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COATING 
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April 2019 
 
 

Chair    : Chen Soo Kien, PhD 
Faculty : Science 
 
 
Vanadium dioxide (VO2) is a promising smart window material because of its 
thermochromic ability as it transitions from IR-transparent semiconductor to IR-
reflectant metal at a critical temperature of 68 °C. However, the practical application of 
VO2 is hindered by some restrictions including low hysteresis or transition strength, high 
phase transition temperature for near room-temperature applications, low visible 
transmittance and  weak solar modulation ability. Thus, this research was conducted to 
address these problems. Nanostructured VO2 was prepared by hydrothermal treatment of 
V2O5-H2C2O4-H2O solution. Various experimental conditions were employed to 
examine their effects on the resultant nanopowder. X-ray diffraction (XRD) scans of the 
samples showed that varying synthetic conditions resulted in the selective formation of 
the metastable B-phase of VO2 from highly pure to polycrystalline that contained the 
metastable A-phase of VO2 as well as other V-O based compounds such as V6O13 and 
V4O7. In particular, the sample prepared with a molar ratio of 1:4, fill ratio of 0.63, and 
hydrothermally synthesized at 180 ºC in 24 hours exhibited narrow and high-intensity 
peaks belonging exclusively to VO2 (B) indicating high purity and good crystallinity. In 
addition, field-emission scanning electron microcopy (FESEM) images of the samples 
revealed the formation of nanorods and nanobelts. Further, the thermochromic and 
thermodynamically stable M-phase of VO2 was achieved by heating VO2 (B) 
nanopowder under nitrogen atmosphere. Correspondingly, high purity VO2 (B) resulted 
into high purity VO2 (M) with improved crystallinity. Also, FESEM images revealed 
that the VO2 (B) nanobelts and nanorods transformed into spherical, oblate, and plate-
like shapes after annealing. Meanwhile, differential scanning calorimetry (DSC) 
measurements showed that VO2 (M) samples exhibited a phase transition temperature of 
about 66 °C. Subsequently, samples with high purity, good crystallinity and smaller grain 
size displayed excellent thermochromic properties as indicated by the low hysteresis and 
high enthalpy. Specifically, it was found that the sample with the best thermochromic 
characteristics was annealed at a temperature of 650 °C in 2 hours. On the other hand, 
the addition of tungsten (W) in the synthesis of VO2 resulted in the reduction of the phase 
transition temperature to as low as 31.64 °C . Moreover, an accompanying increase in 
the luminous transmittance, solar transmittance and thermal conductivity at room 
temperature were observed. Additionally, a discernible increase in the thermal 
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conductivity across the phase transition temperature occurred indicating a transition from 
semiconducting to metallic state. Finally, VO2-PVP composite coating was prepared by 
dispersing highly pure VO2 nanoparticles onto a glass substrate with 
polyvinylpyrrolidone as polymeric host matrix. Surface analysis of the sample verified 
the effective dispersion of nanoparticles onto the substrate. More importantly, the 
luminous transmittance of the composite samples improved to as high as 86.75%. Indeed, 
in this work, the phase transition temperature, luminous transmittance, and solar 
transmittance were simultaneously enhanced which indicate great potential for smart 
window applications.
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Vanadium dioksida (VO2) merupakan bahan tingkap pintar yang berpotensi kerana 
kemampuan termokromiknya yang beralih daripada semikonduktor lutsinar IR kepada 
bahan pemantul IR pada suhu kritikal 68 ºC. Walau bagaimanapun, aplikasi praktikal 
VO2 terhalang oleh beberapa kekangan termasuk histeresis atau kekuatan peralihan yang 
rendah, suhu peralihan fasa yang tinggi untuk aplikasi menghampiri suhu bilik, transmisi 
terlihatkan yang rendah, dan kemampuan modulasi suria yang rendah. Justeru, kajian ini 
dilaksanakan bagi menangani permasalahan ini. Nanostruktrur VO2 disediakan melalui 
rawatan hidroterma larutan V2O5-H2C2O4-H2O. Pelbagai keadaan eksperimen telah 
digunakan untuk mengkaji kesannya terhadap nanoserbuk yang terhasil. Imbasan 
pembelauan sinar-x ke atas sampel menunjukkan kepelbagaian keadaan sintetik 
menyebabkan pembentukan memilih fasa-B metastabil VO2 daripada yang berketulenan 
tinggi kepada polihablur yang mengandungi fasa-A metastabil VO2 dan juga sebatian 
berasaskan V-O seperti V6O13 dan V4O7. Secara khususnya, sampel yang disediakan 
dengan nisbah molar 1:4, nisbah isi 0.63 dan disintesis secara hidroterma pada 180 ºC 
selama 24 jam menunjukkan puncak yang sempit dengan keamatan tinggi dimiliki secara 
eksklusif oleh VO2 (B) membuktikan bahawa ia berketulenan tinggi dengan kehabluran 
yang baik. Tambahan lagi, imej sampel daripada mikroskop elektron imbasan pancaran 
medan (FESEM) mendedahkan pembentukan nanorod dan nanojalur. Selain itu, fasa-M 
VO2 yang stabil secara termokromik dan termodinamik diperolehi melalui pemanasan 
nanoserbuk VO2 (B) di bawah atmosfera nitrogen. Dengan demikian, VO2 (B) 
berketulenan tinggi bertukar kepada VO2 (M) dengan kehabluran yang lebih baik. Juga, 
imej FESEM mendedahkan nanojalur dan nanorod VO2 (B) menjelma kepada bentuk 
sfera, oblik dan bentuk bak plat selepas proses penyepuhlindapan. Di samping itu, 
pengukuran kalorimetri imbasan pembeza (DSC) menunjukkan sampel VO2 (M) 
mempunyai suhu peralihan fasa sekitar 66 ºC. Justeru itu, sampel dengan ketulenan 
tinggi, kehabluran yang baik dan saiz butiran yang lebih kecil memaparkan sifat 
termokromik yang unggul seperti ditunjukkan oleh histeresis yang rendah dan entalpi 
yang tinggi. Secara khususnya, didapati bahawa sampel dengan ciri termokromik terbaik 
adalah yang telah disepuh-lindapkan pada suhu 650 °C selama 2 jam. Sebaliknya, 
penambahan tungsten (W) dalam sintesis VO2 menyebabkan penurunan suhu peralihan 
fasa kepada 31.64 ºC. Peningkatan transmisi bergerlap, transmisi suria dan kekonduksian 
terma pada suhu bilik telah diperhatikan. Tambahan pula, peningkatan jelas dalam 
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kekonduksian terma merentasi suhu peralihan fasa telah berlaku dan ini menunjukkan 
peralihan daripada keadaan semikonduktor kepada logam. Akhirnya, salutan komposit 
VO2-PVP telah disediakan dengan menyerakkan nanopartikel VO2 berketulenan tinggi 
di atas substrat kaca dengan polivinilpirolidon (PVP) bertindak sebagai matriks perumah 
polimer. Analisis permukaan sampel yang mengesahkan penyerakan nanopartikel di atas 
substrat secara kerkesan. Yang terpenting, transmisi bergerlap sampel komposit 
meningkat sehingga 86.75%. Sesungguhnya, dalam kerja ini, suhu peralihan fasa, 
transmisi bergerlap dan transmisi suria telah dipertingkatkan serentak menunjukkan 
potensi besar untuk aplikasi pintar tingkap. 
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CHAPTER 1 

 

INTRODUCTION 

 

The aim of this chapter is to introduce the subject matter studied by this thesis. The 
sections are organized into the: background of the research; energy consumption in 
buildings; defining windows and smart windows; thermochromic material; performance 
evaluation of thermochromic windows; vanadium dioxide (VO2); (1.7) VO2 
nanoparticles; problem statements and motivation; research objectives; scope of the 
study; and thesis structure.  
 
 
1.1 Background of the Research 

Global climate change is a worldwide phenomenon that impacts every living organism 
on Earth. Among its devastating effects include the increasing temperature around the 
globe, extreme heat waves, prolonged droughts, frequent wildfires, rising sea levels, 
intense tropical storms, and changing precipitation (Karl and Trenberth, 2003; Peng et 
al., 2011; Mendelsohn et al., 2012). Hence, this problem has attracted many scientists 
and researchers to put forward feasible answers to minimize its ill effects. Emphasis is 
particularly placed on energy saving methods to reduce fossil fuel need and consequently 
minimize greenhouse gases (GHG) emissions, mainly carbon dioxide (CO2) which is one 
of the main culprits of the problem (Attari et al., 2010; Davis and Caldeira, 2010; Thomas 
et al., 2004).  
 
 
Accordingly, energy conservation can be achieved by improving one or more of its 
components, namely: generation; storage; distribution; and efficiency. In the area of 
generation, renewable resources have been investigated as a potential replacement to 
nonrenewable fossil fuel source (Edenhofer, 2011; Ellabban et al., 2014). Likewise, 
researches are being done on the fabrication of new batteries and production of smart 
power systems for their potential as energy-conserving storage and distribution systems, 
respectively (Li et al., 2017; Garcia et al., 2018). Meanwhile, the fourth factor entails 
improving how energy is used and finding ways to maximize its utility. In this context, 
efficiency implies minimizing energy usage while maximizing its output (Baatz et al., 
2018). Hence, enhancement of energy efficiency can be achieved in a number of ways.  

1.2 Energy Consumption in Buildings 

One of the areas where efficiency can be greatly improved is in built environments or 
buildings, since they use up significant amount of energy. In fact, buildings consume 
about 30-40% of the world
conditioning (HVAC), lighting, and appliance usage (Granqvist et al., 2009). For 
instance, China and the USA   
expend about 27.4% and 41% of energy in buildings, respectively (Wei and He, 2017; 
Kamalisarvestani et al., 2013). Also, in Europe, a continent consisting of highly 
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industrialized countries, built environment accounted for 40 to 45% of their energy use 
(Agostino et al., 2017). Indeed, the high energy demands in buildings resulted in 
increased GHG emissions. As a matter of fact, in 2010, as much as 40%, 36% and 18% 
of CO2 emissions in the USA, Europe, and China, respectively, were due to energy use 
in buildings (Kamalisarvestani et al., 2013; Nejat et al. 2015). 
 
 
In addition, with the increasing global average temperature, energy demand for air 

In the European Union, an increase of 17% in their energy usage per year is observed 
(Granqvist et al., 2009).  An even more concerning scenario can be observed in hot humid 
countries, where an upsurge in air conditioning usage is inevitable. In fact, due to 
increased necessity, some countries spend one-third to one-half of their produced 
electricity for their energy needs in buildings (Yusoff and Mohamed, 2017). In Malaysia, 

(Hassan et al., 2014) sil fuel, 

emissions (Zaid et al., 2015). Henceforth, considerable attention is needed to put forward 
energy saving strategies to lessen the energy demands in buildings and ultimately reduce 
CO2 emissions. 
 
 
Energy saving methods in buildings can be categorized into two: active and passive. 
Active strategies involve upgrading the qualities and increasing the energy efficiencies 
of HVAC and lighting systems (Li et al., 2017). On the other hand, the passive approach 
includes treating and enhancing building envelopes including walls, roofs, and windows 
(Seyfouri and Binions, 2017). In fact, substantial studies have been done on improving 
the properties of windows to reduce energy losses. 

1.3 Defining Windows and Smart Windows 

Windows or glazed areas are fundamental elements in buildings as they play dual roles 
of being a barrier as well as a connection between the indoors and outdoors. As a barrier, 
they provide us protection from the outside world; while, as a connection, they endow 
us visually with the beauty of the surrounding environment (Li et al., 2011). Moreover, 
they have become a very important feature in architectural design for practical and 
aesthetic reasons. Specifically, large areas of glazed windows give good indoor-outdoor 
contact as well as comfort (Saeli et al., 2013). 

 
However, windows are also labeled as among the most inefficient components of 
buildings. Inasmuch as they allow heat to go in or out, more energy is required for the 
use of space cooling or heating to balance the increase or decrease in temperature 
(Kamalisarvestani et al. 2013). For instance, during summer or hot days, heat can easily 
pass through windows resulting in heat gain and temperature increase inside buildings. 
This prompts the use of air conditioning to give indoor comfort. Conventionally, curtains 
or blinds are implemented to block the intense heat from the sun. As a consequence, this 
necessitates the use of lighting which leads to more energy usage.  
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Indeed, a promising avenue to reduce energy expenditure and losses in buildings is by 
fabricating energy-efficient windows with the ability to control the throughput of 
transmitted light, heat and solar energy, that is, developing smart windows. This may be 
done by coating spectrally selective materials on the surface of windows (Gao et al., 
2012). By blocking unwanted and/or regulating solar radiation, HVAC and lighting use 
can be minimized, which in turn, translates into reductions in energy use and GHG 
emissions.  
 
 
Smart windows can be achieved through chromogenic technologies, that is, materials 
whose optical characteristics can vary depending on an external stimulus (Granqvist et 
al., 2013). The most common type of chromogenic devices includes: electrochromic 
(EC); thermochromic (TC); photochromic (PC); and gasochromic (GC), which can be 
stimulated by applied electric field, change in temperature, irradiation of light (photons), 
and exposure to gas, respectively. Figure 1.1 shows a comparison between chromogenic-
based fenestrations and conventional window glazing in terms of their energy 
requirements for cooling and electric lighting (Kamalisarvestani et al., 2013).  

 
Figure 1.1: Glazing Materials and Their Electric Lighting Energy and Cooling 
Energy (Granqvist et al., 2013) 

 
Accordingly, employing chromogenic materials lowers the cooling energy need as well 
as minimizes electric lighting. In addition, comparing the chromogenic materials would 
show that electrochromic (EC) and thermochromic (TC) provide the lowest cooling 
energy while EC requires lesser electric lighting than TC. However, electrochromic 
glazing is constrained by wiring and switching requirements as it depends on the 
application of electric field (Granqvist et al., 2009). Meanwhile, thermochromic has the 
advantage of regulating its optical property automatically based on temperature change 
alone (Gao et al., 2012). Moreover, TC window has uncomplicated structure and involve 
facile preparation, which makes it a promising material for smart window application 
(Seyfouri and Binions, 2017). 
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1.4 Thermochromic Material 

thermos and 
chroma which mean hot and color, respectively (Merriam-Webster, 2019). As the name 
suggests, thermochromic or TC materials are substances that change color due to 
variations in temperature. Examples of such are liquid crystals, leuco dyes and almost all 
inorganic compounds (Kiri et al., 2010). These materials can gradually alter color over a 
range of temperatures (continuous thermochromism) or abruptly change its structural 
phase at a certain critical temperature (discontinuous thermochromism) (Mott, 1974). 
Furthermore, the phase change can be reversible or irreversible, and be first- or second-
order in nature (Mott, 1974). 
  
 
The mechanism of how a TC material functions is illustrated in Figure 1.2. As seen in 
the diagram, the material has two different states relative to a phase transition 

c. At the cold state or below transition temperature, it exists as a 
semiconductor with a monoclinic structure.  
 

 
Figure 1.2: Schematic of Thermochromic Behavior (Saeli et al., 2013) 
 
 

c, it is in a metallic state with a rutile structure (Saeli et al., 
2013). The process whereby this material changes phase is termed metal-to-
semiconductor transition (MST) (Morin, 1959; Goodenough, 1971). As the material 
undergoes a shift in phase, its optical properties also change. Specifically, when the 
material is monoclinic, it is transparent to infrared (IR) radiation; whereas, when it is in 
rutile form, it becomes reflective of IR radiation (Goodenough, 1971). However, the 
transmission of visible radiation does not change in both states. Hence, TC material has 
great potential in the fabrication of smart windows. 
 
 
Among the inorganic compounds that exhibit thermochromism are transition-metal 
oxides (TMO). In 1959, Morin discovered a certain behavior on the lower oxides of 
titanium and vanadium. By thoroughly studying the electrical properties of these oxides 
in varying temperatures, he found that these materials undergo transitions from a 
semiconducting state at low temperatures to a metallic state upon reaching a critical 
temperature (Morin, 1959). A number of studies were then carried out as a follow-
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 (Kachi et al., 1973). Also, only TiO as well as V3O5 and 
V7O13 in the family of titanium and vanadium oxides do not shift in phase as they are 
metallic throughout (Morin, 1959). Interestingly, the c of vanadium dioxide (VO2), 
which is ~341 K (68 °C), is closest to room temperature compared with other compounds 
(Goodenough, 1971). Hence, VO2 is widely considered for near room-temperature 
applications such as in thermal sensors, optical and electrical switching devices, optical 
filters, and smart windows (Chen et al., 2011, Liang et al., 2016, Mjejri et al., 2014; 
Velichko et al., 2015). 
 
 
1.5 Performance Evaluation of Thermochromic Windows 

The performance of TC windows in buildings is characterized by their ability to let 
visible light pass through and block IR and ultraviolet (UV) radiations. By letting visible 
rays in, natural day-lighting and better see-through property can be achieved. Meanwhile, 
blocking IR and UV rays, which carry majority of solar energy and heat, would minimize 
solar heat gain and reduce heat loss inside buildings (Kamalisarvestani et al., 2013). 
Hence, TC windows can be evaluated using the following parameters: visible or 
luminous transmittance (Tlum), luminous reflectance, (Rlum), near-infrared (NIR) 
radiation transmittance (TNIR), NIR switching efficiency ( T), solar transmittance (Tsol) 
and solar modulation ability ( Tsol) (Zhao et al., 2014). Specifically, Tlum is defined as 
the percentage of visible radiation that propagates through a material; whereas, Rlum is 
the percentage of light that bounces off. Similarly, TNIR and Tsol are the amounts of 
radiations that pass through a material in the NIR and solar range, respectively. Hence, 
it is necessary to employ a spectrophotometer that is capable of measuring transmitted 
and reflected radiations in the UV, visible, and NIR regions. Figure 1.3 shows a typical 
spectrum of transmittance and reflectance of a VO2 sample.  
 

 
Figure 1.3: Transmittance and Reflectance of a VO2 Sample (Saeli et al., 2010) 
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To deduce this seemingly complex data, the optical properties can be expressed 
numerically as follows (Zhao et al., 2014): 

       (1.1) 

      (1.2) 

        (1.3) 

        (1.4) 

lum is the standard luminous efficiency function for the photopic vision of human 
eyes (Sharpe et al., 2005), sol is the solar irradiance spectrum for air mass 1.5, which 
was taken from the American Society for Testing and Materials (ASTM, 2013), T is 

for Tlum and Rlum, from 780 to 2500 nm for TNIR, and from 280 to 2500 nm for Tsol. Indeed, 
these wavelength-integrated properties provide an easier way to characterize and 
describe smart window materials. T sol are derived from equations 
(1.3) and (1.4) T sol can be expressed as follows, 
 

                       (1.5) 

              (1.6) 

where, max hot and 
cold c. As equation (1.5) 

T describes the maximum change in transmittance before and after c, which 
sol refers 

to the overall switching efficiency of the material, that is, the difference in transmitted 
T sol are the 

benchmarks in determining how energy efficient a material is. 
 
 
1.6 Vanadium Dioxide 

VO2 is a layered binary compound that exists in many polymorphic phases, namely, VO2 
(A), VO2 (B), VO2 (C), VO2 (D), VO2 (M) and VO2 (R) (Leroux et al., 1998; Cao et al., 
2008; Liu et al., 2013). Of these phases, only VO2 (M) and VO2 (R) are 
thermodynamically stable and exhibit thermochromic ability (Dai et al., 2011). 
Accordingly, monoclinic VO2 (M) undergoes a first-order reversible phase transition to 
rutile tetragonal VO2 (R) at 68 °C (Goodenough, 1971). More significantly, this shift in 
phase is accompanied by changes in the optical properties of the material (Alie et al., 
2014; Seyfouri et al., 2017; Venta et al., 2013), that is, below c, it is IR transparent; 
whereas, above c, it becomes IR reflectant. Figure 1.4 shows the molecular crystalline 
structure and band diagram of VO2 in both phases.  
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Figure 1.4: Crystallographic Structures with Band Diagrams of Monoclinic and 
Rutile States of VO2 (Wegkamp and Stahler, 2015) 
 

As seen, its shift in phase is due to the molecular rearrangement from monoclinic to rutile 
c, vanadium ions dimerize which causes localization 

of the outer-shell vanadium electrons as seen in its band structure. When the temperature 
rises abo c, a rapid surge in electrical conductivity occurs and the lattice relaxes to a 
rutile structure.  
 
 
1.7 VO2 Nanoparticles  

During the early stages of its discovery, VO2 was synthesized in bulk form via chemical 
transport reaction (Kachi et al., 1973). However, further studies on bulk VO2 showed 
that it breaks after a few cycles of phase change due to structural distortions (Gao et al., 
2012). Due to this limitation, researches have shifted to the syntheses of thin films and 
nanoparticles, which have been found to have greater endurance towards structural 
deformity. In fact, these forms of VO2 can withstand distortions for more than 108 cycles 
of phase transition (Guzman et al., 1996; Livage, 1996; Beteille et al., 1998), which make 
them more suitable for a smart glazing system. 
 
 
Furthermore, due to the limitations of thin-film VO2, particularly its low Tlum, weak Tsol, 
undesirable film color, and long processing time, a significant number of studies have 
focused on the synthesis of VO2 in nanostructure form (Zhang et al., 2012). This is 
mainly acquired by using hydrothermal synthesis (HT), wherein an enclosed autoclave 
containing water-based solution is heated at a relatively low temperature inside an 
electric oven for a certain duration of time (Ji et al., 2011). Moreover, experimental 
conditions in the hydrothermal method result in unique structures and morphology. The 
various nanostructures of VO2 are pictured in Figure 1.5. Hence, this method affords 
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easier procedural steps and structure control at a lower temperature compared to solid-
state reactions that rely on high temperature processing (Alie et al., 2014). This is 
important in VO2 synthesis because empirical results showed that the morphology and 
structure of VO2 can directly affect its thermochromic and functional properties (Son et 
al., 2010; Dai et al., 2011; Li et al., 2018). 
 

 
 
Figure 1.5: Different Nanostructures of VO2 in 2D and 3D 
 
 
Moreover, VO2 nanopowder can be prepared using different precursors such as organic 
alkoxides (e.g. vanadium triisoproxy oxide, VO(C3H7O)3), inorganic salts (e.g. 
divanadium pentoxide or V2O5), and vanadium oxyacetylacetone (VO(AcAc)2). Of these 
substances, V2O5 stands out for practical considerations because it is inexpensive and 
easily obtainable (Dachuan et al., 1996). Moreover, comparative studies show that the 
use of V2O5 resulted in better thermochromic behavior (Hanlon et al., 2002). Thus, many 
researches have utilized this compound as a VO2 precursor. To reduce the oxidation state 
of V2O5 from 5+ to the preferred 4+ (the oxidation state of VO2), reduction agent, such 
as oxalic acid (H2C2O4), is needed (Xu et al., 2014).  
 
 
1.8 Problem Statements and Motivation 

The potential of VO2 as a smart window material is so promising that many novel 
techniques have emerged over the years for its synthesis (Nag and Haglund, 2008; Wang 
et al., 2016). But while the technologies involved in preparing VO2 have developed in 
recent years, its real-world application is still hampered by some limitations, particularly 
in its fabrication as well as its intrinsic properties.  
 
 
Regarding the production of VO2, the set of technologies used in its synthesis still has 
some issues that need resolutions. For instance, while physical vapor deposition (PVD) 
techniques, such as pulsed laser deposition (PLD) and sputtering system, provide better 
control of synthetic conditions and high purity samples, they are constrained by high 
cost, long processing time, and poor growth rate (Maaza et al., 2000; Chae et al., 2003; 
Kiri et al., 2010). Coupled with these is its inability for large scale application (Nag and 
Haglund, 2008). Meanwhile, though the chemical vapor deposition (CVD) processes 
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offer commercial scalability and fast growth rate, they also require non-cost-effective 
equipment and high energy need (Osmolovskaya et al., 2014). On the other hand, 
solution-based methods such as sol-gel technique and hydrothermal synthesis (HT) have 
been found to be great alternative routes in the preparation of VO2 because they are cost-
effective, easy to use, require low processing temperature and capable of large area 
applications (Velichko et al., 2014). Nevertheless, these methods suffer from low 
precision control of process parameters and lower purity (Kamalisarvestani et al., 2013). 
Hence, modifications are necessary to enhance and take away the shortcomings of the 
aforesaid techniques. 
 
 
For practical reasons, the drawbacks of solution-based methods can be remedied easily 
compared to the PVDs and CVDs. This can be done by meticulously finding the optimum 
synthetic conditions in the growth of high purity VO2. Hence, several studies have dealt 
with the many experimental parameters involved in the synthesis of VO2 using solution-
based processes. For instance, in the hydrothermal preparation of VO2, synthetic 
conditions such as the type of V precursor, molar ratio of precursors, fill ratio, operating 
temperature, duration of process, and annealing conditions were found to affect the purity 
as well as the crystal structure and morphology of the resulting VO2 (Wang et al., 2016). 
 
 
In the work of Alie et al. (2014), the effects of molar ratio (ratio of V2O5 and H2C2O4), 
operating temperature, and precursor concentration were investigated. They found that 
lower molar ratio (1:2), synthesis temperature (160 to 240 °C), and concentration (2.5 
mg/mL) resulted in the non-thermochromic VO2 (B). While at a temperature of 260 °C, 
molar ratio of 1:3, and concentration of 12.5 mg/mL, they were able to successfully 
synthesize the thermochromic VO2 (M), albeit with some impurities. On the other hand, 
Popuri et al. (2013) described the effect of varying molar ratios when they used the ratios 
of 1:1.5 and 1:4.5 at 250 °C in 24 h, which resulted to VO2 (A) and VO2 (M), 
respectively. However, the hysteresis width  
thermochromic behavior  of their samples was high, which implies a weak transition 
performance. 

 
 
Meanwhile, another thermodynamic variable, pressure, which plays a vital role during 
the hydrothermal treatment, is scarcely studied. This is mainly due to the difficulty of 
configuring an in-situ pressure gauge during the process. Nonetheless, a study conducted 
by Ji et al. (2011) showed a means to do away with this constraint by using synthesis 
pressure or fill ratio (f), that is, the ratio between the volume of the solution and the 
volume of the autoclave used. Indeed, they have demonstrated that there is direct 
proportionality between fill ratio and pressure, in that, increasing the volume of a 
solution relative to the volume of the autoclave causes an elevation in pressure. This is 
evident from their results, wherein, at a lower fill ratio (f = 0.4), with a synthesis 
temperature of 270 °C and holding time of 24 h, they obtained the metastable VO2 (A); 
whereas, when f was increased to 0.6, they acquired the thermodynamically stable VO2 
(M).  
 
 
While the works mentioned above used temperatures ranging from 250 to 270 °C to 
obtain the thermochromic VO2 (M), other studies on hydrothermal preparation of VO2 
involved lower temperatures (160  230 °C), which usually resulted in the metastable 
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VO2 (B) or VO2 (A) (Valmalette and Gavarri, 1998; Zhang et al., 2006; Xu et al., 2014; 
Zhang et al., 2016). However, these phases can be converted to VO2 (M) via heat 
treatment under vacuum or Ar atmosphere. Empirical studies have shown that the 
annealing temperature and time highly influence the crystallinity, morphology, and grain 
size distribution of VO2 (Qi and Niu, 2012; Zhang et al., 2012; Popuri et al., 2013). 
Furthermore, the acquired VO2 (M) has higher purity compared to one-step hydrothermal 
processed samples (Alie et al., 2014; Li et al., 2017).  
 
 
Nonetheless, there are still some gaps in the aforementioned researches. For instance, the 
work of Ji et al. (2011) was limited to f = 0.4, 0.5, 0.6. Prior to this study, different groups 
that synthesized VO2 used differing f such as 0.32 (Alie et al., 2014), 0.33 (Zhang et al., 
2012), 0.4 (Xu et al., 2014), 0.7 (Zhang et al., 2016), and 0.72 (Popuri et al., 2014). Also, 
in the work of Alie et al. (2014), they only used molar concentrations of 2.5 and 12.5 
mg/mL and molar ratios of 1:1, 1:3 and 1:6; while, the work of Popuri et al., employed 
molar ratios of 1:1.5 and 1:4.5 (2013). As such, the first part of this thesis dealt with 
expanding the synthetic conditions in the hydrothermal synthesis of VO2 to better 
understand their effects and relationships. In particular, parameters such as synthesis 
temperature, fill ratio, molar ratio, precursor concentration, and process duration were 
examined to determine the best results. Moreover, because the experiments were carried 
out at a lower synthesis temperature of 180 °C, due primarily to apparatus limitations, 
annealing was carried out. As a follow-through to previous works, nitrogen gas (N2) was 
employed. More importantly, the evolution of VO2 (B) to VO2 (M) was analyzed and the 
annealing conditions were examined to get the optimal results. 
 
 
But while high purity VO2 can be successfully synthesized via the hydrothermal method 
at carefully chosen experimental parameters, its intrinsic properties still present three 
major challenges (Li et al., 2010). Firstly, the c of VO2, which is ~68 °C, is too high for 
usage in buildings. Ideally, VO2-based windows should reflect heat-carrying IR rays at 

from low visible transmittance, that is, its Tlum of 40% is quite below the acceptable value 
of 65% (Saeli et al., 2013).  sol) is very weak at 
less than 10% (Li et al., 2010). For windows to be considered energy efficient, the 

sol must be 15% or more (Wang et al., 2016).  
 
 
An effective way to lower the phase transition temperature of VO2 is doping. 
Accordingly, the atomic radii of a dopant must be larger than the V4+ ion to create V5+ 
defects in the lattice resulting to a reduction of c (Kiri et al., 2011). This is evident in the 
use of tungsten (W) and molybdenum (Mo) which can reduce the c of VO2 to as low as 
23 °C and 24 °C (Hanlon et al., 2013), respectively. However, these dopants do not have 

lum sol (Wang et al., 2016) 
 
 
Among the solutions being done to improve the optical properties of VO2 is layering 
with anti-reflective (AR) compounds.  Systems such as two-layer VO2-SiO2 (Zhao et al., 
2014), three-layer TiO2/VO2/TiO2 with self-cleaning ability (Zheng et al., 2015), and 
five-layer TiO2/VO2/TiO2/VO2/TiO2 (Mlyuka et al., 2009) have been reported with 
improved visible transparency and solar modulation characteristic. Nonetheless, because 
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there is a need to stack multiple layers of films, this process can be time and energy 
consuming. 
 
 
A facile and innovative way to improve Tlum and Tsol is by using a VO2 composite 
coating (Li et al. 2010); whereby, VO2 nanoparticles are embedded onto a substrate with 
a polymeric host matrix (Alfred-Duplan et al. 1994 and Valmalette and Gavarri, 1994). 
Polymers such as polyethylene (PE), polyurethane (PU), polyvinylphenol, and polyvinyl 
alcohol (PVA) have been used in previous researches (Alfred-Duplan et al., 1994; 
Valmalette and Gavarri, 1994; Dai et al., 2013; Madida et al., 2014).  
 
 
Moreover, simulation studies by Li et al. (2010) showed that Tlum sol depend on 
the shape and size of the nanoparticles. Accordingly, Tlum of 75% and 65 % at the 

sol as high as 16.6% were 
calculated for spherical nanostructures. Indeed, these values were higher compared to 
thin film samples.  

 
 
Hence, the second part of this thesis dealt with addressing the three aforementioned 
challenges by doping VO2 with W, as well as preparing VO2-based nanocomposite film 
that was derived from hydrothermally prepared VO2. In addition, the use 
polyvinylpyrrolidone or povidone (PVP) as polymeric host matrix was examined. 
Furthermore, phase, morphology, topography, and optical property analyses were carried 
out to investigate the properties of the acquired composite samples. 
 
 
1.9 Research Objectives 
 
The preceding sections demonstrated the need to further investigate the various factors 
that affect the synthesis of highly pure nanostructured VO2 with excellent thermochromic 
behaviors. It is also essential to find a means to enhance the attributes of VO2 for practical 
applications. Therefore, this research work sought to achieve the following objectives: 
 

I. Study the effects of fill ratio, precursors ratio, molar concentration, synthesis 
temperature and holding time on the structural and morphological properties of 
hydrothermally prepared VO2.  
Hypothesis 1a: Increase in temperature will result in higher peak intensities 
Hypothesis 1b: Increase in fill ratio will lead to increase in peak intensities and 
particles with lesser grain size 
Hypothesis 1c: Increasing V precursor/reductant molar ratio will result in more 
nano-sized particles 
Hypothesis 1d: Increase in treatment time will result in more sharp peaks and 
larger grain size 
 

II. Examine the conversion of VO2 polymorphs from B-phase to M-phase via 

structural, morphological, thermochromic, and optical properties.  
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Hypothesis 2a: Annealing under N2 atmosphere will result in the conversion of 
VO2 from B-phase to highly pure M-phase with large grain size 
Hypothesis 2b: Decrease in  grain size will result in decrease in phase transition 
temperature 
Hypothesis 2c: High purity will result in enhanced hysteresis and enthalpy 
 

III. Investigate the influence of W-doping on the structural, thermochromic, 
thermophysical, and optical properties of VO2.  
Hypothesis 3a: Doping with tungsten will result in an increase in lattice strain 
Hypothesis 3b: Increase in doping concentration will lead to a decrease in 
phase transition temperature 
 

IV. Synthesize VO2 PVP composite film and analyze its structure, topography, and 
optical properties.  
Hypothesis 4: Dispersed VO2 nanoparticles on the surface of a glass substrate 
will increase its luminous and solar transmittances 

 
 

1.10 Scope of the Study 
 
In lieu of the aforementioned objectives, this research work encompassed the following:  
 

I. Hydrothermal treatment with differing synthetic conditions were carried out 
using V2O5 and oxalic acid as V precursor and reducing agent, respectively. In 
particular, experimental runs with differing fill ratio, molar ratio, molar 
concentration, process temperature and duration were conducted to find a set of 
parameters that should result in highly pure and well crystallined VO2 (B) 
nanoparticles.   
 

II. Annealing runs with varying temperatures and times were done to evaluate their 
effects on the formation of VO2 (M) and find the optimal conditions on the 
synthesis of highly pure thermochromic VO2. Further, analysis of the phase 
structure and morphology as well as the resulting thermochromic and optical 
properties were conducted to find correlations.  

 
III. In the intent of improving the attributes of VO2, analysis on the enhancements 

of doping VO2 with W is performed. Subsequently, influences of the dopant on 
the phase, structure, thermochromic, optical, and thermophysical properties of 
VO2 were explored.  

 
IV. In an effort to advance the practical application of VO2 as smart window 

material, VO2-based composite coating was prepared and evaluated on its 
resulting attributes.  
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1.11 Thesis Structure 

This thesis is comprised of six themed chapters. The first chapter gives an introduction 
of the research work including a brief background, motivation, and objectives of the 
study. In addition, basic terminologies and related matters such as smart windows, 
thermochromism, and performance evaluation of thermochromic materials are 
presented. Chapter 2 discusses the theoretical foundations and conceptual models 
relevant to the study. The third chapter presents a review and integration of empirical 
information on the research variables investigated by this study. Chapter 4 describes the 
methodology employed in the research, including sample preparations and 
characterizations. The findings derived from the experimental runs carried out in this 
work is discussed in Chapter 5 under four subsections, namely: (a) results of the 
hydrothermal synthesis of VO2 at different experimental parameters; (b) elucidation of 
the effects of annealing conditions to the conversion of VO2 (B) to VO2 (M) under N2 
flow; (c) explanation of the influence of tungsten as dopant on the properties of VO2; and 
(d) analysis of the prepared VO2-PVP nanocomposite film. Finally, the sixth chapter 
reflects on the conclusions and recommendations for future research. 
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