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The application of the conventional zeolites has been limited due to its large 
crystal size (micrometer) and also due to the microporosity (size < 2nm). Hence, 
this study has been conducted to produce enhanced nanozeolites to overcome 
the above mentioned limitations. Herein, two microporous nanozeolites namely 
Beta and ZSM-5 were synthesized via hydrothermal method. Moreover, the 
enhanced hierarchical nanozeolites have been produced via a green 
solvothermal approach with the following attributes such as narrow particle size 
distribution and appropriate mesopores. The synthesis was based on reducing 
the growth of zeolite crystals by surface silanization of zeolitic seeds using 
organosilane (hexadecyltrimethoxysilane) as a growth inhibitor. The activities of 
these nanozeolites and hierarchical nanozeolites were evaluated with catalytic 
hydroprocessing of oleic acid to green diesel by incorporating Ni metals on these 
supports. Moreover, extensive characterizations and initial rate investigation 
were conducted to determine the nature of acid sites and their structural-
functional relationship in selective hydrodeoxygenation (HDO) of octanoic acid. 
The results showed hydrothermally synthesized nanozeolites were made of 
globular aggregates with broader particle size distributions (48-1273 nm for 
zeolite Beta) and (60-135 nm for zeolite ZSM-5). A much smaller and narrower 
distributions of globular aggregates of hierarchical nanozeolites are formed 
using solvothermal approach with sizes of 65–120 nm (for Beta using acetone) 
and 30-100 nm (for ZSM-5 using 1-decanol). These globular aggregates are 
actually made by quite smaller primary nanounits ranging 4–11 nm size. The 
hierarchical nanozeolites exhibited secondary porosity, especially larger 
mesopores found in zeolite Beta (with pore diameter 8.1 nm) due to efficient 
functionalization of HDTM in polar solvent environment (acetone). Whereas, 
moderate mesopores observed in zeolite ZSM-5 (with pore diameter 7.8 nm) 
caused by the alkoxylation of alcohol based solvent (1-decanol). Catalytic 
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hydroprocessing of oleic acid pointed out higher yields of 60% (consisting of 
straight and isomeric alkanes C18 and C17) obtained over the microporous 
nanozeolites than hierarchical nanozeolites at 350 ◦C and 50 bar pressure. This 
is due to high surface activities demonstrated by the larger external surface 
areas of microporous nanozeolites. In contrast, the recyclability test of catalysts 
revealed that hierarchical nanozeolites minimized catalyst deactivation as they 
were capable of retaining their activities, over 40% (for HZSM-5) and 20% (for 
HBEA) yields even regenerated after four cycles. As for the initial rate study, all 
the Ni/zeolite catalysts exhibited higher selectivity towards the octane over the 
heptane, indicating conversion of octanoic acid occurred preferably via HDO 
than decarbonylation (DCN) route. The selectivity of the HDO pathway was 
strongly influence by the Bronsted acid sites of the zeolites. The initial rate 
studies revealed small Ni metal particles and it’s highly dispersibility over support 
facilitate high initial catalytic activity. The fatty acid substrate can be 
quantitatively hydrodeoxgenated to alkanes by cascade reaction on bifunctional 
catalysts based on Ni and an acidic zeolite. The findings of this study discovered 
more effective and benign way of producing nanozeolites with high external 
surface area and hierarchical porosity that provide remarkable HDO activity and 
better catalyst stability as compared to other commercial support catalysts.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

SINTESIS HIERARKI NANOZEOLIT BETA DAN ZSM-5 UNTUK 
PENGHASILAN DIESEL HIJAU MELALUI HIDROPENYAHOKSIGENAN

Oleh 

MAHASHANON ARUMUGAM

Disember 2018 

Pengerusi: Prof. Taufiq Yap Yun Hin, PhD 
Fakulti: Sains 

Penggunaan zeolit konvensional terhad disebabkan oleh saiz kristal yang besar 
(mikrometer) dan juga berliang mikro (saiz < 2nm). Oleh yang demikian, kajian 
ini telah dijalankan untuk menghasilkan nanozeolit yang dipertingkatkan untuk 
menangani batasan yang disebutkan di atas. Di sini, dua nanozeolit berliang 
mikro iaitu Beta dan ZSM-5 telah disintesis melalui kaedah hidroterma. Selain 
itu, peningkatan hierarki nanozeolit yang dihasilkan melalui kaedah sintesis 
solvoterma hijau mempunyai ciri-ciri seperti taburan saiz zarah jurang kecil dan 
liang meso yang sesuai. Sintesis ini berdasarkan kepada pengurangan 
pertumbuhan kristal zeolit melalui silanisasi permukaan benih zeolitik dengan 
menggunakan organosilana (heksadekiltrimetoksilana) sebagai ejen perencat 
pertumbuhan. Aktiviti nanozeolit dan nanozeolit hierarki ini diuji dalam 
penukaran asid oleik kepada disel hijau melalui proses hidro bermangkin 
dengan penambahan logam nikel pada penyokong zeolit tersebut. Disamping 
itu, kajian terhadap pencirian secara terperinci dan kadar awal telah dijalankan 
untuk menentukan sifat nanozeolit dan tapak asid nanozeolit hierarki dan 
hubungan struktur-fungsi zeolit dalam hidropenyahoksigenan selektif (HDO) 
asid oktanoik. Hasil eksperimen menunjukkan zeolit yang disintesis dalam 
keadaan hidroterma ialah agregat bundar dengan taburan saiz zarah yang lebih 
lebar (48-1273 nm untuk zeolit Beta) dan (60-135 nm untuk zeolit ZSM-5). 
Agregat berbentuk bundar nanozeolit hierarki yang lebih kecil dan taburan yang 
lebih sempit terbentuk dalam saiz 65-120 nm (untuk Beta dengan menggunakan 
aseton) dan 30-100 nm (untuk ZSM-5 dengan menggunakan 1-dekanol). 
Agregat bundar ini sebenarnya dibuat daripada nanounit primer yang agak kecil 
dalam lingkungan 4-11 nm. Nanozeolit hierarki mempunyai liang sekunder, 
terutama liang meso yang lebih besar bagi zeolit Beta (dengan diameter 8.1 nm) 
kerana kecekapan fungsi HDTM dalam persekitaran pelarut berkutub (aseton). 
Manakala, liang sekundar yang sederhana dapat diperhatikan dalam zeolit ZSM-
5 (dengan diameter 7.8 nm) disebabkan oleh pengalkoksilan pelarut berasaskan 
alkohol (1-dekanol). Proses hidro bermangkin menggunakan asid oleik 
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menunjukkan hasil yang lebih tinggi sebanyak 60% (terdiri daripada alkana lurus 
dan isomer C18 dan C17) yang diperolehi daripada nanozeolit berliang mikro 
berbanding dengan nanozeolit hierarki pada suhu 350 ◦C dan 50 tekanan bar. 
Ini disebabkan oleh aktiviti permukaan yang tinggi yang ditunjukkan oleh luas 
besar permukaan luar zeolit nano yang berliang mikro. Walaubagaimanapun, 
ujian kebolehan kitar semula mangkin menunjukkan bahawa nanozeolit hierarki 
mengurangkankan penyahaktifan pemangkin disebabkan kebolehan untuk 
mengekalkan aktivitinya, lebih 40% (untuk HZSM-5) dan 20% (untuk HBEA) 
malah mampu untuk dijanakan semula selepas empat kitaran. Semua 
pemangkin Ni/ zeolit menunjukkan pemilihan yang lebih tinggi ke arah 
penghasilan oktana berbanding dengan heptana, menunjukkan penukaran asid 
oktanoik lebih mudah berlaku melalui HDO berbanding penyahkarbonan (DCN). 
Pemilihan mangkin sangat dipengaruhi oleh muatan asid dan tapak asid 
Bronsted zeolit. Kajian kinetik mendedahkan zarah Ni yang kecil dan tahap 
taburan yang tinggi diatas penyokong memudahkan kadar aktiviti awal 
pemangkin yang tinggi. Substrat asid lemak boleh dihidropenyahoksigenkan 
secara kuantitatif kepada alkana dengan tindak balas berperingkat pada 
mangkin dwifungsi berdasarkan Ni dan zeolit berasid. Penemuan kajian ini 
adalah mengetahui cara yang lebih berkesan dan kurang berisiko dalam 
penghasilan nanozeolit dengan luas permukaan luaran yang tinggi dan 
keliangan hierarki yang memberikan aktiviti HDO yang tinggi dan kestabilan 
mangkin yang lebih baik berbanding mangkin penyokong sedia ada. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

Over the years, human life and ecological environment have been seriously 
affected by global warning and climate changes issues owing to the increase of 
greenhouse gases emission. Besides, increasing concern about oil scarcity, 
instability in world crude oil prices and the fact that civil war is mainly intense in 
oil producing countries have directed the research in finding alternative energy 
sources. The development of synthetic fuel and biofuel technologies using 
renewable sources has become crucial in recent years (Bu et al., 2012; Hahn-
Hägerdal et al., 2006; Wang et al., 2011). Biomass has emerged as one of most 
important renewable sources for biodiesel production because of their vast 
proficiencies to meet the demands for all variety of energies including 
transportation fuels and high-value chemicals. Biomass is a carbon-based 
renewable sources that is available in abundance in nature and it comprises of 
all sort of natural raw matter of plants and animals’ origins (Wang et al., 2012).  

 

In last decades, various technologies have been developed to produce biofuel 
from the biomass as a substitute for petroleum based fuels. Bio-oil is the 
oxygenated compounds produced by the fast pyrolysis of biomass and it is 
considered to be potential substitute for the fossil fuel. The bio-oil as a fuel is 
recognized to be better choice because the bio-oil produces a negligible amount 
of nitrogen oxides (NOx), sulphur dioxide (SO2) and soot when it is combusted 
(He and Wang, 2012; Jacobson et al., 2013; Mortensen et al., 2011; Ruddy et 
al., 2014).  

 

Till date ample number of process have been employed for the upgradation of 
bio-oil and among them hydrodeoxygenation (HDO) is considered to be the most 
effective method. HDO is a hydrogenolysis process that removes oxygen 
molecules from bio-oil in the form of water under high hydrogen pressure and 
temperature in the presence of a specific heterogeneous catalyst. The bio-oil that 
upgraded with HDO produces a fuel known as green fuel or renewable diesel. 
The structure of green fuel is mainly consisting of paraffin that is similar to those 
of petrodiesel. HDO has received a considerable attention in the oil and gas 
industries because the process can be easily performed at the existing refineries 
(Jacobson et al., 2013; Mortensen et al., 2011; Ruddy et al., 2014; Veriansyah 
et al., 2012).  
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The efficiency of the HDO reaction depends on the efficiency of the catalyst used 
as well as the reaction conditions. However, the challenge lies in designing 
competent catalyst due to the complex structure of the bio-oil. Noble metals such 
as Pt, Pd, Rh and Ru promoted on various supports are among the most 
commonly studied HDO catalysts (Gutierrez et al., 2009; Hong et al., 2014; Wang 
et al., 2011). These supported noble metal catalysts usually show excellent 
catalytic activity in terms of reactant conversion and also the selectivity towards 
the saturated hydrocarbons. The activity of HDO reaction is also significantly 
influenced by the type of supports employed. Due to the metal-support 
interactions, the catalytic activity of the catalyst can be simply tailor-made to 
target the preference product. Supports materials like activated carbon, SiO2, 
TiO2, ZrO2 and zeolites exhibit a decent metal dispersion and also reasonable 
stability in HDO process (Bykova et al., 2012; Peng et al., 2013; Zhao & Lercher, 
2012). 

 

Zeolites are characterized as a microporous crystalline aluminosilicates that not 
only occur naturally but also produced industrially on a large scale. The zeolites 
that commonly synthesized are zeolites with a BEA and MFI structure. These 
microporous zeolites are extensively employed in various industrial processes 
namely catalysis, separation, adsorption, and etc. (Coronas, 2010). The salient 
feature of zeolites is that they possess both acid as well as the basic sites, which 
results in the dual property of the zeolites. The dual property of zeolites plays a 
predominant role in the catalysis process. The acidic nature of zeolites is due to 
the presence of Lewis acid (LA) and Bronsted acid (BA) sites. Whereas the 
basicity is due the basic framework oxygen with the negative charge (Murphy et 
al., 1996). Zeolite’s extensive crystalline framework and the topological channel 
structure provides consistent absorption behavior towards the guest molecules. 
Their adjustable acidity and well-defined pore structure, make them highly active 
in a variety of reactions.  

 

In recent years, synthesis of zeolite materials with improved molecular 
accessibility has gain an immense interest because of their remarkable 
performance as a catalyst. The accessibility to zeolites’ active sites have been 
improved by various approaches such as synthesis of zeolite in nanosized (i.e 
growing crystal in confined space like carbon matrix and etc) (Yang et al., 2004) 
or prepared zeolite with a secondary porosity via post-treatment methods (i.e 
dealumination, desilication) (Corma et al., 1998; Groen et al., 2004) or soft 
templating method (Serrano et al., 2006).  Many nanozeolites have been formerly 
synthesized by hydrothermal treatment. The size of crystal can also be controlled 
by optimizing the zeolite starting gel compositions (such as template 
concentration, water content and type of precursors) as well as the hydrothermal 
synthesis condition (such as crystallization temperature and aging time) 
(Camblor et al., 1991; Hu et al., 2010; Renzo, 1998) 

 

A new terminology called “hierarchical” has been introduced for zeolites having 
more than one porosity (that is, zeolite containing both micropores and 
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mesopores or with macropores) or mixture of all three. The hierarchical zeolites 
display a  reduced steric hindrance and diffusional restrictions, as well as more 
precise molecule sieving ability of zeolite crystals (Wang, 2013). Hierarchical 
nanozeolites with high crystallinity, enhanced surface area, porosity and catalytic 
activity have been successfully synthesized through soft template assisted 
method. The method is based on reducing the growth of zeolite crystals by 
perturbing the zeolitic surface with surface silanization agent (SSA) such as 
organosilanes (Serrano et al., 2006). The size and the morphology of the 
mesoporous zeolite can be precisely regulated by tuning the functional group of 
the grafting agent, their concentration and synthesis parameters of surfactant 
molecules. This strategy has been employed in the synthesis of many 
hierarchical zeolites with enhanced textural features and significantly improved 
catalytic properties, as in the case of zeolite ZSM-5, Beta and mordenite (Aguado 
et al., 2009; Aguado et al., 2008; Serrano et al., 2009; Serrano et al., 2008). Their 
distinctive property has inspired a rapid grow and wide application in biomass 
conversion and bio-oil upgrading. 

 

Synthesis of hierarchical nanozeolites via solvothermal method demonstrates 
narrower and even particle size distribution of the zeolites nanoparticles. In this 
method, organic solvent has been introduced as the medium for zeolite surface 
functionalization and crystallization instead of water. The zeolite precursors 
become hydrophobic after the surface grafting process and thus highly dispersed 
in the organic phase. The aggregation of nanoparticles is drastically reduced as 
the crystallization of the functional group protected protozeolitic species occur in 
the organic phase, resulting in smaller and uniform size of nanozeolites. The 
crystal size of the hierarchical nanozeolites can be modified to some extent by 
changing the property of solvent (Vuong and Do, 2007). 

 

1.2 Problem Statements  
 

Production of high quality and sustainable fuel has always been a great 
challenge to mitigate the global warning issues and to meet the growing energy 
demand of the rising world population. Vegetable oils from renewable biomass 
source is considered as perfect triglyceride feedstock because of containing long 
chain fatty acids with 12-24 carbon atoms which is very convenient to get diesel 
range product. Nevertheless, vegetable oil has high water and oxygen content 
which leads to low heating value, pH, high viscosity and polarity, and poor 
thermal and chemical stability (Bu et al., 2012; He and Wang, 2012; Li et al., 
2014; Ruddy et al., 2014). In order to overcome these limitations, bio-oil as a fuel 
is in need to be further upgraded. 

 

Hydroconversion (HC) of triglycerides to renewable diesel has many advantages 
over other fuel upgrading techniques. This is because an aliphatic hydrocarbon 
product is formed which has high cetane number and is completely 
indistinguishable from petroleum based diesel fuel (Mohammad et al, 2013). 
Three plausible reaction routes that could take place during the HC of 
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triglycerides which are HDO, decarbonylation (DCN) and/or decarboxylation 
(DCO). The HDO process involves the removal of oxygen atom in the form of 
water when the feedstock reacts with hydrogen at temperature (200-400 ◦C) and 
pressure (2-14 MPa), producing the same number of carbon atoms as the parent 
triglyceride molecules. Meanwhile in the DCN and DCO, the oxygen is removed 
in the form CO and CO2 and the primary product is hydrocarbon with one carbon 
less than the parent triglyceride. The synthesis of the highly selective HDO 
catalyst is very crucial because of its tendency to maintain high carbon efficiency 
in the end-product and produce water as a green by-product (Cristea et al., 2015; 
Huber et al., 2007; Kubička and Kaluža, 2010).  

 

Till date, numerous catalysts have been explored for the HDO process in 
obtaining high selective diesel product with mild operating process. The most 
commonly used are supported noble catalyst and sulfurized or reduced metal 
catalysts. Sulfurized catalysts such as CoMo/Al2O3 and NiMo/Al2O3 are widely 
used in HDO since sulfidation generates active sites on the catalyst (Şenol et al., 
2005). However, HDO using sulfided catalysts is less favorable due to the 
formation of sulphur contaminated products and the reduction of the activity as 
the sulfur leaches in the reaction (Liu et al., 2015). The noble metal catalysts 
including Pd, Pt, Ru, Rh and PtSn are not favorable because of their prone to 
poisoning and are relatively expensive (Zhang et al., 2013). Moreover, 
inappropriate selection of the supports having low surface area that limits the 
interaction of reactant molecules on the active sites of the dispersed metals can 
subsequently reduce the rate of reaction (Chiranjeevi et al., 2001; Dhar et al., 
2003). Therefore, considerable attention must be given in developing an 
economically feasible catalyst with better catalytic performance and stability. 

 

Zeolites are known to have high surface area, high crystallinity and larger internal 
pore volumes that makes them extraordinary in many catalytic reactions (Wang 
et al., 2013). In spite of these unique properties, zeolites have a major 
shortcoming to be used as catalyst especially in bio-oil upgrading. The relatively 
smaller and solely micropores present in the conventional zeolites is the major 
limitation because it restricts the to and fro transportation of large reactant 
molecules in the active site. Besides this, deactivation caused by the coke 
formation also continually limits the usage of zeolites as a catalyst in many 
catalytic reactions (Liu et al., 2014). Hence the researchers are in the urge to 
synthesize zeolites that are nanosized with large external surface area, high 
surface activity and hierarchical pore structured to overcome the above 
mentioned limitations (Chen et al., 2012). 

 

In the past decades, various nanozeolite materials have been successfully 
synthesized by hydrothermal treatment. The synthesis parameters including gel 
composition, aging time, temperature and nature of the starting materials do 
have a significant contribution  to the morphology of the crystals formed (Renzo, 
1998). A modest change in this synthesis parameters using the clear gel method 
can lead to poorly crystalline zeolite and also leads to the formation of undesired 
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products (Cundy et al. 2003; Cundy and Cox, 2003). Therefore, it is very crucial 
to study the influencing factors under the hydrothermal treatment to achieve a 
fine control on the crystal size of nanozeolite. This synthesis strategy and 
interrelated results is expected to provide a solid foundation and fruitful idea prior 
to the synthesis of the hierarchical structured nanozeolites.  

 

Preparation of mesoporous MFI and BEA zeolites with the addition of SSA 
agents to the raw gel, has significant impacts in generating the additional porosity 
in the structure and therefore improving the textural properties of the materials. 
The incorporation of the organosilane species on the external surface of zeolite 
micropores forms a surface-passivating layer around the zeolite nanoparticles 
that prevents their further aggregation (Serrano et al., 2009; Serrano et al., 
2006). Nevertheless, TEM analysis of the hierarchical nanozeolites that prepared 
by this method showed a wide-range of crystal size distribution (200-400 nm), 
which were made of aggregation of extremely small units of 10 nm. Samples with 
large particle size hardly considered as true nanozeolites (Vuong and Do, 2007).  

 

Therefore, improved synthesis of hierarchical nanozeolites in the presence of 
organic solvent has been developed to control the catastrophic aggregation of 
the zeolite primary nanoparticles. The solvothermal method was carried out in 
both single and also in two phase methods using various hydrophilic and 
hydrophobic solvents such as formamide, toluene, and 1-butanol or mixture of 
both (Vuong and Do, 2009; Vuong et al., 2010). The particle size of the obtained 
MFI structured hierarchical zeolite however is not completely in the range of 100 
nm scale. Their SEM images show severe aggregation of particles. Moreover, 
the use of the hazardous solvents such as foramide and toluene as synthesis 
medium are not environmentally benign. For this reason, there is a continuous 
need for the development of a safe, sustainable and efficient synthesis strategy 
for hierarchical nanozeolites with the defined nanosize and morphology as a 
promise for their flourishing application in the field of catalysis.  

 

Microporous zeolites like ZMS-5 and Beta are undoubtedly the best known for 
their acidic property and extensively studied in many acid catalyzed reactions 
such as cracking, alkylation, isomerization etc. (Corma, 1989). Generally, 
conventional zeolites possess high acid site concentration and narrower pores 
in the structure and are capable of promoting higher degree of cracking in bio-oil 
upgrading. The higher effective residence time caused by abovementioned 
zeolite properties incites cracking of hydrocarbon chain and light gases formation 
(Peng et al., 2012). Additionally, the existing catalysts for HDO reaction are 
facing various problems such as less selective of desired product and rapid 
deactivation because of the coke formation. The catalysts with poor stability is 
critical as it may lead to low catalytic activity (Wang, 2013). Nevertheless, the 
application of hierarchical nanozeolites are very rare in HDO reaction.  
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Up-to-date, very limited research work has been done yet in employing 
hierarchical nanozeolites Beta and ZSM-5 in hydroprocessing of vegetable oil to 
achieve high selective of diesel range hydrocarbons through HDO route. In this 
study, addition of inexpensive transition metal and by enhancing the external 
surface area and porosity volume of support materials are desirable to explore, 
which have vital role in promoting the catalytic activity of HDO reaction. 
Furthermore, the nature of the hierarchical nanozeolites acid sites and their 
structural-functional relationship in HDO reaction are determined. The 
understanding of initial rates and reaction mechanism of the hydroprocessing 
process is also important and it can be challenging when using real vegetable 
oils as feedstock. Herein, model compounds triolein, oleic acid and octanoic acid 
are selected to interpret the complete reaction pathway of the HDO reaction. This 
study is an effort to improve the quality and safety of environment and human life 
as it aims to develop a new and perhaps better heterogeneous catalysts that 
impulse enhanced catalytic reaction in biofuel industry. 

  

1.3 Research Hypothesis  

Two types of zeolites Beta and ZSM-5 in nanometer range are successfully 
synthesized under hydrothermal condition by modifying the zeolite synthesis 
parameters. Reducing the concentration of water and template in the starting gel 
and prolonging the aging time for the nucleation of zeolitic species have a 
pronounced effect in controlling the crystal size growth. Enhanced silylated 
nanozeolites with high external surface area, narrow particle size distribution and 
appropriate mesopores are prepared via solvothermal method using low hazard 
organic solvent as a medium for the surface silinization process and 
crystallization. The impregnation of reduced nickel onto the hierarchical 
nanozeolites is anticipated to improve the activity of HDO because of the 
synergistic effect between the dispersed active metal sites and the acidic nature 
of the supports. The hierarchical nanozeolite Beta and ZSM-5 possess both 
micro-mesoporosity and essential acid sites significantly improve the selectivity 
of the diesel range hydrocarbon over HDO route rather than DCN and/or DCO. 
Most importantly, it is predicted that the hierarchical catalysts are more stable 
and can be recycled several times compared to the conventional microporous 
zeolites. Finally, the nature of the nanozeolites acid sites and their structural-
functional relationship as well as their kinetics and reaction mechanism in HDO 
reaction are established.  

 

1.4 Research Objectives  

The main objectives of this research is to develop a new synthesis method for 
hierarchical nanozeolites and characterize them accordingly, as well as to 
evaluate their ability as alternative supports for HDO reaction. The aim of this 
study embarks on four different sections:  
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1. To prepare and characterize nanozeolites Beta and ZSM-5 with different 
synthesis parameters (including synthesis gel composition and 
crystallization condition); and test for DO reaction. 
 

2. To prepare and characterize hierarchical nanozeolites Beta and ZSM-5 
using various low hazard organic solvents as a medium for 
crystallization. 
 

3. To evaluate the effect of Ni metal incorporation on various supports for 
enhancement in catalytic activity of oleic acid HDO reaction.  
 

4. To investigate the initial rate and reaction mechanism of HDO of octanoic 
acid over Ni supported on nanozeolites, hierarchical nanozeolites and 
conventional zeolites. 
 

1.5 Research Outline 
 

Figure 1.1 (a-d) shows a detailed research design of this study, which was 
divided in four different stages with the aim to accomplish each individual 
research objectives as mentioned above. The objective one till four were 
discussed in chapter four till seven, respectively.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Preparation of nanozeolites ZSM-5 and 
Beta via hydrothermal method 

Screening of zeolite synthesis parameters 

Characterization of catalysts 

Catalytic test of nano and microcrystalline zeolites in DO 

a) Objective 1 
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b) Objective 2 Preparation of Hierarchical 
nanozeolites Beta and ZSM-5 
via soft restrictions methods 

Screening of less hazardous organic solvents 
(hydrophilic and hydrophobic) as a medium of 

crystallization (solvothermal method) 

Characterization of materials 

Type 1 
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Sample 

c) Objective 3 Preparation of Ni doped on various supports 
using wetness impregnation method for HDO 

reaction of oleic acid  

Characterization of catalysts 

Characterization of liquid and gas phase 
products 

Reusability study of micro and hierarchical 
structured nanozeolites in HDO  
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Figure 1.1: (a-d) Overall research workflow for all the objectives  

d) Objective 4 Initial rate study on HDO of octanoic acid 
using Ni doped on commercial 

microporous zeolites, microporous 
nanozeolites and hierarchical 

nanozeolites catalysts  

Characterization of fresh and used 
catalysts 

Mechanism of HDO of octanoic over Ni/ 
zeolite catalyst is proposed 
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