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In this thesis, methods for solving higher-order two-point boundary value problems
(BVPs) directly are developed. These methods are known as one- and two-step
explicit Runge-Kutta type methods. Conventionally, higher-order BVPs are solved by
converting them to a system of first-order BVPs. However, it is more efficient in terms
of accuracy, the number of function evaluations as well as computational time, if these
problems can be solved directly by using the proposed methods with constant step
length via shooting technique.

In the first part of the thesis, one-step Runge-Kutta type methods are constructed
to solve second- and third-order BVPs. An exponentially-fitted technique is imple-
mented in four stages fourth-order Runge-Kutta-Nyström (EFMRKN4) for solving
special second-order BVPs which possesses an exponential solution. Meanwhile,
four-stage fourth-order general Runge-Kutta-Nyström (RKNG4) method is con-
structed for solving general second-order BVPs. Thereafter, two-stage third-order
and three-stage fourth-order explicit Runge-Kutta type (RKT2s3) and (RKT3s4)
methods are constructed respectively for solving special third-order BVPs. Besides,
two-stage third-order exponentially-fitted modified Runge-Kutta type (EFMRKT2s3)
method is derived in order to improve the efficiency of RKT2s3 method. The Local
Truncation Error (LTE) of the fitted methods is computed, the absolute stability of
the EFMRKN method is discussed. The numerical results obtained show that the
developed methods are more efficient in terms of accuracy and number of function
evaluations in comparison with the existing methods in the literature for the same order.

In the second part of the thesis, two-step Runge-Kutta-Nyström (TSRKN) method is
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derived for the direct solution of special second-order BVPs. The two-step method
has an advantage that it can estimate the solution with fewer function evaluations
compared to the one-step method. The order conditions are provided and three
stages fourth-order two-step Runge-Kutta-Nyström (TSRKN3s4) method is derived.
The stability of TSRKN method is analyzed and the numerical results show a clear
advantage of the TSRKN method as compared with the existing methods in terms of
number of function evaluations per step and time.

In conclusion, the developed methods are able to solve the second- and special third-
order BVPs directly.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

KAEDAH JENIS RUNGE-KUTTA SECARA LANGSUNG BAGI
MENYELESAIKAN MASALAH NILAI SEMPADAN PERINGKAT DUA DAN

TIGA

Oleh

ATHRAA ABDULSALAM JASIM AL-ITHAWI

Mei 2019

Pengerusi: Profesor Madya Norazak Senu, PhD
Fakulti: Sains

Di dalam tesis ini, kaedah yang dapat menyelesaikan masalah nilai sempadan (MNS)
dua titik peringkat tinggi secara langsung dibangunkan. Kaedah ini dikenali sebagai
kaedah jenis Runge-Kutta tak tersirat satu- dan dua-langkah. Secara konvensional,
MNS peringkat tinggi diselesaikan dengan menukarkannya kepada sistem MNS
peringkat pertama. Walau bagaimanapun, ia lebih cekap dari segi kejituan, bilangan
fungsi penilaian serta masa pengiraan, jika ia dapat diselesaikan secara langsung
dengan menggunakan kaedah yang dicadangkan dengan panjang langkah tetap melalui
teknik penembakan.

Di dalam bahagian pertama tesis ini, kaedah jenis Runge-Kutta satu langkah diben-
tuk untuk menyelesaikan MNS peringkat kedua dan ketiga. Teknik suai secara
eksponen Runge-Kutta-Nyström dilaksanakan dalam tahap-empat peringkat-keempat
(EFMRKN4) untuk menyelesaikan MNS khas peringkat kedua yang mempunyai
penyelesaian berbentuk eksponen. Sementara itu, kaedah Runge-Kutta-Nyström
umum tahap-empat peringkat-keempat (RKNG4) dibentuk untuk menyelesaikan
MNS umum peringkat kedua. Selepas itu, kaedah tak tersirat Runge-Kutta tahap-dua
peringkat-ketiga (RKT2s3) dan tahap-tiga peringkat-keempat (RKT3s4) masing-
masing dibentuk untuk menyelesaikan MNS khas peringkat ketiga. Di samping itu,
kaedah Runge-Kutta tahap-dua peringkat-ketiga di ubah suai secara eksponen yang di-
ubah suai (EFMRKT2s3) diterbitkan untuk meningkatkan kecekapan kaedah RKT2s3.
Ralat Pangkasan Tempatan (RPT) bagi setiap kaedah dikira, selang kestabilan mutlak
bagi kaedah EFMRKN turut dibincangkan. Keputusan berangka yang diperoleh
menunjukkan bahawa kaedah yang dibangunkan lebih cekap dari segi kejituan dan
bilangan fungsi penilaian berbanding dengan kaedah sedia ada di dalam kajian-kajian
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lepas bagi peringkat yang sama.

Dalam bahagian kedua tesis ini, kaedah dua langkah Runge-Kutta-Nyström (TSRKN)
diperolehi untuk penyelesaian langsung MNS khas peringkat kedua. Kaedah dua-
langkah mempunyai kelebihan yang dapat menganggarkan penyelesaian dengan
bilangan fungsi penilaian yang kurang berbanding dengan kaedah satu-langkah.
Syarat-syarat peringkat disertakan dan kaedah Runge-Kutta-Nystrom tahap-tiga
peringkat-keempat dua-langkah (TSRKN3s4) diterbitkan. Kestabilan kaedah TSRKN
dianalisis dan keputusan berangka menunjukkan kelebihan yang jelas pada kaedah
TSRKN berbanding kaedah sedia ada dari segi bilangan fungsi penilaian untuk setiap
langkah dan masa.

Secara keseluruhan, kaedah yang dibangunkan boleh menyelesaikan MNS peringkat
kedua dan MNS khas peringkat ketiga secara langsung.
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CHAPTER 1

INTRODUCTION

Differential Equations are considerd the fundamental tools in modeling various prob-
lems which are stand out dramatically in the applications of physics and chemistry,
and mathematical models of biological, social and economic processes that involve
the change of some variables with respect to another. Most of these problems can be
classified into two types of equations, Ordinary Differential Equations (ODEs) and
Partial Differential Equations (PDEs) based on the number of independent variables in
differential equations.

For several years, differential equations have been studied analytically and numerically.
Sometimes in common real-life situations, the differential equation that models the
problem is complicated or impossible to solve exactly which makes recourse to
numerical methods is the only choice. The approximate numerical solutions of these
differential equations are important for us to understand the behavior of their solutions.

Early work on the numerical solutions of differential equations appeared at the end of
the eighteenth century, through the research paper of Bashforth and Adams in 1883 and
the research paper of Runge in 1895. They have offered the initial ideas that lead to
developing the modern software on numerical methods (Butcher (2001)). Since then,
ideas with the proper techniques have been proposed for solving ODEs by several au-
thors.

1.1 Ordinary Differential Equation

Ordinary Differential Equation is an equation that includes an unknown function with
an independent variable and one or more of its derivatives.
Consider the function f of t, y, and the mth derivative of y, consequently, the following
equation

f (t,y, ...,y(m)) = 0, m = 1,2,3, . . . (1.1)

Is called mth-order ODE. In (1.1), the quantity being differentiated, y is named as
the dependent variable, while the quantity with respect to which y is differentiated,
t is named as an independent variable. ODEs can be categorized into Initial Value
Problems (IVPs) and Boundary Value Problems (BVPs).

Initial value problem is an ordinary differential equation whose boundary condi-
tions are specified at a single point. A boundary value problem differs from an initial
value problem in that the boundary conditions are specified at more than one point and
in that solutions of the differential equation over an interval, satisfying the boundary
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conditions at the endpoints, are required.

1.1.1 Boundary Value Problems

Consider the boundary value problem:

f (t,Y ′(t)) = 0, (1.2)

with the boundary condition:

g(Y ′(t0),Y
′(t1), . . . ,Y

′(tk)) = 0, (1.3)

where

t ∈ℜ, y(t) ∈ℜ
m,

Y ′(t) = (y(t),y′(t), . . . ,y(n−1)(t),y(n)(t)) ∈ℜ
m×(n+1),

f : ℜ
m×(n+1)+1→ℜ

m,

g : ℜ
m×(k+1)→ℜ

m×n.

If k = 0, the problem is an IVP, and is a two-point BVP if k = 1, and a multipoint
boundary value problem if k > 1. For the two-point boundary value problem, the
condition (1.3) of the type g(Y ′(t0)) = 0, h(Y ′(tη )) = 0 is called a separated boundary
condition, and a non-separate type if the conditions are not of a separate type (see
Chompuvised and Dhamacharoen (2011); Dhamacharoen and Chompuvised (2013)).

In this thesis, we are interested in studying the two-point boundary value prob-
lems involving the second and third-order differential equation together with separated
boundary conditions.

1.1.2 Boundary Value Problem for Second-Order ODE

This research deals with boundary value problems of the second-order in both their
special and general form

y′′ = f (t,y), (1.4)

y′′ = f (t,y,y′), for a≤ t ≤ b, (1.5)

with boundary conditions:
(a) Type I

y(a) = α, y(b) = β1. (1.6)
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(b) Type II

y(a) = α, y′(b) = β2. (1.7)

where a,b, α , β1, β2 are constants.

1.1.3 Boundary Value Problem for Third-Order ODE

A special third-order boundary value problem can be defined as follows:

y′′′ = f (t,y), for a≤ t ≤ b, (1.8)

with boundary conditions:
(a) Type I

y(a) = α, y′(a) = β , y(b) = β1. (1.9)

(b) Type II

y(a) = α, y′(a) = β , y′(b) = β2. (1.10)

(c) Type III

y(a) = α, y′′(a) = β3, y(b) = β1. (1.11)

where a,b, α , β , β1, β2, and β3 are constants.

The following standard theorems give the general conditions that assert the exis-
tence and uniqueness of the solution of the initial and boundary value problem. In this
research, we supposed that the hypotheses of these theorems are fulfilled.

1.1.4 Existence and Uniqueness of Solution

Definition 1.1 (see Burden and Faires (2010))
A function f (t,y) is said to satisfy a Lipschitz condition in the variable y on a set D⊂R2

if a constant L > 0 exists with

| f (t,y1)− f (t,y2) |≤ L | y1− y2 |,

whenever (t,y1) and (t,y2) are in D. The constant L is called a Lipschitz constant for
f .

Theorem 1.1 (Existence and Uniqueness of Solution of IVP)
Let f (t,y) be defined and continuous for all points (t,y) in the domain D defined by
t ∈ [a,b], y ∈ (−∞,∞), a and b are finite, and that f (t,y) satisfies Lipschitz condition.
Then if ξ ∈ R is any number, there exists a unique solution y(t) of the IVP, where y(t)
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is continuous and differentiable for all (t,y) ∈ D.

Theorem 1.2 (Existence and Uniqueness of Solution of BVP)
Suppose the function f in the BVPs is continuous on the set,

D = {(t,y,y′) | fora≤ t ≤ b, with −∞≤ y≤ ∞and −∞≤ y′ ≤ ∞},

and that ∂ f
∂y and ∂ f

∂y′ are also continuous on D, and suppose that f satisfied the Lipschitz
condition on D

| f (t,y1,y
′)− f (t,y2,y

′) |≤ L | y1− y2 |,
| f (t,y,y′1)− f (t,y,y′2) |≤ L | y′1− y′2 |,

for all points (t,yi,y′),(t,y,y′i), i = 1,2 in the region D. The BVPs having a unique
solution solution when fulfill the following properties:

(i) ∂ f (t,y,y′)
∂y > 0 for all (t,y,y′) ∈ D, and

(ii) a constant M exists, with | ∂ f (t,y,y′)
∂y |≤M, for all (t,y,y′) ∈ D.

then the boundary value problems have unique solutions.
For the proof for Theorem 1.1 and Theorem 1.2, see Henrici (1962).
The differential equations

y′′ = f (t,y,y′),

y′′′ = f (t,y,y′,y′′),

are linear problems when functions g(t), p(t), q(t), and r(t) exist with

f (t,y,y′) = p(t)y′ +q(t)y + r(t),

f (t,y,y′,y′′) = g(t)y′′ + p(t)y′ +q(t)y + r(t).

Corollary 1.1 (Linear Boundary Value Problems)
Suppose the linear BVPs

y′′ = p(t)y′ +q(t)y + r(t),

y′′′ = g(t)y′′ + p(t)y′ +q(t)y + r(t).

for a≤ t ≤ b satisfy
(i) g(t), p(t), q(t), and r(t) are continuous on [a,b],
(ii) q(t)> 0 on [a,b].

Then the boundary value problem has a unique solution. (see Burden and Faires (2010))
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1.2 Numerical Methods for Solving ODE

The approximate solution of BVPs in this thesis relies heavily on the approximate nu-
merical integration of IVPs. The numerical procedures for the solution of the IVP can
be classified into two major groups: one-step methods and multi-step methods. Con-
sider the mth-order initial value problem

y(m) = f (t,y,y′,y′′, . . . ,y(m−1)),

with given initial conditions

y(ν)(a) = ηi, 0 < ν < m−1

where y(m) = dmy
dtm and divide the interval [a,b] over which the independent variable t is

divided into N subintervals. The mesh or step size h is given by h =
(b−a)

N where ti+1 =
ti+h. Solving an IVP means to find approximate values of the dependent variable y and
its derivatives y(ν) at the step size points h of the interval [a,b] on which the solution
is sought. In one-step methods, the approximation of the solution is computed using
the information of only one previous point. In other words, y(ν)i+1 can be calculated with

only the knowledge of y(ν)i . Otherwise, for multi-step methods, the approximation of
the solution is computed using the information of n previous points. Both one-step and
multi-step methods have their advantages and disadvantages.
Examples of the one-step are

• Taylor’s method

• Runge-Kutta (RK) method

The numerical algorithm of the RK method is considered the most widely used scheme,
due to its low truncation error (see Na (1980)).

In this thesis, we are concerned with Runge-Kutta method via shooting technique for
solving two-point linear BVPs for second and third-order ODE.

1.2.1 Shooting Technique

Shooting technique is used to convert the BVP to IVP The idea of shooting technique
is to obtain the missing initial value until the boundary condition at the other end con-
verges to its correct value.
Suppose we want to solve a BVP

y′′ = f (t,y), a < t < b, (1.12)
y(a) = α, y(b) = β . (1.13)
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The BVP (1.12) will turn into an IVP by replacing the boundary condition at t = b with
the condition

y′(a) = θ1, (1.14)

where θ1 is any number. Then the resulting IVP can be solved by any method used to
solve IVP, and obtain the value of its solution y(b) at t = b. If y(b) = β , then the BVP
have been solved. Most likely, after the first attempt, y(b) 6= β . Then we should choose
another value for θ1 and try again. There is actually a strategy of how the values of θ1
need to be chosen. This strategy is uncomplicated for linear BVPs, so this is the case
we consider in this thesis.

1.2.2 Runge-Kutta Method

The general µ-stage Runge-Kutta method for solving first-order ODEs can be defined
as follows:

yn+1 = yn +h
µ

∑
i=1

biκi, (1.15)

where

κ1 = f (tn,yn), (1.16)

κi = f (tn + cih,yn +h
µ

∑
j=1

ai jκ j), i = 1,2, . . . ,µ, (1.17)

and the following row-sum assumption holds

ci =
µ

∑
j=1

ai j, i = 1,2, . . . ,µ, (1.18)

with the idea of Butcher it became customary to symbolize method (1.15)-(1.17) by the
tableau (see Table 1.1)

Table 1.1: Butcher tableau for µ-stage RK method.

c1 a11 . . . a1µ

...
...

...
cµ aµ1 . . . aµ µ

b1 . . . bµ
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The µ-dimension vectors b and c and the µ×µ matrix A can be defined as follows

c = [c1,c2, . . . ,cµ ]
T ,

b = [b1,b2, . . . ,bµ ]
T ,

A = [ai j].

The RK method is said to be explicit if ai j = 0 for i ≤ j, i = 1,2, . . . ,µ , and implicit
otherwise.

1.2.3 Runge-Kutta-Nyström (RKN) Method

RKN method is introduced by E.J.Nyström in 1925 to solve the special and general
second-order ODEs of the form (1.4) and (1.5).
The general µ-stage explicit RKN method for solving special second-order ODE can
be written as follows:

yn+1 = yn +hy′n +h2
µ

∑
i=1

bi f (tn + cih,Yi), (1.19)

y′n+1 = y′n +h
µ

∑
i=1

b̂i f (tn + cih,Yi), (1.20)

where

Yi = yn + cihy′n +h2
µ

∑
j=1

ai j f (tn + cih,Y j), i = 2,3, . . . ,µ, (1.21)

or

yn+1 = yn +hy′n +h2
µ

∑
i=1

biκi, (1.22)

y′n+1 = y′n +h
µ

∑
i=1

b̂iκi, (1.23)

where

κ1 = f (tn,yn), (1.24)

κi = f (tn + cih,yn + cihy′n +h2
µ

∑
j=1

ai jκ j), i = 2,3, . . . ,µ, (1.25)

where ci, ai j, bi, and b̂i, for i = 1,2, . . . ,µ and j = 1,2, . . . ,µ are the parameters of the
RKN method and they supposed to be real. The µ-dimension vectors c, bi, and b̂i and
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the µ×µ matrix A can be expressed as follows

c = [c1,c2, . . . ,cµ ]
T ,

b = [b1,b2, . . . ,bµ ]
T ,

b̂ = [b̂1, b̂2, . . . , b̂µ ]
T ,

A = [ai j].

and the following Nyström row condition holds

1
2

c2
i =

µ

∑
j=1

ai j, i = 1,2, . . . ,µ, (1.26)

RKN method (1.19)-(1.21) can be written in Butcher tableau as represented in Table
1.2

Table 1.2: Butcher tableau for µ-stage RKN method.

c1 a11 . . . a1µ

...
...

...
cµ aµ1 . . . aµ µ

b1 . . . bµ

b̂1 . . . b̂µ

while the general µ-stage general Runge-Kutta-Nyström (RKNG) method for solving
general second-order ODE can be expressed as follows:

yn+1 = yn +hy′n +h2
µ

∑
i=1

biκi, (1.27)

y′n+1 = y′n +h
µ

∑
i=1

b̂iκi, (1.28)

κ1 = f (tn,yn,y′n), (1.29)

κi = f (tn + cih,yn + cihy′n +h2
µ

∑
j=1

ai jκ j, y′n +h
µ

∑
j=1

âi jκ j), (1.30)

where

ai j =
µ

∑
k=1

âikâk j, bi =
µ

∑
j=1

b̂ jâ ji, i = 2,3, . . . ,µ.

RKNG method (1.27)-(1.30) can be represented in Butcher tableau as illustrated in
Table 1.3
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Table 1.3: Butcher tableau for µ-stage RKNG method.

c1 a11 . . . a1µ â11 . . . â1µ

...
...

...
...

...
cµ aµ1 . . . aµ µ âµ1 . . . âµ µ

b1 . . . bµ b̂1 . . . b̂µ

1.2.4 Runge-Kutta Type (RKT) Method

Mechee et al. (2013) has been derived an explicit RKT method for the solution of
special third-order ODE (1.8). The general µ-stage of the explicit RKT method can be
defined as follows:

yn+1 = yn +hy′n +
h2

2
y′′n +h3

µ

∑
i=1

biκi, (1.31)

y′n+1 = y′n +hy′′n +h2
µ

∑
i=1

b̂iκi, (1.32)

y′′n+1 = y′′n +h
µ

∑
i=1

ˆ̂biκi, (1.33)

where

κ1 = f (tn,yn), (1.34)

κi = f (tn + cih,yn + cihy′n +
h2

2
c2

i y′′n +h3
µ

∑
j=1

ai jκ j), i = 2,3, . . . ,µ. (1.35)

The µ-dimension vectors c, bi, b̂i, and ˆ̂bi and the µ × µ matrix A can be expressed as
follows

c = [c1,c2, . . . ,cµ ]
T ,

b = [b1,b2, . . . ,bµ ]
T ,

b̂ = [b̂1, b̂2, . . . , b̂µ ]
T ,

ˆ̂b = [ ˆ̂b1,
ˆ̂b2, . . . ,

ˆ̂bµ ]
T ,

A = [ai j].

RKT method (1.31)-(1.35) can be written in Butcher tableau as follows: (see Table 1.4)
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Table 1.4: Butcher tableau for µ-stage RKT method.

c1 a11 . . . a1µ

...
...

...
cµ aµ1 . . . aµ µ

b1 . . . bµ

b̂1 . . . b̂µ

ˆ̂b1 . . . ˆ̂bµ

1.2.5 Explicit Modified Runge-Kutta-Nyström (MRKN) Method

The general µ-stage explicit MRKN method for the special second-order differential
equation (1.4) can be expressed as follows:

yn+1 = yn +hy′n +h2
µ

∑
i=1

bi f (tn + cih,Yi), (1.36)

y′n+1 = y′n +h
µ

∑
i=1

b̂i f (tn + cih,Yi), (1.37)

where

Y1 = yn + c1hγ1y′n, (1.38)

Yi = yn + cihγiy′n +h2
i−1

∑
j=1

ai j f (tn + c jh,Y j), i = 2,3, . . . ,µ. (1.39)

The MRKN method (1.36)-(1.39) is equivalent with Butcher table given in Table 1.5.

Table 1.5: µ-stage explicit MRKN method.

c1 1 0
c2 γ2 a21
c3 γ3 a31 a32
...

...
...

...
cµ γµ aµ,1 aµ,2 . . . aµ,µ−1

b1 b2 . . . bµ−1 bµ

b̂1 b̂2 . . . b̂µ−1 b̂µ

1.2.6 Exponentially-fitted Explicit Modified RKN Method

MRKN method (1.36)-(1.39) is said to be exponential-fitted if it integrates exactly the
set of functions {exp(λ t), exp(−λ t)} when λ ∈ R the principal frequency of the prob-
lem. By imposing that MRKN method (1.36)-(1.39) is exact for differential systems

10



© C
OPYRIG

HT U
PM

whose solutions are y(t) = exp(±λ t), and taking into consideration the meaning of
the stages Yi, it is obvious to consider that Yi = y(tn + cih) = exp(±λ (tn + cih)) and
f (tn+cih,Yi) = y′′(tn+cih) = λ 2 exp(±λ (tn + cih)). This leads to the following equa-
tions for the coefficients of the method:

e±c1 ω = 1± c1ωγ1, (1.40)

e±ci ω = 1± ciωγi +ω
2

µ

∑
j=1

ai j e±c j ω
, i = 2, . . . ,µ, (1.41)

e±ω = 1±ω +ω
2

µ

∑
j=1

b j e±c j ω
, (1.42)

e±ω = 1±ω

µ

∑
j=1

b̂ j e±c j ω
. (1.43)

where ω = λh.
Taking into account the relations cosh(ω) = eω+e−ω

2 and sinh(ω) = eω−e−ω

2 .
In Eq (1.40) suppose that c1 = 0 and γ1 = 1, then the system of equations (1.41)-(1.43)
can be written as follow:

i−1

∑
j=1

aij cosh
(
c j ω

)
=

cosh(ci ω)−1
ω2 , i = 2, . . . ,µ, (1.44)

i−1

∑
j=1

aij sinh
(
c j ω

)
=

sinh(ci ω)− ciω γi

ω2 , (1.45)

µ

∑
j=1

b j cosh
(
c j ω

)
=

cosh(ω)−1
ω2 , (1.46)

µ

∑
j=1

b j sinh
(
c j ω

)
=

sinh(ω)−ω

ω2 , (1.47)

µ

∑
j=1

b̂ j sinh
(
c j ω

)
=

cosh(ω)−1
ω

, (1.48)

µ

∑
j=1

b̂ j cosh
(
c j ω

)
=

sinh(ω)

ω
. (1.49)
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1.2.7 Two-Step Explicit Runge-Kutta-Nyström (TSRKN) Method

Paternoster (2002) has introduced a two-step explicit Runge-Kutta-Nyström method for
the direct solution of special second-order ODE (1.4), which is defined as follows:

yn+2 = (1−Θ)yn+1 +Θyn +h
µ

∑
i=1

viy′n +h
µ

∑
i=1

wiy′n+1

+ h2
µ

∑
i=1

v̄iκ
i
n + w̄iκ

i
n+1, (1.50)

y′n+2 = (1−Θ)y′n+1 +Θy′n +h
µ

∑
i=1

viκ
i
n +wiκ

i
n+1, (1.51)

where

κ
i
n = f (xn + cih,yn + cihy′n +h2

µ

∑
j=1

ai jκ
j

n), i = 1, . . . ,µ, (1.52)

κ
i
n+1 = f (xn+1 + cih,yn+1 + cihy′n+1 +h2

µ

∑
j=1

ai jκ
j

n+1), i = 1, . . . ,µ

(1.53)

where Θ, vi,wi, v̄i, w̄i, ai j are the coefficients of the method and can be represented by
the following array (see Table 1.6)

Table 1.6: µ-stage explicit TSRKN method of Paternoster (2002).

c1 0
c2 a21
c3 a31 a32
...

...
...

cµ aµ,1 aµ,2 . . . aµ,µ−1

Θ v1 v2 . . . vµ−1 vµ

w1 w2 . . . wµ−1 wµ

v̄1 v̄2 . . . v̄µ−1 v̄µ

w̄1 w̄2 . . . w̄µ−1 w̄µ

1.3 Algebraic Order Conditions for RKNG Method

The order conditions of a µ-stage RKNG method up to fifth-order have been proposed
in Fehlberg (1974) as follows:

12
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The order conditions for y:
Order 2:

∑bi =
1
2
, (1.54)

Order 3:

∑bici =
1
6
, (1.55)

Order 4:

∑bic2
i =

1
12

, ∑biâi jc j =
1

24
, (1.56)

Order 5:

∑bic3
i =

1
20

, ∑biciâi jc j =
1

40
, ∑biai jc j =

1
120

,

∑bi âi j c2
j =

1
60

, ∑bi âi j â jk ck =
1

120
.

The order conditions for y′:
Order 1:

∑ b̂i = 1, (1.57)

Order 2:

∑ b̂ici =
1
2
, (1.58)

Order 3:

∑ b̂ic2
i =

1
3
, ∑ b̂iâi jc j =

1
6
, (1.59)

Order 4:

∑ b̂ic3
i =

1
4
, ∑ b̂iciâi jc j =

1
8
, ∑ b̂iai jc j =

1
24

,

∑ b̂iâi jc2
j =

1
12

, ∑ b̂iâi jâ jkck =
1
24

, (1.60)

Order 5:

∑ b̂ic4
i =

1
5
, ∑ b̂ic2

i âi jc j =
1

10
, ∑ b̂iciai jc j =

1
30

,

∑ b̂iciâi jc2
j =

1
15

, ∑ b̂iai jc2
j =

1
60

, ∑ b̂iâi jc3
j =

1
20

,

∑ b̂i(âi jc j)
2 =

1
20

, ∑ b̂iciâi jâ jkck =
1

30
, ∑ b̂iai jâ jkck =

1
120

,

∑ b̂iâi jc jâ jkck =
1
40

, ∑ b̂iâi ja jkck =
1

120
,

∑ b̂iâi jâ jkc2
k =

1
60

, ∑ b̂iâi jâ jkâkmcm =
1

120
. (1.61)
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1.4 Algebraic Order Conditions for RKT Method

The order conditions of a µ-stage RKT method up to fifth-order as set in Mechee et al.
(2013) as follows:
The order conditions for y:
Order 3:

∑bi =
1
6
, (1.62)

Order 4:

∑bici =
1

24
, (1.63)

Order 5:

∑bic2
i =

1
60

. (1.64)

The order conditions for y′:
Order 2:

∑ b̂i =
1
2
, (1.65)

Order 3:

∑ b̂ici =
1
6
, (1.66)

Order 4:

∑ b̂ic2
i =

1
12

, (1.67)

Order 5:

∑ b̂ic3
i =

1
20

, ∑ b̂iai j =
1

120
. (1.68)

The order conditions for y′′:
Order 1:

∑
ˆ̂bi = 1, (1.69)

Order 2:

∑
ˆ̂bici =

1
2
, (1.70)

Order 3:

∑
ˆ̂bic2

i =
1
3
, (1.71)

Order 4:

∑
ˆ̂bic3

i =
1
4
, ∑

ˆ̂biai j =
1
24

, (1.72)

Order 5:

∑
ˆ̂bic4

i =
1
5
, ∑

ˆ̂biai jc j =
1

120
, ∑

ˆ̂biai jci =
1
30

. (1.73)

All indices are from 1 to µ . To obtain the higher order RKT method, the following
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simplifying assumption is used in order to reduce the number of equations to be solved:

b̂i = ˆ̂bi (1− ci), i = 1,2, . . . ,µ. (1.74)

1.5 Stability Properties of Runge-Kutta Type Methods

Runge-Kutta type methods have their own stability polynomial. However, all methods
have the same properties as given by the following definitions and theorems:

Definition 1.2 The method is said to satisfy the root condition if all the roots of char-
acteristic polynomial have modulus less than or equal to unity (within or on the unit
circle), and those of modulus unity are simple.

Theorem 1.3 (Lambert (1991))
The necessary and sufficient condition for the method to be zero-stable is that it satisfies
the root condition.

Theorem 1.4 (Watt (1967))
The necessary conditions for the method to be convergent are that it must be both
consistent and zero-stable. The method is consistent if it has at least order 1.

Definition 1.3 The method is said to be absolutely stable for a given roots if all the
roots lies within the unit circle.

Definition 1.4 (Jackiewicz et al. (1991))
The two-step method is zero stable if it satisfied −1 < Θ≤ 1.

Definition 1.5 (Absolute stability interval)
An interval (−Ha,0) is called the interval of absolute stability of the method if, for all
H ∈ (−Ha,0), |ξ1,2|< 1, where ξ1,2 are the roots of the stability polynomial.

Definition 1.6 (Dormand (1996))
The one step method is said to have order p if p is the largest positive integer such that

y(t +h)− y(t)−hΦ(t;y;h) = O(hp+1) (1.75)

where y(t) is the analytical solution

1.6 Local Truncation Error (LTE)

Dormand (1996) suggested that having achieved a certain order of accuracy, the best
strategy for practical purposes is to minimize the error norms. The quantities of the
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norms of the local truncation error coefficients are defined by:

‖ τ
(p+1) ‖2=

√√√√np+1

∑
i=1

(τ
(p+1)
i )2, for yn, (1.76)

‖ τ
′(p+1) ‖2=

√√√√np+1

∑
i=1

(τ
′(p+1)
i )2, for y′n, (1.77)

‖ τ
′′(p+1) ‖2=

√√√√np+1

∑
i=1

(τ
′′(p+1)
i )2, for y′′n . (1.78)

Below is the y error coefficients up to sixth-order RKN processes:
Order 2:

τ
(2)
1 = ∑bi−

1
2
, (1.79)

Order 3:
τ
(3)
1 = ∑bici−

1
6
, (1.80)

Order 4:
τ
(4)
1 =

1
2 ∑bic2

i −
1

24
, (1.81)

Order 5:
τ
(5)
1 =

1
6 ∑bic3

i −
1

120
, (1.82)

τ
(5)
2 = ∑biai jc j−

1
120

, (1.83)

Order 6:
τ
(6)
1 =

1
24 ∑bic4

i −
1

720
, (1.84)

τ
(6)
2 =

1
4 ∑biciai jc j−

1
720

, (1.85)

τ
(6)
3 =

1
2 ∑biai jc2

j −
1

720
. (1.86)

The y′ error coefficients up to sixth-order for RKN:
Order 1:

τ
′(1)
1 = ∑ b̂i−1, (1.87)

Order 2:
τ
′(2)
1 = ∑ b̂ici−

1
2
, (1.88)

Order 3:
τ
′(3)
1 =

1
2 ∑ b̂ic2

i −
1
6
, (1.89)
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Order 4:
τ
′(4)
1 =

1
6 ∑ b̂ic3

i −
1
24

, (1.90)

τ
′(4)
2 = ∑ b̂iai jc j−

1
24

, (1.91)

Order 5:
τ
′(5)
1 =

1
24 ∑ b̂ic4

i −
1

120
, (1.92)

τ
′(5)
2 =

1
4 ∑ b̂iciai jc j−

1
120

, (1.93)

τ
′(5)
3 =

1
2 ∑ b̂iai jc2

j −
1

120
, (1.94)

Order 6:
τ
′(6)
1 =

1
120 ∑ b̂ic5

i −
1

720
, (1.95)

τ
′(6)
2 =

1
20 ∑ b̂ic2

i ai jc j−
1

720
, (1.96)

τ
′(6)
3 =

1
10 ∑ b̂iciai jc2

j −
1

720
, (1.97)

τ
′(6)
4 =

1
6 ∑ b̂iai jc3

j −
1

720
, (1.98)

τ
′(6)
5 = ∑ b̂iai ja jkck−

1
720

. (1.99)

and for the y error coefficients up to fifth-order RKT processes, see the following

Order 3:
τ
(3)
1 = ∑bi−

1
6
, (1.100)

Order 4:
τ
(4)
1 = ∑bici−

1
24

, (1.101)

Order 5:
τ
(5)
1 = ∑bic2

i −
1

60
. (1.102)

The y′ error coefficients up to fifth-order for RKT:

Order 2:
τ
′(2)
1 = ∑ b̂i−

1
2
, (1.103)

Order 3:
τ
′(3)
1 = ∑ b̂ici−

1
6
, (1.104)
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Order 4:
τ
′(4)
1 = ∑ b̂ic2

i −
1

12
, (1.105)

Order 5:
τ
′(5)
1 = ∑ b̂ic3

i −
1

20
, (1.106)

τ
′(5)
2 = ∑ b̂iai j−

1
120

. (1.107)

The y′′ error coefficients up to fifth-order for RKT:

Order 1:
τ
′′(1)
1 = ∑

ˆ̂bi−1, (1.108)

Order 2:
τ
′′(2)
1 = ∑

ˆ̂bici−
1
2
, (1.109)

Order 3:
τ
′′(3)
1 = ∑

ˆ̂bic2
i −

1
3
, (1.110)

Order 4:
τ
′′(4)
1 = ∑

ˆ̂bic3
i −

1
4
, (1.111)

τ
′′(4)
2 = ∑

ˆ̂biai j−
1
24

, (1.112)

Order 5:
τ
′′(5)
1 = ∑

ˆ̂bic4
i −

1
5
, (1.113)

τ
′′(5)
2 = ∑

ˆ̂biai jc j−
1

120
, (1.114)

τ
′′(5)
3 = ∑

ˆ̂biai jci−
1
30

. (1.115)

1.7 Problem Statement

A direct numerical method to solve higher-order ODEs is considered essential in the
field of numerical analysis. While the common technique in the literature to solve the
high-order ODEs is by converting them first into a system of first-order, then solving
them using an appropriate numerical method. The advantage of the direct technique is
superior and more efficient since it does not require increasing the number of equations
and calculating more function evaluations which lead to a time-consuming process and
more human effort as in classical method.

In this research, new direct methods are constructed to solve the second-order and
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special third-order BVPs. Furthermore, the formulation is covered and the implemen-
tation is considered in detail. It is possible to solve the second and third-order BVPs
by applying various multistep methods in the literature, because the multistep methods
require the subroutine to provide the starting values, which leads to complicated
computational work. In this study, Runge-Kutta type methods are proposed which can
be implemented as self-starting methods for solving directly higher-order BVPs.

Before this work began, there was no study has been conducted on the method of ex-
plicit Runge-Kutta type to solve BVPs of second-order and special third-order directly.
Therefore, the following problems were taken into account in this research to deal with
the gap in the scientific literature on numerical solutions of second-order and special
third-order BVPs.

1.8 Scope of the Study

This study focuses on special and general second-order and special third-order BVPs.
The aim and scope of this study are:

1. The development of efficient methods such as RKN, TSRKN, and RKT which
can be implemented for solving special second and third-order BVPs directly
with minimal complexity and lowest number of function evaluation and num-
ber of coefficients compared to the general methods of the same order. Add to
that, the special methods are implemented to obtain the approximation solutions
for specific real-life problems efficiently. Hence, the methods derived for spe-
cial problems are limited to solve the special form of the second and third-order
BVPs.

2. The development of efficient method such as RKNG which can be implemented
for directly solving the special and general second-order BVPs in which the spe-
cial methods cannot solve it. In addition to that, the general method is imple-
mented to obtain the approximation solutions for specific real-life problems effi-
ciently.

1.9 Objectives of the Study

The main objective of this thesis is to drive explicit Runge-Kutta type direct methods
with constant step size for solving second and third-order two-point BVPs. The objec-
tives of the thesis can be accomplished by:

1. To construct Runge-Kutta-Nyström methods for solving special and general
second-order BVPs directly.

2. To construct Runge-Kutta type methods for solving special third-order BVPs di-
rectly.
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3. To develop the order conditions of two-step Runge-Kutta-Nyström method by
using Taylor series for solving special second-order BVPs directly.

4. To investigate the stability and convergence of the derived methods.

1.10 Outline of The Study

A brief description of the organization of the thesis will be provided here. Chapter 1
discusses the brief overview of ODEs. The theories and definitions that are related to
the proposed methods are provided.

Chapter 2 reviews some of the previous works on the numerical solutions of the BVPs
and previous works of Runge-Kutta type methods. In Chapter 3 the implementation
of exponentially-fitted explicit modified RKN method of order four for solving special
second-order BVPs directly with exponential solutions and explicit RKNG method for
solving general second-order BVPs directly is presented.

Chapter 4 is concerned with the construction of third and fourth-order explicit RKT
methods for solving special third-order BVPs and exponentially-fitted explicit mod-
ified RKT method of order three for solving directly special third-order BVPs with
exponential solutions. Chapter 5 deals with the two-step explicit RKN method for the
direct solution of special second-order BVPs.

Finally, Chapter 6 summarizes the thesis. Future work is also recommended.
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