1) and also choosing
an integer e < φ(N) such that the gcd(e,φ(N)) = 1 and computing a short decryption
exponent d such that the relation ed ≡ 1 mod φ(N) is satisfied. Then the pairs (e,N)
and (d, p,q) are called the public and private keys respectively.

The encryption function is always computed by choosing a message M ∈ ZN and
computing the ciphertext C = Me (mod N) while the plaintext can also be recovered
by computing the decryption exponent from an equation M = Cd (mod N). The

18



© C
OPYRIG

HT U
PM

primes p and q in most cases are consider to have same bit length.

1.7.1 RSA Algorithm

In simpler terms, the RSA cryptosystem involves three processes of key generation,
encryption, and decryption algorithms as presented in Algorithms 1.8, 1.9 and 1.10
below:

Algorithm 1.8 RSA key generation

1: Initialization: Input the size n and (e,N).

2: Choose two random and distinct n−bit strong primes (p,q).

3: for each pair of the form (p,q) do

4: N := pq

5: φ(N) := (p−1)(q−1)

6: end for

7: Choose a random integer e such that 1 < e < φ(N) and gcd(e,φ(N)) = 1.

8: if d is an integer then

9: ed ≡ 1 (mod φ(N)).

10: end if

11: return the public key pair (N,e) and the private key pair (N,d).

Algorithm 1.9 RSA encryption

1: Initialization: Input the public key pair (e,N) and the plaintext M.

2: Represents the plaintext message M as integer such that M <N and gcd(M,N) = 1.

3: for each triplet of the form (e,N,M) do

4: C := Me (mod N)

5: end for

6: return the ciphertext C.
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Algorithm 1.10 RSA decryption

1: Initialization: Input the private key pair (d,N) and the ciphertext C.

2: for each triplet of the form (d,N,C) do

3: M :=Cd (mod N)

4: end for

5: return the message M.

Theorem 1.1 (Euler’s Theorem). Let N = pq and φ(N) = (p− 1)(q− 1). For any
integer M such that gcd(M,N) = 1, then Mφ(N) ≡ 1 (mod N).

Proof:
See Hoffstein et al. (2008)

1.8 AAβ Cryptosystem

This section will presents an enhanced AAβ cryptosystem algorithm of factoring N =

p2q as proposed by Ariffin et al. (2013). The AAβ cryptosystem has key generation
algorithm, encryption algorithm and decryption algorithm as outlined by Algorithms
1.11, 1.12, and 1.13.

Algorithm 1.11 AAβ key generation

1: Initialization: Input the size n and (e,N).
2: Choose two random and distinct n−bit prime numbers (p,q) such that the inequal-

ity 2n < p,q < 2n+1 satisfying the relation p,q≡ 3 (mod 2) holds.
3: for each pair of the form (p,q) do
4: N2 := p2q
5: r1 := 23n+4

6: r2 := 23n+6

7: end for
8: Compute a random integer N1 such that r1 < N1 < r2
9: if d is an integer then

10: N1d ≡ 1 (mod N2).
11: end if
12: return the public key pair (N1,N2) and the private key pair (d, p).
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Algorithm 1.12 AAβ encryption

1: Initialization: Input the public key pair (N1,N2) and the plaintext M,T .

2: Represents the plaintext message M as 22n−2 < M < 22n−1 such that gcd(M,N2) =

1.

3: Choose a plaintext T such that 24n < T < 24n+1

4: for each tuple of the form (N1,N2,M,T ) do

5: C := N1M2 +N2T

6: end for

7: return the ciphertext C.

Algorithm 1.13 AAβ decryption

1: Initialization: Input the private key pair (d, p) and the ciphertext C.

2: for each triplet of the form (d, p,C) do
3: Z ≡Cd (mod N2)

4: Mp ≡ Z
p+1

4 (mod p)

5: W :=
Z−M2

p
p .

6: X ≡ W
2Mp (mod p)

7: M1 = Mp +X p

8: end for
9: if M1 < 22n−1 then

10: return M := M1. Else return M := p2−M1

11: T := C−N1M2

N2
.

12: end if
13: return the message M,T .

For proof of correctness for AAβ decryption, see Ariffin et al. (2013).

1.9 Takagi Cryptosystem

In this section, the key generation algorithm, encryption and decryption algorithms of
the Takagi cryptosystem for factoring the modulus N = prq for r ≥ 2 will be presented
in Algorithms 1.14, 1.15 and 1.16.
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Algorithm 1.14 Takagi key generation

1: Initialization: Input the size n and (e,N).
2: Choose two random and distinct n−bit strong primes (p,q).
3: for each pair of the form (p,q) do
4: N := prq
5: φ(N) := pr−1(p−1)(q−1)
6: end for
7: Choose a random integer e such that 1 < e < φ(N) and gcd(e, p) = 1.
8: if d is an integer then
9: ed ≡ 1 (mod φ(N)).

10: end if
11: return the public key pair (N,e) and the private key tuple (d, p,q).

Algorithm 1.15 Takagi encryption

1: Initialization: Input the public key pair (e,N) and the plaintext M.
2: Represents the plaintext message M as integer such that M <N and gcd(M,N) = 1.
3: for each triplet of the form (e,N,M) do
4: C := Me (mod N)
5: end for
6: return the ciphertext C.

Algorithm 1.16 Takagi decryption

1: Initialization: Input the private key pair (d, p,q) and the ciphertext C.
2: for each tuple of the form (d, p,q,C) do
3: Mq :=Cd (mod q)
4: Mp :=Cd (mod p)
5: end for
6: return the message M.

For the proof of correctness of the above algorithm, see Takagi (1998).

1.10 Problem Statement

The integer factorization problem has always been of mathematical interest. The prob-
lem of finding two prime factors of a large composite integer N = pq has been consid-
ered to be a major challenge often which some of the public key cryptosystems security
were built. Likewise the prime power modulus variant N = prq relies on the diffi-
culty of decomposing the given prime power modulus into its two prime factors. The
complexity running time of most of the existing factoring methods are consider to be
subexponential. However, in order to ensure the difficultness remain intact, it is the
hope of this research to find new criteria upon primes to be avoided.
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1.11 Research Questions and Hypothesis

This research work is aimed at finding new criteria upon primes to be avoided in order
to ensure the difficultness of factoring either N = pq or N = prq remain intact. The
research questions are as follows:

1. What is the relationship between improving short decryption exponent bound
using small prime difference and the difficulty of factoring cryptosystem with
modulus N = pq?

2. What makes t instances of a public key pair (Ns,es) with moduli Ns = psqs fac-
torizable when there is an improvement on the bound d such that the gener-
alized RSA key equations of the form esd− ksφ(Ns) = 1, esds− kφ(Ns) = 1,
esd− ksφ(Ns) = zs, and esds− kφ(Ns) = zs are satisfied ?

3. How can improving the bound of short decryption exponent for prime power
with modulus of the form N = prq make the scheme insecure and leads to the
factorization of the modulus N = prq in polynomial time?

4. What makes t instances of a prime power public key pair (Ns,es) with moduli
Ns = pr

sqs factorizable when there exists an improvement on the bound d such
that the following generalized key equations esd−ksφ(Ns) = 1, esds−kφ(Ns) =
1, esd− ksφ(Ns) = zs, and esds− kφ(Ns) = zs hold?

1.12 Research Objectives and Methodology

The research objectives together with brief explanations of the methodology adopted
are stated below:

1. To develop new cryptanalytic attack on the modulus N = pq with relation to the
bound of the decryption exponent d.

Methodology: The method to be employed is aimed at finding a good ap-
proximation of φ(N) using information from public key pair (e,N). That
is, by taking the convergents of the continued fraction expansions of

e

N−da2+b2
ab

√
Ne+1

, e

N−d a j+bi

a
j
2 b

i
2

√
Ne+1

, e

N−da j+b j

(ab)
j
2

√
Ne+1

and e
N∗ where N∗ = N−


a

i+1
i +b

i+1
i

2(ab)
i+1
2i

+ a
1
j +b

1
j

2(ab)
1
2 j

√N

+ 1, where 2 < j < i to find the right can-

didates among the convergents that can yields to the factorization of modulus
N = pq in polynomial time where a, b, i and j are small positive integers.

2. To develop a new cryptanalytic attack that can simultaneously and successfully
factor t instances of the moduli Ns = psqs given public key pair (es,Ns) with
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relation to esd− ksφ(Ns) = 1, esds− kφ(Ns) = 1, esd− ksφ(Ns) = zs and
esds− kφ(Ns) = zs for s = 1, . . . , t.

Methodology: The method to be adopted can be formulated upon generalized
key equations. It will then transform the generalized key equations into a simul-
taneous Diophantine approximations problem and apply lattice basis reduction
techniques to find some unknown parameters, which can lead to finding t prime
factors ps and qs of t instances moduli Ns = psqs in polynomial time.

3. To develop a new technique of factoring prime power modulus N = prq for r≥ 2
by using good approximation of φ(N), the public key pair (e,N) and its relation
with the bound of the decryption exponent d that will lead to the factorization of
the modulus in polynomial time.

Methodology: It will employ continued fraction method to search for a right
and better candidate from convergents of the continued fraction expansion of
approximation of φ(N) that can lead to the successful factorization of the prime
power modulus N = prq in polynomial time.

4. To develop a new cryptanalytic attack that can simultaneously and successfully
factor t instances prime power moduli Ns = pr

sqs given public key pair (es,Ns)
with relation to esd− ksφ(Ns) = 1, esds− kφ(Ns) = 1, esd− ksφ(Ns) = zs and
esds− kφ(Ns) = zs for s = 1, . . . , t and r ≥ 2.

Methodology: The method to be adopted will be formulated upon generalized
key equations. It will then transform the generalized key equations into a
simultaneous Diophantine approximations problem and apply lattice basis
reduction techniques to find some unknown parameters, which will enable us to
find t prime factors ps and qs of t instances prime power moduli Ns = pr

sqs for
r ≥ 2 in polynomial time.

1.13 Scope of the Research

This research work is aimed at developing new factorization strategies of N = pq and
N = prq for r ≥ 2 and relation to its short decryption exponent bound using continued
fractions method. It is the hope of this research to find a better approximations of
φ(N) through analyzing cases of small prime difference under certain restrictions on
parameters to be used. The findings of this work is also expected to yield improve
decryption exponent bound.

This research work will also explore new factorization strategies for moduli Ns = psqs
and prime power moduli Ns = pr

sqs for s = 1, . . . , t and r ≥ 2 using generalized key
equations. These proposed strategies are expected to simultaneously factor t moduli Ns
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in polynomial time by applying simultaneous Diophantine approximations and lattice
basis reduction method to obtain unknown positive integers (d,ks) and (ds,k).

1.14 Overview of the Thesis

In this section, a skeleton of the thesis compositions is briefly given as follows:

Chapter 1 gives introduction to cryptography and its goals, cryptanalysis and some
types of attacks, definitions of some terms such as public key cryptography, complexity
theory, primality testing, integer factorization problem and some reports on factoring
modulus of the form N = pq, N = p2q, N = prq, an overview of RSA, AAβ and
Takagi cryptosystems through key generations algorithms, encryption and decryption
algorithms and their proofs of correctness. The chapter also presents statement of
the problem, research questions, research objectives and methodology adopted in
accomplishing them. The section also put forwards scope of the research and finally
present an overview of the thesis.

Chapter 2 presents some literature review on successful cryptanalytic attacks in relation
to the bound of short decryption exponent upon the RSA modulus N = pq using a
good approximations of φ(N), attacks using small prime difference and successful
cryptanalytic attacks on prime power modulus N = prq for r ≥ 2 based on the bound
of the decryption exponent and successful factoring t instances RSA moduli Ns = psqs
and also t instances of prime power RSA with moduli Ns = pr

sqs for s = 1, . . . , t.

Chapter 3 presents the results on new bounds for the decryption exponent that leads
toward successful factorization by observing small prime difference. The chapter
presents three cases. It also reports successful factorization of t instances of RSA mod-
uli Ns = psqs by analyzing the generalized key equations given by esd− ksφ(Ns) = 1,
esds−kφ(Ns) = 1, esd−ksφ(Ns) = zs and esds−kφ(Ns) = zs for unknown parameters
d, ks, ds, k and zs where s = 1, . . . , t.

In Chapter 4, this research reports another new decryption exponent bound that
leads toward successful factorization of N = pq in polynomial time using continued
fraction method . It also presents four cryptanalysis attacks upon t instances of
RSA generalized key equations of the shape esd− ksφ(Ns) = 1, esds− kφ(Ns) = 1,
esd − ksφ(Ns) = zs and esds − kφ(Ns) = zs for unknown positive integers d, ks, ds,
k and zs where s = 1, . . . , t. In all the attacks, it successfully factored the moduli
Ns = psqs in polynomial time by transforming the above equations into a simultaneous
Diophantine problem. It then applies lattice basis reduction method to find the values
of the unknown parameters. These values aided the computation of t prime factors
ps and qs simultaneously. The chapter gives numerical examples in all the attacks
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presented.

Chapter 5 presents new results regarding bounds for the decryption exponent that leads
toward successful factorization of prime power modulus N = prq where r ≥ 2 using

a good approximation of φ(N), given by Φ = N − 2
2r+1
r+1 N

r
r+1 + 1. It utilizes right

candidate from the convergents of e
Φ
. The chapter also presents new successful attacks

on t instances of the prime power moduli Ns = pr
sqs.

Finally, Chapter 6 concludes the thesis by summarizing the research findings and also
suggests some future directions for researchers in this field to explore.
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