

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND CHARACTERIZATION OF THERMOCHROMIC VO₂ NANOPARTICLES AND NANOTHERMOCHROMIC VO₂-PVP COMPOSITE COATING

HAMDI MUHYUDDIN D. BARRA

FS 2019 29

SYNTHESIS AND CHARACTERIZATION OF THERMOCHROMIC VO2 NANOPARTICLES AND NANOTHERMOCHROMIC VO2-PVP COMPOSITE COATING

HAMDI MUHYUDDIN D. BARRA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

April 2019

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

To my wife Sharisse May

For the numerous times I appear to have given up, you were there to lift my spirits up;
For every hump that seem to hold me back, you never failed to put me back on track;
For each instance my self-esteem hits rock bottom, your belief in me stayed rock solid.
For really... I thought this pursuit was improbable, but not once have you doubted me...
For that and more, I thank you! Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

SYNTHESIS AND CHARACTERIZATION OF THERMOCHROMIC VO₂ NANOPARTICLES AND NANOTHERMOCHROMIC VO₂-PVP COMPOSITE COATING

By

HAMDI MUHYUDDIN D. BARRA

April 2019

Chair : Chen Soo Kien, PhD Faculty : Science

Vanadium dioxide (VO₂) is a promising smart window material because of its thermochromic ability as it transitions from IR-transparent semiconductor to IRreflectant metal at a critical temperature of 68 °C. However, the practical application of VO_2 is hindered by some restrictions including low hysteresis or transition strength, high phase transition temperature for near room-temperature applications, low visible transmittance and weak solar modulation ability. Thus, this research was conducted to address these problems. Nanostructured VO2 was prepared by hydrothermal treatment of V₂O₅-H₂C₂O₄-H₂O solution. Various experimental conditions were employed to examine their effects on the resultant nanopowder. X-ray diffraction (XRD) scans of the samples showed that varying synthetic conditions resulted in the selective formation of the metastable B-phase of VO₂ from highly pure to polycrystalline that contained the metastable A-phase of VO₂ as well as other V-O based compounds such as V_6O_{13} and $V_{4}O_{7}$. In particular, the sample prepared with a molar ratio of 1:4, fill ratio of 0.63, and hydrothermally synthesized at 180 °C in 24 hours exhibited narrow and high-intensity peaks belonging exclusively to VO₂ (B) indicating high purity and good crystallinity. In addition, field-emission scanning electron microcopy (FESEM) images of the samples revealed the formation of nanorods and nanobelts. Further, the thermochromic and thermodynamically stable M-phase of VO₂ was achieved by heating VO₂ (B) nanopowder under nitrogen atmosphere. Correspondingly, high purity VO_2 (B) resulted into high purity VO₂ (M) with improved crystallinity. Also, FESEM images revealed that the VO_2 (B) nanobelts and nanorods transformed into spherical, oblate, and platelike shapes after annealing. Meanwhile, differential scanning calorimetry (DSC) measurements showed that VO_2 (M) samples exhibited a phase transition temperature of about 66 °C. Subsequently, samples with high purity, good crystallinity and smaller grain size displayed excellent thermochromic properties as indicated by the low hysteresis and high enthalpy. Specifically, it was found that the sample with the best thermochromic characteristics was annealed at a temperature of 650 °C in 2 hours. On the other hand, the addition of tungsten (W) in the synthesis of VO2 resulted in the reduction of the phase transition temperature to as low as 31.64 °C. Moreover, an accompanying increase in the luminous transmittance, solar transmittance and thermal conductivity at room temperature were observed. Additionally, a discernible increase in the thermal

conductivity across the phase transition temperature occurred indicating a transition from semiconducting to metallic state. Finally, VO₂-PVP composite coating was prepared by dispersing highly pure VO₂ nanoparticles onto a glass substrate with polyvinylpyrrolidone as polymeric host matrix. Surface analysis of the sample verified the effective dispersion of nanoparticles onto the substrate. More importantly, the luminous transmittance of the composite samples improved to as high as 86.75%. Indeed, in this work, the phase transition temperature, luminous transmittance, and solar transmittance were simultaneously enhanced which indicate great potential for smart window applications.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS DAN PENCIRIAN NANOPARTIKEL VO2 TERMOKROMIK DAN SALUTAN KOMPOSIT VO2-PVP NANOTERMOKROMIK

Oleh

HAMDI MUHYUDDIN D. BARRA

April 2019

Pengerusi: Chen Soo Kien, PhDFakulti: Sains

Vanadium dioksida (VO₂) merupakan bahan tingkap pintar yang berpotensi kerana kemampuan termokromiknya yang beralih daripada semikonduktor lutsinar IR kepada bahan pemantul IR pada suhu kritikal 68 °C. Walau bagaimanapun, aplikasi praktikal VO₂ terhalang oleh beberapa kekangan termasuk histeresis atau kekuatan peralihan yang rendah, suhu peralihan fasa yang tinggi untuk aplikasi menghampiri suhu bilik, transmisi terlihatkan yang rendah, dan kemampuan modulasi suria yang rendah. Justeru, kajian ini dilaksanakan bagi menangani permasalahan ini. Nanostruktrur VO_2 disediakan melalui rawatan hidroterma larutan V₂O₅-H₂C₂O₄-H₂O. Pelbagai keadaan eksperimen telah digunakan untuk mengkaji kesannya terhadap nanoserbuk yang terhasil. Imbasan pembelauan sinar-x ke atas sampel menunjukkan kepelbagaian keadaan sintetik menyebabkan pembentukan memilih fasa-B metastabil VO2 daripada yang berketulenan tinggi kepada polihablur yang mengandungi fasa-A metastabil VO₂ dan juga sebatian berasaskan V-O seperti V_6O_{13} dan V_4O_7 . Secara khususnya, sampel yang disediakan dengan nisbah molar 1:4, nisbah isi 0.63 dan disintesis secara hidroterma pada 180 °C selama 24 jam menunjukkan puncak yang sempit dengan keamatan tinggi dimiliki secara eksklusif oleh VO₂ (B) membuktikan bahawa ia berketulenan tinggi dengan kehabluran yang baik. Tambahan lagi, imej sampel daripada mikroskop elektron imbasan pancaran medan (FESEM) mendedahkan pembentukan nanorod dan nanojalur. Selain itu, fasa-M VO₂ yang stabil secara termokromik dan termodinamik diperolehi melalui pemanasan nanoserbuk VO₂ (B) di bawah atmosfera nitrogen. Dengan demikian, VO₂ (B) berketulenan tinggi bertukar kepada VO₂ (M) dengan kehabluran yang lebih baik. Juga, imej FESEM mendedahkan nanojalur dan nanorod VO_2 (B) menjelma kepada bentuk sfera, oblik dan bentuk bak plat selepas proses penyepuhlindapan. Di samping itu, pengukuran kalorimetri imbasan pembeza (DSC) menunjukkan sampel VO₂ (M) mempunyai suhu peralihan fasa sekitar 66 °C. Justeru itu, sampel dengan ketulenan tinggi, kehabluran yang baik dan saiz butiran yang lebih kecil memaparkan sifat termokromik yang unggul seperti ditunjukkan oleh histeresis yang rendah dan entalpi yang tinggi. Secara khususnya, didapati bahawa sampel dengan ciri termokromik terbaik adalah yang telah disepuh-lindapkan pada suhu 650 °C selama 2 jam. Sebaliknya, penambahan tungsten (W) dalam sintesis VO₂ menyebabkan penurunan suhu peralihan fasa kepada 31.64 °C. Peningkatan transmisi bergerlap, transmisi suria dan kekonduksian terma pada suhu bilik telah diperhatikan. Tambahan pula, peningkatan jelas dalam

kekonduksian terma merentasi suhu peralihan fasa telah berlaku dan ini menunjukkan peralihan daripada keadaan semikonduktor kepada logam. Akhirnya, salutan komposit VO₂-PVP telah disediakan dengan menyerakkan nanopartikel VO₂ berketulenan tinggi di atas substrat kaca dengan polivinilpirolidon (PVP) bertindak sebagai matriks perumah polimer. Analisis permukaan sampel yang mengesahkan penyerakan nanopartikel di atas substrat secara kerkesan. Yang terpenting, transmisi bergerlap sampel komposit meningkat sehingga 86.75%. Sesungguhnya, dalam kerja ini, suhu peralihan fasa, transmisi bergerlap dan transmisi suria telah dipertingkatkan serentak menunjukkan potensi besar untuk aplikasi pintar tingkap.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful.

All praises to Allah S.W.T. for His Guidance, Blessings and Mercy. *Alhamdulillah* for helping me meet the right people at the right time at the right place. Undeniably, the completion of this work would not have been realized without the contribution of many amazing individuals whom I am forever indebted to.

Foremost, I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Chen Soo Kien for guiding me throughout my postgraduate life in UPM. I thank Dr. Chen for his patience, support, and mentorship. Indeed, I have learned from him so many insights about research, academic writing, work ethics, and life in general.

I would also like to thank Prof. Dr. Zainal Abidin Talib and Dr. Nizam Tamchek, my supervisory committee members, for their constructive comments and suggestions to improve my research. My sincere gratefulness to Prof. Zainal for allowing me access to the Electrical Properties of Matter Laboratory, which served as my second home in Malaysia.

My heartfelt appreciation also goes to Assoc. Prof. Dr. Halimah Mohamed Kamari for imparting her knowledge on research, thesis writing, and how to cope with postgraduate stress.

I am also grateful to Dr. Hussien, Dr. KY, Farinah, Joel, Nur Alia, Mr. Abas and Mr. Razak for helping me in my experimentations. Likewise, I am very appreciative of the assistance of Ms. Norhaslinda, Ms. Kamsiah, Mr. Roslim, Mr. Rahmat, Ms. Noor Farizatul Shida, Ms. Nurul Shahida, Ms. Zaidina, Ms. Nor Azlina, Ms. Norihan, Mr. Azmi, Ms. Noor Lina, and Ms. Alexa in characterizing my samples.

My sincerest gratitude to the Ministry of Higher Education (MoHE) of the Government of Malaysia for affording me financial support through the Malaysia International Scholarship (MIS).

I would also like to convey my wholehearted appreciation to my alma mater – the Mindanao State University (MSU) for giving me the opportunity to undertake my doctoral degree. More importantly, I would like to acknowledge my colleagues at the Physics Department of MSU for the unfaltering moral support.

Loving gratefulness is especially accorded to Abuya and Omiya for their prayers, words of encouragements, and compassion. I also want to thank my siblings, Kuya Ajeeb, Kuya Mujeeb, Ate Najwa, Ni'mah, Haqq and Baby Najmah for their unwavering support.

Finally, I want to express my wholehearted thankfulness to my wife and sons for inspiring me every day in the pursuit of this endeavor. I wish to thank Sharisse, my biggest fan, for motivating me always, keeping me focused on the task at hand, and bringing out the best in me. As well, I am very grateful to Hamshari, Hisham, Shaheem, and baby Shameel for being our bundle of joy, for always enjoying our family time, for amazing us every single time with their creative imagination, and for being the adorable kids that any parent could ask for.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Chen Soo Kien, PhD Associate Professor Faculty of Science

Universiti Putra Malaysia (Chairman)

Zainal Abidin Talib, PhD Professor Faculty of Science Universiti Putra Malaysia (Member)

Nizam Tamchek, PhD Senior Lecturer

Faculty of Science Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean

School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:

Date:

Name and Matric No.: Hamdi Muhyuddin D. Barra (GS40451)

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	V
APPROVAL	vii
DECLARATION	viv
LIST OF TABLES	xix
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviv

CII		DT		D
СН	Δ	Р	н.	к

PTER			
1	INT	RODUCTION	1
	1.1	Background of the Research	1
	1.2	Energy Consumption in Buildings	1
	1.3	Defining Windows and Smart Windows	2
	1.4	Thermochromic Material	4
	1.5	Performance Evaluation of Thermochromic	5
		Windows	
	1.6	Vanadium Dioxide	6
	1.7	VO ₂ Nanoparticle	7
	1.8	Problem Statements and Motivation	8
	1.9	Research Objectives	11
	1.10	Scope of the Study	12
	1.11	Thesis Structure	13
2	ТН	FORETICAL BACKGROUND AND BASIS	14
-	2.1	The Solar Spectrum	14
	2.2	Ontical Interactions in a Solid Medium	15
	2.3	Thermodynamics Approach	17
	2.4	Metal-to-Semiconductor Transition	18
		2.4.1 Mott Transition	19
		2.4.2 Peierls Transition	20
	2.5	Chapter Summary	21
2	т іт	EDATIDE DEVIEW ON VO.	22
3	3 1	Basic Properties of VO	22
	5.1	3.1.1 Crystal Structure	22
		3.1.2 Band Structure	22
		3.1.3 Polymorphic Phases	23
	32	Techniques in the Synthesis of VO_2	23
	5.2	3.2.1 Chemical Vapor Denosition	25
		3.2.2 Physical Vapor Deposition	25
		3.2.3 Sol-Gel Method	27
		3.2.4 Hydrothermal Method	28

3.2.5 Gas-based vs Solution-based 28

xi

3.3	Overv	iew of the	HT Processing of VO ₂	28
	3.3.1	Mechani	ism of Nanoparticle Growth	29
	3.3.2	V Precu	rsors and Sample Preparation	29
	3.3.3	Experim	ental Conditions in the HT	30
		Synthesi	s of VO ₂	
3.4	Strate	gies to Im	prove VO ₂ Properties	32
3.5	Nanot	hermochr	omic VO_2	33
3.6	Chapte	er Summa	ry	35
ME	THOD	OLOGY		36
4.1	Raw N	Aaterials		36
4.2	Sampl	e Prepara	tion	36
	4.2.1	$VO_2(B)$	Nanoparticles	36
	4.2.2	$VO_2 (M)$) Nanoparticles	39
	4.2.3	W-Dope	d VO ₂ Nanoparticles	41
	4.2.4	VO ₂ -PV	P Composite Film	41
4.3	Chara	cterization	IS	43
	4.3.1	X-Ray I	Diffraction (XRD)	44
	4.3.2	Field En	nission Scanning Electron	45
		Microsc	opy (FESEM)	
	4.3.3	Thermog	gravimetric Analysis (TGA)	47
	4.3.4	Differen	tial Scanning Calorimetry (DSC)	48
	4.3.5	Ultravio	let-visible-near-infrared	50
		Spectrop	photometer (UV-vis-NIR)	
	4.3.6	Fourier	Transform Infrared Spectroscopy	52
		(FTIR)		
	4.3.7	Atomic	Force Microscopy (AFM)	53
	4.3.8	Laser Fl	ash Analysis (LFA)	55
4.4	Chapte	er Summan	ry	57
RES	STILTS	AND DIS	SCUSSION	58
5.1	Hydro	thermally	Prepared VO ₂ (B) Nanoparticles	58
5.1	511	Effects of	of Synthesis Temperature	58
	5.1.2	Effects of	of Fill Ratio	62
	5.1.3	Effects of	of Precursor Ratio	64
	5.1.4	Effects of	of Process Duration	67
	5.1.5	Effects of	of Molar Concentration	70
	5.1.6	Optimal	Growth Conditions	73
5.2	Nanos	tructured	VO ₂ (M) Derived from VO ₂ (B)	74
	5.2.1	Evolutio	on of VO_2 (B) to VO_2 (M) under	74
		N ₂ Atmo	osphere	
		5.2.1.1	Annealing Under N ₂ Atmosphere	75
			vs in Air	
		5.2.1.2	FTIR Spectroscopy Analysis of	77
			VO ₂ Before and After Annealing	
	5.2.2	Effects of	of Annealing Conditions	78
		5.2.2.1	XRD Analysis	78
		5.2.2.2	FESEM Analysis	82
		5.2.2.3	DSC Analysis	84
		5.2.2.4	Optimal Annealing Conditions	86
	5.2.3	VO ₂ (M) Derived from VO_2 (B) Samples	86

5

C)

4

		with Varying Fill R	atios
		5.2.3.1 XRD Ana	lysis 86
		5.2.3.2 FESEM A	nalysis 88
		5.2.3.3 DSC Anal	ysis 90
		5.2.3.4 Optical Pr	operty Analysis 93
		5.2.4 VO_2 (M) Derived fi	rom VO ₂ (B) Samples 94
		with Differing Mola	ar Ratios
		5.2.4.1 XRD Ana	lysis 94
		5.2.4.2 FESEM A	nalysis 96
		5.2.4.3 DSC Anal	ysis 98
		5.2.4.4 Optical Pr	operty Analysis 100
	5.3	W-Doped VO ₂	101
		5.3.1 Phase and Structura	l Analysis 101
		5.3.2 Influence on Therm	ochromic Properties 107
		5.3.3 Influence on Optica	l Properties 110
		5.3.4 Influence on Therm	ophysical Properties 111
	5.4	VO ₂ -PVP Composites	113
		5.4.1 XRD Analysis	113
		5.4.2 AFM Analysis	118
		5.4.3 Optical Properties	120
	5.5	Chapter Summary	122
6	CO	CLUSIONS AND FUTUR	E WORK 123
	6.1	Conclusions	123
	6.2	Future Work	125
	6.3	Chapter Summary	125
		1	
REFER	RENCES		126
APPEN	DICES		136
BIODA	TA OF STU	DENT	144
LIST O	F PUBLICA	FIONS	145

G

LIST OF TABLES

Table		Page
3.1	VO ₂ polymorphs and their properties	24
3.2	Structure of VO ₂ (B) with corresponding HT parameters	31
3.3	Comparisons of the structure and thermochromic properties of VO ₂ (M) at differing synthesis processes	32
3.4	Comparisons of the thermochromic properties of VO ₂ -based composites with various polymers and dopants	35
4.1	List of chemicals and their specifications	36
4.2	Experimental parameters in the hydrothermal synthesis	38
4.3	Samples with varying annealing conditions	40
4.4	Sample identities of annealed VO_2 (B)	40
4.5	List of samples, methods and characterization tools used in this	43
5.1	work FWHM, lattice properties, and synthesis yield of samples with	61
	differing synthesis temperature	
5.2	FWHM, lattice properties, and synthesis yield of samples with differing fill ratios	63
5.3	FWHM, lattice properties, and synthesis yield of samples with differing molar ratios	66
5.4	FWHM, lattice properties, and synthesis yield of samples with varying holding times	69
5.5	FWHM, lattice properties, and synthesis yield of samples with different molar concentrations	72
5.6	FWHM and lattice properties of samples annealed at differing times and temperatures	82
5.7	Thermochromic properties of samples heated at differing annealing conditions	85
5.8	FWHM and lattice properties of samples synthesized at differing fill ratios after annealing at 650 °C in 2 h	88
5.9	Thermochromic properties of post-annealed samples with varying fill ratios	91
5.10	Optical properties of VO ₂ synthesized at varying fill ratios	94
5.11	FWHM and lattice properties of samples synthesized at varying molar ratios after annealing at 650 °C in 2 h	96
5.12	Thermochromic properties of post-annealed samples with differing molar ratios	99
5.13	Optical properties of VO ₂ synthesized at different precursors ratios	101
5.14	Lattice properties of the undoped and W-doped VO ₂ samples	106
5.15	Thermochromic properties of undoped and W-doped samples	108
5.15	Ontical properties of uncosted and costed glass samples	121
5.17	Comparison of the results in this work with the findings reported in literature	121

(C)

LIST OF FIGURES

Figure		Page
1.1	Glazing Materials and Their Electric Lighting Energy and	3
1.2	Cooling Energy (Granqvist et al., 2013)	4
1.2	Transmittance and Paflectance of a VO. Sample (Saeli et al.	4
1.5	2010	5
1.4	Crystallographic Structures with Band Diagrams of Monoclinic and Putile States of VO ₂ (Weakamp and Stabler 2015)	7
15	Different Nanostructures of VO_2 (we grainp and statict, 2015)	8
2.1	Standard Solar Spectra (ASTM 2013)	14
2.2	Reflection. Propagation and Transmission of a Light Beam	15
	Incident on a Material (Fox, 2001)	
2.3	Phenomena that can Occur when a Light Beam Propagates	16
	Through an Optical Medium (Fox, 2001)	
2.4	Schematic of Gibbs Free Energy for Nucleation (Thanh et al.,	18
	2014)	
2.5	Band Structures of Solids (Needleman, 2014)	19
2.6	Activation Energy vs Reciprocal Lattice (Warwick and Binions, 2014)	20
2.7	Mechanism of Peierls Transition from (a) Undistorted Metal to	21
	(b) Peierls Insulator (Hasegawa, 2007)	
3.1	(a) Rutile and (b) Monoclinic Structures of VO ₂ (Eyert, 2002)	22
3.2	Band Structure Diagram of VO ₂ (Seyfouri and Binions, 2017)	23
3.3	A Typical Experimental Arrangement for PLD (Nag and Haglund, 2008)	26
3.4	Schematic Illustration of the Inverted Cylindrical Magnetron Sputter Gun (Kana kana et al. 2010)	27
3.5	Schematic of Nanoparticle Formation Based on the Lamer Model (Sugimoto, 2007)	29
3.6	Schematic of Solar Modulation Ability of VO ₂ -Polymer Composite (a) Below and (b) Above τ_c (Sevfouri and Binions,	34
	2017)	
4.1	Flow Chart of the Hydrothermal Synthesis of VO ₂	37
4.2	Flow Diagram of the Preparation of VO ₂ /PVP Nanocomposite	42
	Film	
4.3	X-Ray Diffraction (Shindo and Murakami, 2004)	44
4.4	Schematic Diagram of a Typical FESEM (Shinde et al., 2012)	46
4.5	Interactions Between Electrons and a Sample (Dumont et al., 2009)	47
4.6	Basic Set-up of a TGA (Brown, 1998)	48
4.7	(a) Schematic of a Differential Scanning Calorimeter and a (b) Typical DSC Curve (Brown, 1998)	49
4.8	Energy Levels in Molecules	51
	(http://www.wag.caltech.edu.home/home/jang.htm)	
4.9	Schematic Diagram of a UV-VisNIR Spectrophotometer (Gao, 2012)	52
4.10	Block Diagram of a FTIR Spectrometer (Mbonyiryivuze et al., 2015)	53

6

4.11	Plot of Interaction Force and Separation Distance Between the Particles and Cantilever Tip (Wegmann et al., 2012)	54
4.12	The General Components of an AFM (De Oliveira et al., 2012)	54
4 13	Three Imaging Modes in AFM (De Oliveira et al. 2012)	55
4 14	Configuration of a Flash Method (Lin et al. 2015)	56
4 1 5	Schematic of a Laser Flash Annaratus (Lecomte-Beckers et al	56
т.15	2007)	50
51	XRD Scans of Samples Synthesized at Varving Temperatures	59
5.1	XRD Bettern with <i>hkl</i> Values of Sample VB3 Synthesized at 180	60
5.2	^o C Inset: Peak List of VB3	00
53	EDV Spectrum of VB2	61
5.5	VPD Potterns of Samples Synthesized at Differing Fill Paties	62
5.4	EESEM Images of Semples Synthesized at Differing Fill Ratios	64
5.5	FESEM images of samples Synthesized at Fill Ratios of (a) 0.38 , (b) 0.5 (c) 0.62 and (d) 0.75	04
5 ((b) 0.5, (c) 0.65, and (d) 0.75 XDD S = (S = 1 + S + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	(5
5.6	TRD Scans of Samples Synthesized at Varying Molar Ratios	65
5./	FESEM Images of Samples Synthesized at Molar Ratios of (a)	6/
5 0	1:2, (b) 1:3, (c) 1:4, and (d) 1:5	60
5.8	XRD Scans of Samples Synthesized at Differing Holding Times	68
5.9	FESEM Images of Samples Synthesized at Differing Holding	70
	Times of (a) 24 h, (b) 48 h, and (c) 72 h	
5.10	XRD Scans of Samples Synthesized at Various Molar	71
	Concentrations	
5.11	FESEM Images of Samples Synthesized at 72 h with Varying	72
	Precursor Concentrations of (a) 0.091, (b) 0.080, and (c) 0.069	
	mmol/mL	
5.12	XRD Patterns of Samples with Highly Pure VO ₂ (B) Phase	73
5.13	TGA Thermogram and First Derivative Curve (Inset) of VO ₂ (B)	75
	Recorded at Heating Rate of 10 °C/min under N ₂ Atmosphere	
5.14	Ocular Inspection of the Prepared Powder Samples	76
5.15	XRD Patterns of Unannealed and Annealed Samples in Various	77
	Atmospheres	
5.16	FTIR Spectra of VO ₂ Before and After Annealing	78
5.17	XRD Patterns of Samples Annealed at Differing Times	79
5.18	XRD Scans of Samples Annealed at Various Temperatures	80
5.19	XRD Patterns with hkl Values of Sample Annealed at 650 °C in 2	81
	h. Inset: Peak List of the Sample	
5.20	FESEM Images of the Samples Annealed in 2 h at Varying	83
	Temperatures: (a) 550 °C, (b) 600 °C, (c) 650 °C, and (d) 700 °C;	
	as well as Samples Heated at 650 °C in Different Times: (e) 1 h,	
	and (f) 1.5 h	
5.21	DSC Curves of Samples Annealed at Varying (a) Times and (b)	84
	Temperatures	
5.22	XRD Patterns of Samples Prepared at Varying Fill Ratios After	87
	Annealing at 650 °C in 2 h	
5.23	FESEM Scans Before and After Annealing of Samples Prepared	89
	at Differing Fill Ratios of (a) 0.38, (b) 0.5, (c) 0.63, and (d) 0.75	
5.24	DSC Curves of Samples Prepared at Differing Fill Ratios After	90
	Annealing at 650 °C in 2 h	
5.25	Transmittance Spectra of Post-Annealed VO ₂ Samples with	93
	Differing Fill Ratios	

5.26	XRD Scans of Samples Prepared at Differing Molar Ratios After Annealing at 650 °C in 2 h	95
5.27	FESEM Scans Before and After Annealing of Samples Synthesized at Varying Molar Ratios of (a) 1:2, (b) 1:3, (c) 1:4,	97
	and (d) 1:5	
5.28	DSC Curves of Samples Prepared at Differing Molar Ratios After	98
5.29	Transmittance Spectra of Post-Annealed VO ₂ Samples with Varving Molar Pation	100
5.30	XRD Scans of Hydrothermally Prepared Undoped and W-Doped	102
5.31	XRD Scans of Pre-Annealed Undoped and Doped Samples At 20 Range Between 20° and 35°	103
5.32	XRD Scans of the Undoped and W-Doped Samples Post	104
5.33	XRD Scans of the Undoped and W-Doped VO ₂ Samples After Annealing at 20 Range Between 26° And 35°	105
5.34	FESEM Scans of W-Doped VO ₂ at Differing Dopant Weight Concentrations of (a) 0, (b) 1, (c) 1.5, (d) 2, and (e) 3 wt%	107
5.35	DSC Curves of Undoped and W-Doped Samples	108
5.36	Phase Transition Temperature and Enthalpy of VO ₂ with Varying W Concentration	109
5.37	Transmittance Spectra of W-Doped Samples at Room Temperature	110
5.38	Optical Properties of VO ₂ as a Function of W Concentration	111
5.39	Thermal Diffusivity of VO2 at Varying W Concentration	112
5.40	Thermal Conductivity of Undoped and W-Doped VO ₂	113
5.41	XRD Scans of Precursor VO ₂ (M) Nanopowder and VO ₂ -PVP Nanocomposite	114
5.42	XRD Spectra of VO ₂ -PVP Composite Films at Varying VO ₂ /PVP Mass Ratio. All Peaks belong to VO ₂ (M) Compound	115
5.43	XRD Spectra of VO ₂ -PVP Composite Films at Differing PVP/Ethanol Percent Solution. All Peaks can be Indexed to VO ₂	116
5.44	XRD Scans of Sample MA _{650,2h} and the Derived VO ₂ -PVP	117
5.45	XRD Scans of Sample VMW2% and the Derived VO ₂ -PVP Composite	117
5.46	3D AFM Scan of the VO ₂ -PVP Film Derived from Sample $VM_{0.65,1:4}$. Inset: Enlarged View of a Section Showing VO ₂	118
	Particle in 2D	
5.47	3D AFM Image of the VO ₂ -PVP ⁶⁵⁰ Film. Inset: 2D Enlarged View of a Section	119
5.48	AFM Image of VMW2%-PVP Composite Film in 3D. Inset: Enlarged View of a Section In 2D	119
5.49	Transmittance Spectra of Uncoated, Composite-Film Coated, and Thin-Film Coated Glass Samples	120
A1.1	1 XRD Scan of Hydrothermally Prepared VO ₂ (A). Inset: Peak List of the VO ₂ (A) Sample	138
A1.2	FESEM Images of the Prepared (a) VO ₂ (B), (b) VO ₂ (A), and VO ₂ (M)	138

A1.3	DSC Curves of the Prepared Polymorphic Phases of VO ₂	139
A1.4	FTIR Spectra of the Synthesized VO ₂ Polymorphs	140
A1.5	Thermal Diffusivity of the Prepared VO ₂ Polymorphs	140
A1.6	Thermal Conductivity of the Polymorphic Phases of VO ₂	141
A2.1	Coated Glass Sample Before and After Annealing	142
A2.2	XRD Scan of the VO_2 Thin Film Sample	143
A2.3	SEM Image of the Prepared VO ₂ Thin Film	143
A2.4	Transmission Spectra of Uncoated and VO ₂ -Coated Glass	144
	Samples	

 (\mathbf{C})

LIST OF ABBREVIATIONS

%R	Percent Reflectance
%T	Percent Transmittance
А	Absorption
α	Thermal Diffusivity
Cp	Heat Capacity
ΔH	Enthalpy / Heat of Transition
ΔT_{sol}	Solar Modulation Ability
D	Crystallite Size
E_{F}	Fermi Energy
E _G	Energy Band Gap
f	Fill Ratio
ητ	Near-Infrared Switching Efficiency
h	Hysteresis
θ	Angle of Incidence
κ	Thermal Conductivity
λ	Wavelength
m	Mass
ρ	Mass Density
Ŕ	Reflectance
R _{lum}	Luminous Reflectance
Sa	Roughness Mean Height
Sa	Root Mean Square Height
τ	Temperature
$\tau_{\rm c}$	Phase Transition Temperature
$\tau_{\rm cool}$	Phase Transition Temperature during Cooling
Theat	Phase Transition Temperature during Heating
Tonset	Onset Temperature
T	Transmittance
T _{lum}	Luminous Transmittance
T _{NIR}	Near-Infrared Transmittance
T _{sol}	Solar Transmittance
Φlum	Luminous Efficiency of the Human Eye
φ _{sol}	Solar Irradiance Spectrum for Air Mass 1.5
wt%	Weight Percent
	C

AACVD	Aerosol Assisted Chemical Vapor Deposition
AFM	Atomic Force Microscopy
APCVD	Atmospheric Pressure Chemical Vapor Deposition
AR	Anti-Reflective
CVD	Chemical Vapor Deposition
DSC	Differential Scanning Calorimetry
EACVD	Electron-Field Assisted Chemical Vapor Deposition
EBE	Electron Beam Evaporation
EC	Electrochromic
EDX	Energy Dispersive X-Ray Spectroscopy
FESEM	Field Emission Scanning Electron Microscopy
FTIR	Fourier Transform Infrared Spectroscopy
FWHM	Full-Width at Half Maximum
GC	Gasochromic
GHG	Greenhouse Gases
HiPIMS	High Power Impulse Magnetron Sputtering
НТ	Hydrothermal Synthesis
НТР	High-Temperature Phase
HVAC	Heating, Ventilation and Air Conditioning
IR	Infrared
LFA	Laser Flash Analysis
LTP	Low-Temperature Phase
MIT	Metal-to-Insulator Transition
MS	Magnetron Sputtering
MST	Metal-To-Semiconductor Transition
NIR	Near-Infrared
PC	Photochromic
PLD	Pulsed Laser Deposition
PVD	Physical Vapor Deposition
TC	Thermochromic
TGA	Thermogravimetric Analyzer
ТМО	Transition-Metal Oxides
UV	Ultraviolet
XRD	X-Ray Diffraction

 \bigcirc

CHAPTER 1

INTRODUCTION

The aim of this chapter is to introduce the subject matter studied by this thesis. The sections are organized into the: background of the research; energy consumption in buildings; defining windows and smart windows; thermochromic material; performance evaluation of thermochromic windows; vanadium dioxide (VO₂); (1.7) VO₂ nanoparticles; problem statements and motivation; research objectives; scope of the study; and thesis structure.

1.1 Background of the Research

Global climate change is a worldwide phenomenon that impacts every living organism on Earth. Among its devastating effects include the increasing temperature around the globe, extreme heat waves, prolonged droughts, frequent wildfires, rising sea levels, intense tropical storms, and changing precipitation (Karl and Trenberth, 2003; Peng et al., 2011; Mendelsohn et al., 2012). Hence, this problem has attracted many scientists and researchers to put forward feasible answers to minimize its ill effects. Emphasis is particularly placed on energy saving methods to reduce fossil fuel need and consequently minimize greenhouse gases (GHG) emissions, mainly carbon dioxide (CO₂) which is one of the main culprits of the problem (Attari et al., 2010; Davis and Caldeira, 2010; Thomas et al., 2004).

Accordingly, energy conservation can be achieved by improving one or more of its components, namely: generation; storage; distribution; and efficiency. In the area of generation, renewable resources have been investigated as a potential replacement to nonrenewable fossil fuel source (Edenhofer, 2011; Ellabban et al., 2014). Likewise, researches are being done on the fabrication of new batteries and production of smart power systems for their potential as energy-conserving storage and distribution systems, respectively (Li et al., 2017; Garcia et al., 2018). Meanwhile, the fourth factor entails improving how energy is used and finding ways to maximize its utility. In this context, efficiency implies minimizing energy usage while maximizing its output (Baatz et al., 2018). Hence, enhancement of energy efficiency can be achieved in a number of ways.

1.2 Energy Consumption in Buildings

One of the areas where efficiency can be greatly improved is in built environments or buildings, since they use up significant amount of energy. In fact, buildings consume about 30-40% of the world's primary energy mainly for heating, ventilation and air conditioning (HVAC), lighting, and appliance usage (Granqvist et al., 2009). For instance, China and the USA – the world's first and second largest energy consumers–expend about 27.4% and 41% of energy in buildings, respectively (Wei and He, 2017; Kamalisarvestani et al., 2013). Also, in Europe, a continent consisting of highly

industrialized countries, built environment accounted for 40 to 45% of their energy use (Agostino et al., 2017). Indeed, the high energy demands in buildings resulted in increased GHG emissions. As a matter of fact, in 2010, as much as 40%, 36% and 18% of CO_2 emissions in the USA, Europe, and China, respectively, were due to energy use in buildings (Kamalisarvestani et al., 2013; Nejat et al. 2015).

In addition, with the increasing global average temperature, energy demand for air conditioning is growing rapidly primarily to fulfill people's needs for thermal comfort. In the European Union, an increase of 17% in their energy usage per year is observed (Granqvist et al., 2009). An even more concerning scenario can be observed in hot humid countries, where an upsurge in air conditioning usage is inevitable. In fact, due to increased necessity, some countries spend one-third to one-half of their produced electricity for their energy needs in buildings (Yusoff and Mohamed, 2017). In Malaysia, for instance, the building sector uses up to 48% of the country's generated electricity (Hassan et al., 2014). Considering that 94% of Malaysia's energy source is fossil fuel, the energy consumption in buildings translate into as much as 40% of the country's GHG emissions (Zaid et al., 2015). Henceforth, considerable attention is needed to put forward energy saving strategies to lessen the energy demands in buildings and ultimately reduce CO_2 emissions.

Energy saving methods in buildings can be categorized into two: active and passive. Active strategies involve upgrading the qualities and increasing the energy efficiencies of HVAC and lighting systems (Li et al., 2017). On the other hand, the passive approach includes treating and enhancing building envelopes including walls, roofs, and windows (Seyfouri and Binions, 2017). In fact, substantial studies have been done on improving the properties of windows to reduce energy losses.

1.3 Defining Windows and Smart Windows

Windows or glazed areas are fundamental elements in buildings as they play dual roles of being a barrier as well as a connection between the indoors and outdoors. As a barrier, they provide us protection from the outside world; while, as a connection, they endow us visually with the beauty of the surrounding environment (Li et al., 2011). Moreover, they have become a very important feature in architectural design for practical and aesthetic reasons. Specifically, large areas of glazed windows give good indoor-outdoor contact as well as comfort (Saeli et al., 2013).

However, windows are also labeled as among the most inefficient components of buildings. Inasmuch as they allow heat to go in or out, more energy is required for the use of space cooling or heating to balance the increase or decrease in temperature (Kamalisarvestani et al. 2013). For instance, during summer or hot days, heat can easily pass through windows resulting in heat gain and temperature increase inside buildings. This prompts the use of air conditioning to give indoor comfort. Conventionally, curtains or blinds are implemented to block the intense heat from the sun. As a consequence, this necessitates the use of lighting which leads to more energy usage.

Indeed, a promising avenue to reduce energy expenditure and losses in buildings is by fabricating energy-efficient windows with the ability to control the throughput of transmitted light, heat and solar energy, that is, developing smart windows. This may be done by coating spectrally selective materials on the surface of windows (Gao et al., 2012). By blocking unwanted and/or regulating solar radiation, HVAC and lighting use can be minimized, which in turn, translates into reductions in energy use and GHG emissions.

Smart windows can be achieved through chromogenic technologies, that is, materials whose optical characteristics can vary depending on an external stimulus (Granqvist et al., 2013). The most common type of chromogenic devices includes: electrochromic (EC); thermochromic (TC); photochromic (PC); and gasochromic (GC), which can be stimulated by applied electric field, change in temperature, irradiation of light (photons), and exposure to gas, respectively. Figure 1.1 shows a comparison between chromogenic-based fenestrations and conventional window glazing in terms of their energy requirements for cooling and electric lighting (Kamalisarvestani et al., 2013).

Electric lighting energy (kWh/m²)

Figure 1.1: Glazing Materials and Their Electric Lighting Energy and Cooling Energy (Granqvist et al., 2013)

Accordingly, employing chromogenic materials lowers the cooling energy need as well as minimizes electric lighting. In addition, comparing the chromogenic materials would show that electrochromic (EC) and thermochromic (TC) provide the lowest cooling energy while EC requires lesser electric lighting than TC. However, electrochromic glazing is constrained by wiring and switching requirements as it depends on the application of electric field (Granqvist et al., 2009). Meanwhile, thermochromic has the advantage of regulating its optical property automatically based on temperature change alone (Gao et al., 2012). Moreover, TC window has uncomplicated structure and involve facile preparation, which makes it a promising material for smart window application (Seyfouri and Binions, 2017).

1.4 Thermochromic Material

Etymologically, the name thermochromic is derived from the Greek words' *thermos* and *chroma* which mean hot and color, respectively (Merriam-Webster, 2019). As the name suggests, thermochromic or TC materials are substances that change color due to variations in temperature. Examples of such are liquid crystals, leuco dyes and almost all inorganic compounds (Kiri et al., 2010). These materials can gradually alter color over a range of temperatures (continuous thermochromism) or abruptly change its structural phase at a certain critical temperature (discontinuous thermochromism) (Mott, 1974). Furthermore, the phase change can be reversible or irreversible, and be first- or second-order in nature (Mott, 1974).

The mechanism of how a TC material functions is illustrated in Figure 1.2. As seen in the diagram, the material has two different states relative to a phase transition temperature, τ_c . At the cold state or below transition temperature, it exists as a semiconductor with a monoclinic structure.

Figure 1.2: Schematic of Thermochromic Behavior (Saeli et al., 2013)

While at the hot state, above τ_c , it is in a metallic state with a rutile structure (Saeli et al., 2013). The process whereby this material changes phase is termed metal-to-semiconductor transition (MST) (Morin, 1959; Goodenough, 1971). As the material undergoes a shift in phase, its optical properties also change. Specifically, when the material is monoclinic, it is transparent to infrared (IR) radiation; whereas, when it is in rutile form, it becomes reflective of IR radiation (Goodenough, 1971). However, the transmission of visible radiation does not change in both states. Hence, TC material has great potential in the fabrication of smart windows.

Among the inorganic compounds that exhibit thermochromism are transition-metal oxides (TMO). In 1959, Morin discovered a certain behavior on the lower oxides of titanium and vanadium. By thoroughly studying the electrical properties of these oxides in varying temperatures, he found that these materials undergo transitions from a semiconducting state at low temperatures to a metallic state upon reaching a critical temperature (Morin, 1959). A number of studies were then carried out as a follow-

through to Morin's findings (Kachi et al., 1973). Also, only TiO as well as V_3O_5 and V_7O_{13} in the family of titanium and vanadium oxides do not shift in phase as they are metallic throughout (Morin, 1959). Interestingly, the τ_c of vanadium dioxide (VO₂), which is ~341 K (68 °C), is closest to room temperature compared with other compounds (Goodenough, 1971). Hence, VO₂ is widely considered for near room-temperature applications such as in thermal sensors, optical and electrical switching devices, optical filters, and smart windows (Chen et al., 2011, Liang et al., 2016, Mjejri et al., 2014; Velichko et al., 2015).

1.5 Performance Evaluation of Thermochromic Windows

The performance of TC windows in buildings is characterized by their ability to let visible light pass through and block IR and ultraviolet (UV) radiations. By letting visible rays in, natural day-lighting and better see-through property can be achieved. Meanwhile, blocking IR and UV rays, which carry majority of solar energy and heat, would minimize solar heat gain and reduce heat loss inside buildings (Kamalisarvestani et al., 2013). Hence, TC windows can be evaluated using the following parameters: visible or luminous transmittance (T_{lum}), luminous reflectance, (R_{lum}), near-infrared (NIR) radiation transmittance (T_{NIR}), NIR switching efficiency (η_T), solar transmittance (T_{sol}) and solar modulation ability (ΔT_{sol}) (Zhao et al., 2014). Specifically, T_{lum} is defined as the percentage of visible radiation that propagates through a material; whereas, R_{lum} is the percentage of light that bounces off. Similarly, T_{NIR} and T_{sol} are the amounts of radiations that pass through a material in the NIR and solar range, respectively. Hence, it is necessary to employ a spectrophotometer that is capable of measuring transmitted and reflected radiations in the UV, visible, and NIR regions. Figure 1.3 shows a typical spectrum of transmittance and reflectance of a VO₂ sample.

Figure 1.3: Transmittance and Reflectance of a VO₂ Sample (Saeli et al., 2010)

To deduce this seemingly complex data, the optical properties can be expressed numerically as follows (Zhao et al., 2014):

$$T_{lum} = \frac{\int \varphi_{lum}(\lambda) T(\lambda) d\lambda}{\int \varphi_{lum}(\lambda) d\lambda}$$
(1.1)

$$R_{lum} = \frac{\int \varphi_{lum}(\lambda)R(\lambda)d\lambda}{\int \varphi_{lum}(\lambda)d\lambda}$$
(1.2)

$$T_{NIR} = \frac{\int \varphi_{sol}(\lambda) T(\lambda) d\lambda}{\int \varphi_{sol}(\lambda) d\lambda}$$
(1.3)

$$T_{sol} = \frac{\int \varphi_{sol}(\lambda) T(\lambda) d\lambda}{\int \varphi_{sol}(\lambda) d\lambda}$$
(1.4)

where φ_{lum} is the standard luminous efficiency function for the photopic vision of human eyes (Sharpe et al., 2005), φ_{sol} is the solar irradiance spectrum for air mass 1.5, which was taken from the American Society for Testing and Materials (ASTM, 2013), T is transmittance, R is reflectance, and λ is wavelength, which ranges from 390 to 780 nm for T_{lum} and R_{lum}, from 780 to 2500 nm for T_{NIR}, and from 280 to 2500 nm for T_{sol}. Indeed, these wavelength-integrated properties provide an easier way to characterize and describe smart window materials. Furthermore, η_T and ΔT_{sol} are derived from equations (1.3) and (1.4). Mathematically, η_T and ΔT_{sol} can be expressed as follows,

$$\eta_T = \Delta T_{\lambda_{max}} = T_{\lambda_{max}, cold} - T_{\lambda_{max}, hot}$$
(1.5)

$$\Delta T_{sol} = T_{sol,cold} - T_{sol,hot} \tag{1.6}$$

where, λ_{max} is the maximum wavelength in the NIR region, and the subscripts' *hot* and *cold* denote that the values are respectively taken above and below τ_c . As equation (1.5) suggests, η_T describes the maximum change in transmittance before and after τ_c , which is usually taken at the wavelength of 2500 nm in the NIR region. Meanwhile, ΔT_{sol} refers to the overall switching efficiency of the material, that is, the difference in transmitted solar radiation above and below the critical temperature. Indeed, η_T and ΔT_{sol} are the benchmarks in determining how energy efficient a material is.

1.6 Vanadium Dioxide

VO₂ is a layered binary compound that exists in many polymorphic phases, namely, VO₂ (A), VO₂ (B), VO₂ (C), VO₂ (D), VO₂ (M) and VO₂ (R) (Leroux et al., 1998; Cao et al., 2008; Liu et al., 2013). Of these phases, only VO₂ (M) and VO₂ (R) are thermodynamically stable and exhibit thermochromic ability (Dai et al., 2011). Accordingly, monoclinic VO₂ (M) undergoes a first-order reversible phase transition to rutile tetragonal VO₂ (R) at 68 °C (Goodenough, 1971). More significantly, this shift in phase is accompanied by changes in the optical properties of the material (Alie et al., 2014; Seyfouri et al., 2017; Venta et al., 2013), that is, below τ_c , it is IR transparent; whereas, above τ_c , it becomes IR reflectant. Figure 1.4 shows the molecular crystalline structure and band diagram of VO₂ in both phases.

Figure 1.4: Crystallographic Structures with Band Diagrams of Monoclinic and Rutile States of VO₂ (Wegkamp and Stahler, 2015)

As seen, its shift in phase is due to the molecular rearrangement from monoclinic to rutile structure. At a temperature below τ_c , vanadium ions dimerize which causes localization of the outer-shell vanadium electrons as seen in its band structure. When the temperature rises above τ_c , a rapid surge in electrical conductivity occurs and the lattice relaxes to a rutile structure.

1.7 VO₂ Nanoparticles

During the early stages of its discovery, VO_2 was synthesized in bulk form via chemical transport reaction (Kachi et al., 1973). However, further studies on bulk VO_2 showed that it breaks after a few cycles of phase change due to structural distortions (Gao et al., 2012). Due to this limitation, researches have shifted to the syntheses of thin films and nanoparticles, which have been found to have greater endurance towards structural deformity. In fact, these forms of VO_2 can withstand distortions for more than 10^8 cycles of phase transition (Guzman et al., 1996; Livage, 1996; Beteille et al., 1998), which make them more suitable for a smart glazing system.

Furthermore, due to the limitations of thin-film VO₂, particularly its low T_{lum} , weak ΔT_{sol} , undesirable film color, and long processing time, a significant number of studies have focused on the synthesis of VO₂ in nanostructure form (Zhang et al., 2012). This is mainly acquired by using hydrothermal synthesis (HT), wherein an enclosed autoclave containing water-based solution is heated at a relatively low temperature inside an electric oven for a certain duration of time (Ji et al., 2011). Moreover, experimental conditions in the hydrothermal method result in unique structures and morphology. The various nanostructures of VO₂ are pictured in Figure 1.5. Hence, this method affords

easier procedural steps and structure control at a lower temperature compared to solidstate reactions that rely on high temperature processing (Alie et al., 2014). This is important in VO₂ synthesis because empirical results showed that the morphology and structure of VO₂ can directly affect its thermochromic and functional properties (Son et al., 2010; Dai et al., 2011; Li et al., 2018).

Figure 1.5: Different Nanostructures of VO₂ in 2D and 3D

Moreover, VO₂ nanopowder can be prepared using different precursors such as organic alkoxides (e.g. vanadium triisoproxy oxide, VO(C₃H₇O)₃), inorganic salts (e.g. divanadium pentoxide or V₂O₅), and vanadium oxyacetylacetone (VO(AcAc)₂). Of these substances, V₂O₅ stands out for practical considerations because it is inexpensive and easily obtainable (Dachuan et al., 1996). Moreover, comparative studies show that the use of V₂O₅ resulted in better thermochromic behavior (Hanlon et al., 2002). Thus, many researches have utilized this compound as a VO₂ precursor. To reduce the oxidation state of V₂O₅ from 5+ to the preferred 4+ (the oxidation state of VO₂), reduction agent, such as oxalic acid (H₂C₂O₄), is needed (Xu et al., 2014).

1.8 Problem Statements and Motivation

The potential of VO₂ as a smart window material is so promising that many novel techniques have emerged over the years for its synthesis (Nag and Haglund, 2008; Wang et al., 2016). But while the technologies involved in preparing VO₂ have developed in recent years, its real-world application is still hampered by some limitations, particularly in its fabrication as well as its intrinsic properties.

Regarding the production of VO₂, the set of technologies used in its synthesis still has some issues that need resolutions. For instance, while physical vapor deposition (PVD) techniques, such as pulsed laser deposition (PLD) and sputtering system, provide better control of synthetic conditions and high purity samples, they are constrained by high cost, long processing time, and poor growth rate (Maaza et al., 2000; Chae et al., 2003; Kiri et al., 2010). Coupled with these is its inability for large scale application (Nag and Haglund, 2008). Meanwhile, though the chemical vapor deposition (CVD) processes offer commercial scalability and fast growth rate, they also require non-cost-effective equipment and high energy need (Osmolovskaya et al., 2014). On the other hand, solution-based methods such as sol-gel technique and hydrothermal synthesis (HT) have been found to be great alternative routes in the preparation of VO_2 because they are cost-effective, easy to use, require low processing temperature and capable of large area applications (Velichko et al., 2014). Nevertheless, these methods suffer from low precision control of process parameters and lower purity (Kamalisarvestani et al., 2013). Hence, modifications are necessary to enhance and take away the shortcomings of the aforesaid techniques.

For practical reasons, the drawbacks of solution-based methods can be remedied *easily* compared to the PVDs and CVDs. This can be done by meticulously finding the optimum synthetic conditions in the growth of high purity VO₂. Hence, several studies have dealt with the many experimental parameters involved in the synthesis of VO₂ using solution-based processes. For instance, in the hydrothermal preparation of VO₂, synthetic conditions such as the type of V precursor, molar ratio of precursors, fill ratio, operating temperature, duration of process, and annealing conditions were found to affect the purity as well as the crystal structure and morphology of the resulting VO₂ (Wang et al., 2016).

In the work of Alie et al. (2014), the effects of molar ratio (ratio of V_2O_5 and $H_2C_2O_4$), operating temperature, and precursor concentration were investigated. They found that lower molar ratio (1:2), synthesis temperature (160 to 240 °C), and concentration (2.5 mg/mL) resulted in the non-thermochromic VO₂ (B). While at a temperature of 260 °C, molar ratio of 1:3, and concentration of 12.5 mg/mL, they were able to successfully synthesize the thermochromic VO₂ (M), albeit with some impurities. On the other hand, Popuri et al. (2013) described the effect of varying molar ratios when they used the ratios of 1:1.5 and 1:4.5 at 250 °C in 24 h, which resulted to VO₂ (A) and VO₂ (M), respectively. However, the hysteresis width – a measure of the strength of a material's thermochromic behavior – of their samples was high, which implies a weak transition performance.

Meanwhile, another thermodynamic variable, pressure, which plays a vital role during the hydrothermal treatment, is scarcely studied. This is mainly due to the difficulty of configuring an in-situ pressure gauge during the process. Nonetheless, a study conducted by Ji et al. (2011) showed a means to do away with this constraint by using *synthesis pressure* or fill ratio (*f*), that is, the ratio between the volume of the solution and the volume of the autoclave used. Indeed, they have demonstrated that there is direct proportionality between fill ratio and pressure, in that, increasing the volume of a solution relative to the volume of the autoclave causes an elevation in pressure. This is evident from their results, wherein, at a lower fill ratio (f = 0.4), with a synthesis temperature of 270 °C and holding time of 24 h, they obtained the metastable VO₂ (A); whereas, when *f* was increased to 0.6, they acquired the thermodynamically stable VO₂ (M).

While the works mentioned above used temperatures ranging from 250 to 270 °C to obtain the thermochromic VO₂ (M), other studies on hydrothermal preparation of VO₂ involved lower temperatures (160 - 230 °C), which usually resulted in the metastable

 VO_2 (B) or VO_2 (A) (Valmalette and Gavarri, 1998; Zhang et al., 2006; Xu et al., 2014; Zhang et al., 2016). However, these phases can be converted to VO_2 (M) via heat treatment under vacuum or Ar atmosphere. Empirical studies have shown that the annealing temperature and time highly influence the crystallinity, morphology, and grain size distribution of VO_2 (Qi and Niu, 2012; Zhang et al., 2012; Popuri et al., 2013). Furthermore, the acquired VO_2 (M) has higher purity compared to one-step hydrothermal processed samples (Alie et al., 2014; Li et al., 2017).

Nonetheless, there are still some gaps in the aforementioned researches. For instance, the work of Ji et al. (2011) was limited to f = 0.4, 0.5, 0.6. Prior to this study, different groups that synthesized VO₂ used differing f such as 0.32 (Alie et al., 2014), 0.33 (Zhang et al., 2012), 0.4 (Xu et al., 2014), 0.7 (Zhang et al., 2016), and 0.72 (Popuri et al., 2014). Also, in the work of Alie et al. (2014), they only used molar concentrations of 2.5 and 12.5 mg/mL and molar ratios of 1:1, 1:3 and 1:6; while, the work of Popuri et al., employed molar ratios of 1:1.5 and 1:4.5 (2013). As such, the first part of this thesis dealt with expanding the synthetic conditions in the hydrothermal synthesis of VO₂ to better understand their effects and relationships. In particular, parameters such as synthesis temperature, fill ratio, molar ratio, precursor concentration, and process duration were examined to determine the best results. Moreover, because the experiments were carried out at a lower synthesis temperature of 180 °C, due primarily to apparatus limitations, annealing was carried out. As a follow-through to previous works, nitrogen gas (N₂) was employed. More importantly, the evolution of VO₂ (B) to VO₂ (M) was analyzed and the annealing conditions were examined to get the optimal results.

But while high purity VO₂ can be successfully synthesized via the hydrothermal method at carefully chosen experimental parameters, its intrinsic properties still present three major challenges (Li et al., 2010). Firstly, the τ_c of VO₂, which is ~68 °C, is too high for usage in buildings. Ideally, VO₂-based windows should reflect heat-carrying IR rays at room temperature (~25 °C) to achieve people's thermal comfort. Secondly, it suffers from low visible transmittance, that is, its T_{lum} of 40% is quite below the acceptable value of 65% (Saeli et al., 2013). Thirdly, its solar modulation ability (Δ T_{sol}) is very weak at less than 10% (Li et al., 2010). For windows to be considered energy efficient, the required Δ T_{sol} must be 15% or more (Wang et al., 2016).

An effective way to lower the phase transition temperature of VO₂ is doping. Accordingly, the atomic radii of a dopant must be larger than the V⁴⁺ ion to create V⁵⁺ defects in the lattice resulting to a reduction of τ_c (Kiri et al., 2011). This is evident in the use of tungsten (W) and molybdenum (Mo) which can reduce the τ_c of VO₂ to as low as 23 °C and 24 °C (Hanlon et al., 2013), respectively. However, these dopants do not have a significant effect on the material's T_{lum} and ΔT_{sol} (Wang et al., 2016)

Among the solutions being done to improve the optical properties of VO₂ is layering with anti-reflective (AR) compounds. Systems such as two-layer VO₂-SiO₂ (Zhao et al., 2014), three-layer TiO₂/VO₂/TiO₂ with self-cleaning ability (Zheng et al., 2015), and five-layer TiO₂/VO₂/TiO₂/VO₂/TiO₂ (Mlyuka et al., 2009) have been reported with improved visible transparency and solar modulation characteristic. Nonetheless, because

there is a need to stack multiple layers of films, this process can be time and energy consuming.

A facile and innovative way to improve T_{lum} and ΔT_{sol} is by using a VO₂ composite coating (Li et al. 2010); whereby, VO₂ nanoparticles are embedded onto a substrate with a polymeric host matrix (Alfred-Duplan et al. 1994 and Valmalette and Gavarri, 1994). Polymers such as polyethylene (PE), polyurethane (PU), polyvinylphenol, and polyvinyl alcohol (PVA) have been used in previous researches (Alfred-Duplan et al., 1994; Valmalette and Gavarri, 1994; Dai et al., 2013; Madida et al., 2014).

Moreover, simulation studies by Li et al. (2010) showed that T_{lum} and ΔT_{sol} depend on the shape and size of the nanoparticles. Accordingly, T_{lum} of 75% and 65 % at the semiconducting and metallic states, respectively, and ΔT_{sol} as high as 16.6% were calculated for spherical nanostructures. Indeed, these values were higher compared to thin film samples.

Hence, the second part of this thesis dealt with addressing the three aforementioned challenges by doping VO_2 with W, as well as preparing VO_2 -based nanocomposite film that was derived from hydrothermally prepared VO_2 . In addition, the use polyvinylpyrrolidone or povidone (PVP) as polymeric host matrix was examined. Furthermore, phase, morphology, topography, and optical property analyses were carried out to investigate the properties of the acquired composite samples.

1.9 Research Objectives

The preceding sections demonstrated the need to further investigate the various factors that affect the synthesis of highly pure nanostructured VO_2 with excellent thermochromic behaviors. It is also essential to find a means to enhance the attributes of VO_2 for practical applications. Therefore, this research work sought to achieve the following objectives:

I. Study the effects of fill ratio, precursors ratio, molar concentration, synthesis temperature and holding time on the structural and morphological properties of hydrothermally prepared VO₂.

Hypothesis 1a: Increase in temperature will result in higher peak intensities **Hypothesis 1b:** Increase in fill ratio will lead to increase in peak intensities and particles with lesser grain size

Hypothesis 1c: Increasing V precursor/reductant molar ratio will result in more nano-sized particles

Hypothesis 1d: Increase in treatment time will result in more sharp peaks and larger grain size

II. Examine the conversion of VO₂ polymorphs from B-phase to M-phase via annealing under nitrogen atmosphere, and to examine the annealed sample's structural, morphological, thermochromic, and optical properties.

Hypothesis 2a: Annealing under N₂ atmosphere will result in the conversion of VO₂ from B-phase to highly pure M-phase with large grain size **Hypothesis 2b:** Decrease in grain size will result in decrease in phase transition temperature **Hypothesis 2c:** High purity will result in enhanced hysteresis and enthalpy

- Investigate the influence of W-doping on the structural, thermochromic, thermophysical, and optical properties of VO₂.
 Hypothesis 3a: Doping with tungsten will result in an increase in lattice strain Hypothesis 3b: Increase in doping concentration will lead to a decrease in phase transition temperature
- IV. Synthesize VO₂-PVP composite film and analyze its structure, topography, and optical properties.
 Hypothesis 4: Dispersed VO₂ nanoparticles on the surface of a glass substrate will increase its luminous and solar transmittances

1.10 Scope of the Study

In lieu of the aforementioned objectives, this research work encompassed the following:

- I. Hydrothermal treatment with differing synthetic conditions were carried out using V_2O_5 and oxalic acid as V precursor and reducing agent, respectively. In particular, experimental runs with differing fill ratio, molar ratio, molar concentration, process temperature and duration were conducted to find a set of parameters that should result in highly pure and well crystallined VO_2 (B) nanoparticles.
- II. Annealing runs with varying temperatures and times were done to evaluate their effects on the formation of VO_2 (M) and find the optimal conditions on the synthesis of highly pure thermochromic VO_2 . Further, analysis of the phase structure and morphology as well as the resulting thermochromic and optical properties were conducted to find correlations.
- III. In the intent of improving the attributes of VO_2 , analysis on the enhancements of doping VO_2 with W is performed. Subsequently, influences of the dopant on the phase, structure, thermochromic, optical, and thermophysical properties of VO_2 were explored.
- IV. In an effort to advance the practical application of VO_2 as smart window material, VO_2 -based composite coating was prepared and evaluated on its resulting attributes.

1.11 Thesis Structure

This thesis is comprised of six themed chapters. The first chapter gives an introduction of the research work including a brief background, motivation, and objectives of the study. In addition, basic terminologies and related matters such as smart windows, thermochromism, and performance evaluation of thermochromic materials are presented. Chapter 2 discusses the theoretical foundations and conceptual models relevant to the study. The third chapter presents a review and integration of empirical information on the research variables investigated by this study. Chapter 4 describes the methodology employed in the research, including sample preparations and characterizations. The findings derived from the experimental runs carried out in this work is discussed in Chapter 5 under four subsections, namely: (a) results of the hydrothermal synthesis of VO₂ at different experimental parameters; (b) elucidation of the effects of annealing conditions to the conversion of VO₂ (B) to VO₂ (M) under N₂ flow; (c) explanation of the influence of tungsten as dopant on the properties of VO₂; and (d) analysis of the prepared VO₂-PVP nanocomposite film. Finally, the sixth chapter reflects on the conclusions and recommendations for future research.

REFERENCES

- Abe, S. Exciton versus interband absorption in Peierls insulators. J. Phys. Soc. Jap. 1989, 58, 62-65.
- Agostino, D. D.; Zangheri, P.; Castellazzi, L. Towards nearly zero energy buildings (NZEBs) in Europe: a focus on retrofit in non-residential buildings. *Energies*. 2017, 10, 117.
- Alfred-Duplan, C.; Musso, J.; Gavarri, J.-R.; Cesari, C. Variable electrical properties in composites: Application to vanadium dioxide pigments in a polyethylene host. *J. Solid State. Chem.* **1994**, *110*, 6–14.
- Alie, D.; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S. E.; Dillon, A. C.; Ban, C. Direct synthesis of thermochromic VO₂ through hydrothermal reaction. *J. Solid State Chem.* **2014**, *212*, 237–241.
- American Society for Testing and Materials. Reference Solar Spectral Irradiance: Air Mass 1.5.<u>https://rredc.nrel.gov/solar//spectra/am1.5/?fbclid=IwAR1t</u> 0ioiyEuhpJYybEYdR15ojd173mC_5wCThXzQcz1iRPdA3fah9w5TUU. (accessed on January 22, 2019).
- Attari, S. Z.; Dekay, M. L.; Davidson, C. I.; Bruine, W.; Bruin, D. Public perceptions of energy consumption and savings. *PNAS Proceedings of the National Academy* of Sciences of the United States of America. 2010, 107, 16054-16059.
- Australian Glass and Glazing Association (AGGA). technical fact sheet solar spectrum. <u>http://www.agga.org.au/docs/dc611fc4-e9b4-4d91-</u> <u>bee2b710a0b3a3ca/AGGA%20Technical%20Fact%20Sheet%20-</u> <u>%20Solar%20Spectrum% 20-%20February%202012.pdf</u> (accessed Jan 25, 2019).
- Baatz, B.; Relf, G.; Nowak, S. The role of energy efficiency in a distributed energy future. *Electr. J.* **2018**, *31*, 13-16.
- Barlow, D. J.; Thornton, J. M. Ion-pairs in proteins. J. Mol. Biol. 1983, 168, 867-885.
- Batista, C.; Ribeiro, R.; Carneiro, J.; Teixeira, V. DC sputtered W-doped VO₂ thermochromic thin films for smart windows with active solar control. J Nanosci. Nanotechno. 2009, 9, 4220-4226.
- Beteille, F.; Mazerolles, L.; Livage, J. microstructure and metal-insulating transition of VO₂ thin films. *Mater. Res. Bull.* **1999**, *34*, 2177-2184.
- Beydaghyan, G.; Basque, V.; Ashrit, P. V. High contrast thermochromic switching in vanadium dioxide (VO₂) thin films deposited on indium tin oxide substrates. *Thin Solid Films.* **2012**, *522*, 204–207.
- Blackman, C. S.; Piccirillo, C.; Binions, R.; Parkin, I. P. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing. *Thin Solid Films*. 2009, 517 (16) 4565 – 4570.
- Botto, I. L.; Vassallo, M. B.; Baran, E. J.; Minelli, G. IR Spectra of VO₂ and V₂O₃. *Mater. Chem. Phys.* **1997**, *50*, 267–270.

- Brown, M. E. Principles and Practice. In *Handbook of Thermal Analysis and Calorimetry*; Elsevier: Amsterdam, 1998.
- Burkhardt, W.; Christmann, T.; Franke, S.; Kriegseis, W.; Meister, D.; Meyer, B. K.; Niessner, W.; Schalch, D.; Scharmann, A. Tungsten and fluorine co-doping of VO₂ films. *Thin Solid Films*. **2002**, *402*, 226–231.
- Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing; Noyes Publications: New Jersey, 2001.
- Cao, X.; Wang, N.; Law, J. Y.; Loo, S. C. J.; Magdassi, S.; Long, Y. Nanoporous thermochromic VO₂ (M) thin films: Controlled porosity, largely enhanced luminous transmittance and solar modulating ability. *Langmuir* 2014, 30, 1710– 1715. https://doi.org/10.1021/la404666n.
- Chae, B. G.; Youn, D. H.; Kim, H. T.; Maeng, S.; Kang, K. Y. Fabrication and electrical properties of pure VO₂ phase films. *J. Korean Phys. Soc.* **2003**, *44*, 1–5.
- Chen, L.; Huang, C.; Xu, G.; Miao, L.; Shi, J.; Zhou, J.; Xiao, X. Synthesis of thermochromic W-doped VO₂ (M/R) nanopowders by a simple solution-based process. *J. Nanomater.* 2012, 2012.
- Chen, S.; Dai, L.; Liu, J.; Gao, Y.; Liu, X.; Chen, Z.; Zhou, J.; Cao, C.; Han, P.; Luo, H.; et al. The visible transmittance and solar modulation ability of vo₂ flexible foils simultaneously improved by Ti doping: An optimization and first principle study. *Phys. Chem. Chem. Phys.* **2013**, *15*, 17537–17543.
- Chen, Z.; Gao, Y.; Kang, L.; Du, J.; Zhang, Z. VO₂-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties. *Sol. Energy Mater. Sol. Cells.* **2011**, 95 (9), 2677–2684.
- Chen, Z.; Gao, Y.; Kang, L.; Cao, C.; Chen, S.; Luo, H. Fine crystalline VO₂ nanoparticles: Synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO₂ nanocomposite foil. J. Mater. Chem. A 2014, 2, 2718–2727. <u>https://doi.org/10.1039/c3ta14612j</u>.
- Chen, K.; Liu, N.; Zhang, M.; Wang, D. Oxidative desulfurization of dibenzothiophene over monoclinic VO₂ phase-transition catalysts. *Appl. Catal. B Environ.* 2017, 212, 32–40.
- Chroma. (2019) In *Merriam-Webster*. <u>https://www.merriam-webster.com/dictionary/</u> chroma (accessed Jan 10, 2019).
- Crafts, P. The Role of Solubility Modeling and Crystallization in the Design of Active Pharmaceutical Ingredients. In *Chemical Product Design: Toward a Perspective through Case Studies*; Ng, K. M., Gani, R., Dan-Johansen, K., Eds.; Elsevier B. V., **2007**; pp 23–85.
- Cui, H.; Teixeira, V.; Meng, L.; Wang, R. Thermochromic properties of vanadium oxide films prepared by dc reactive magnetron sputtering. *Thin Solid Films*. 2008, 516, 1484–1488.
- Dachuan, Y.; Niankan, X.; Jingyu, Z.; Xiulin, Z. Vanadium dioxide films with good electrical switching property. J. Phys. D: Appl. Phys. 1996, 29, 1051-1057.

- Dai, L.; Cao, C.; Gao, Y.; Luo, H. Synthesis and phase transition behavior of undoped VO₂ with a strong nano-size effect. *Sol. Energy Mater. Sol. Cells.* 2011, 95 (2), 712–715.
- Dai, L.; Chen, S.; Liu, J.; Gao, Y.; Zhou, J.; Chen, Z.; Cao, C.; Luo, H.; Kanehira, M. F-Doped VO₂ nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. *Phys. Chem. Chem. Phys.* 2013, 15 (28), 11723–11729.
- Davis, S. J.; Caldeira, K. Consumption-based accounting of CO₂ emissions. *PNAS*. **2010**, *107* (12), 5687-5692.
- De Oliveira, R. R. L. De; Albuquerque, D. A. C.; Cruz, T. G. S. Measurement of the nanoscale roughness by atomic force microscopy: Basic principles and applications. INTECH Open Access Publisher, 2012.
- Du, J.; Gao, Y.; Luo, H.; Kang, L.; Zhang, Z. Significant changes in phase-transition hysteresis for Ti-doped VO₂ films prepared by polymer-assisted deposition. *Sol. Energy Mater. Sol. Cells.* **2011**, *95* (2), 469–475.
- Dumont, M.; Borbely, A.; Kostka, A.; Sander, P. M.; Pyzalla, A. K. Characterization of Sauropod Bone Structure. In *Biology of the sauropod dinosaurs: Understanding* the life of giants (ed. N. Klein, K. Remes, C.T. Gee and P. M. Sander). Indiana University Press, Bloomington, 2009.
- Edenhofer, O. The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. *WHO and UNEP*. 2011.
- Ellabban, O.; Abu-rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. *Renew. Sustain. Energy Rev.* **2014**, *39*, 748–764.
- Energy Levels in Molecules. <u>http://www.wag.caltech.edu/home/jang /genchem</u> /infrared.htm. (accessed on December 22, 2018).
- Eyert, V. The metal-insulator transitions of VO₂: A band theoretical approach. Ann. der Phys. 2002, 11 (9), 650–702.
- Fox, M. Optical Properties of Solids; Oxford University Press: United Kingdom, 2001.
- Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nanoceramic VO₂ thermochromic smart glass: A review on progress in solution processing. *Nano Energy*. **2012**, *1* (2), 221–246.
- García, J.; Delgado, F. J.; Ortega, P. R.; Bermejo, S. Photovoltaic and Fuel Cells in Power Microelectromechanical Systems for Smart Energy Management; Elsevier Ltd, 2018. <u>https://doi.org/10.1016/B978-0-08-102055-5.00017-6</u>.
- Goodenough, J. B. The two components of the crystallographic transition in VO₂. J. Solid State Chem. **1971**, 3 (4), 490–500.
- Granqvist, C. G.; Lansåker, P. C.; Mlyuka, N. R.; Niklasson, G. A.; Avendaño, E. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. *Sol. Energy Mater Sol Cells.* **2009**, *93* (12), 2032–2039.
- Guzman, G.; Beteille, F.; Morineau, R.; Livage, J. Electrical switching in VO₂ sol-gel films. J. Mater. Chem. 1996, 6, 505–506.
- Hanlon, J. M. Synthesis and Characterisation of Direct and Indirect Hydrogen Storage Materials. Ph.D. Dissertation, University of Glasgow, Scotland, 2013.

- Hanlon, T. J.; Walker, R. E.; Coath, J. A.; Richardson, M. A. Comparison between vanadium dioxide coatings on glass produced by sputtering, alkoxide and aqueous sol – gel methods. *Thin Solid Films*. 2002, 405, 234–237.
- Hasegawa, S. Surface one-dimensional structures. Chinese J. Phys. 2015, 45, 385-411.
- Hassan, J. S.; Zin, R. M.; Majid, M. Z. A.; Balubaid, S.; Hainin, M. R. Building Energy Consumption in Malaysia: An Overview. *Jurnal Teknologi*. 2014. 70 (7), 33-38.
- Hou, J.; Wang, Z.; Ding, Z.; Zhang, Z.; Zhang, J. Facile synthesize VO₂ (M1) nanorods for a low-cost infrared photodetector application. *Sol. Energy Mater. Sol. Cells.* 2018, 176, 142–149.
- Hu, R.; Zhang, S.; Bu, J.; Lin, C.; Song, G. Progress in organic coatings recent progress in corrosion protection of magnesium alloys by organic coatings. *Prog. Org. Coatings.* 2012, *73* (2–3), 129–141.
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. *Rev. Mod. Phys.* **1998**, 70, 1039.
- Ji, S.; Zhang, F.; Jin, P. Preparation of high performance pure single phase VO₂ nanopowder by hydrothermally reducing the V₂O₅ gel. Sol. Energy Mater. Sol. Cells. 2011, 95 (12), 3520–3526.
- Ji, S.; Zhang, F.; Jin, P. Selective formation of VO₂ (A) or VO₂ (R) polymorph by controlling the hydrothermal pressure. J. Solid State Chem. 2011, 184 (8), 2285–2292.
- Ji, Y. Thermochromic VO₂-Based Materials for Smart Windows. Ph.D. Dissertation, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2018.
- Kachi, S.; Kosuge, K.; Okinaka, H. Metal-insulator transition in V_nO_{2n-1}. J. Solid State Chem. **1973**, 270, 258–270.
- Kam, K. C.; Cheetham, A. K. Thermochromic VO₂ nanorods and other vanadium oxides nanostructures. *Mater. Res. Bull.* **2006**, *41* (5), 1015–1021.
- Kamalisarvestani, M.; Mekhilef, S.; Saidur, R. Analyzing the Optical Performance of Intelligent Thin Films Applied to Architectural Glazing and Solar Collectors. In Sustainability in Energy and Buildings; Hakansson, A., Hojer, M., Howlett, R., Jain, L., Eds.; Springer Berlin Heidelberg, 2013; pp 813–826.
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F. S. Performance, materials and coating technologies of thermochromic thin films on smart windows. *Renew. Sustain. Energy Rev.* 2013, 26 (2013), 353–364.
- Kana kana, J. B.; Ndjaka, J. M.; Ateba, P. O.; Ngom, B. D. Thermochromic VO₂ thin films synthesized by rf-inverted cylindrical magnetron sputtering. *Applied Surface Science.* 2008, 254, 3959–3963.
- Karl, T. R.; Trenberth, K. E. Modern global climate change. Science. 2003, 302, 1719.
- Kiri, P.; Hyett, G.; Binions, R. Solid state thermochromic materials. *Adv. Mat. Lett.* **2010**, *1* (2), 86-105.
- Lecomte-Beckers, J.; Rassili, A.; Carton, M.; Robelet, M.; Koeune, R. Study of the Liquid Fraction and Thermophysical Properties of Semi-Solid Steels and Application to the Simulation of Inductive Heating for Thixoforming. In

Advanced Methods in Material Forming. Springer Berlin Heidelberg, 2007; pp 321-347.

- Leroux, C.; Nihoul, G.; Van Tendeloo, G. From VO₂ (B) to VO₂ (R): Theoretical structures of VO₂ polymorphs and *in situ* electron microscopy. *Phys. Rev. B.* **1998**, *57* (9), 5111–5121.
- Li, M.; Kong, F.; Zhang, Y.; Li, G. Hydrothermal synthesis of VO₂ (B) nanorings with inorganic V₂O₅ Sol. *Cryst. Eng. Comm.* 2011, 13 (7), 2204–2207.
- Li, M.; Magdassi, S.; Gao, Y.; Long, Y. Hydrothermal synthesis of vo₂ polymorphs: Advantages, challenges and prospects for the application of energy efficient smart windows. *Small.* **2017**, *1701147*, 1–25.
- Li, Q.; Liu, Y.; Guo, S.; Zhou, H. Solar energy storage in the rechargeable batteries. *Nano Today.* **2017**, *16*, 46-60.
- Li, S. Y.; Mlyuka, N. R.; Primetzhofer, D.; Hallén, A.; Possnert, G.; Niklasson, G. A.; Granqvist, C. G. Bandgap widening in thermochromic Mg-doped VO₂ thin films: Quantitative data based on optical absorption. *Appl. Phys. Lett.* 2013, 103 (16), 2–6. <u>https://doi.org/10.1063/1.4826444</u>.
- Li, S.; Niklasson, G. A.; Granqvist, C. G. Nanothermochromics : Calculations for VO₂ nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. *J. Appl. Phys.* 2010, 108, 063525.
- Li, X.; Yang, L.; Zhang, S.; Li, X.; Chen, J.; Huang, C. VO₂ (M) with narrow hysteresis width from a new metastable phase of crystallized VO₂ (M)•nH₂O. *Mater. Lett.* **2018**, *211*, 308-311.
- Li, Y.; Jiang, P.; Xiang, W.; Ran, F.; Cao, W. A novel inorganic precipitationpeptization method for VO₂ sol and VO₂ nanoparticles preparation: Synthesis, characterization and mechanism. J. Colloid Interf. Sci. 2016, 462, 42-47.
- Li, X.; Zhang, S.; Yang, L.; Li, X.; Chen, J.; Huang, C. A convenient way to reduce the hysteresis width of VO₂ (M) nanomaterials. *New J. Chem.* 2017, 41, 15260–15267. <u>https://doi.org/10.1039/c7nj02632c.</u>
- Liang, J.; Li, W.; Liu, J.; Hu, M. Room temperature CH₄ sensing properties of Au decorated VO₂ nanosheets. *Mater. Lett.* **2016**, *184*, 92–95.
- Liang, S.; Shi, Q.; Zhu, H.; Peng, B.; Huang, W. One-step hydrothermal synthesis of Wdoped VO₂ (M) nanorods with a tunable phase-transition temperature for infrared smart windows. ACS Omega. 2016, 1 (6), 1139–1148.
- Liang, X.; Gao, G.; Wu, G.; Yang, H. Synthesis and characterization of novel hierarchical starfish-like vanadium oxide and their electrochemical performance. *Electrochim. Acta.* 2016, 188, 625–635.
- Liu, P.; Zhu, K.; Gao, Y.; Wu, Q.; Liu, J.; Qiu, J.; Gu, Q.; Zheng, H. Ultra-long VO₂ (A) nanorods using the high-temperature mixing method under hydrothermal conditions: Synthesis, evolution and thermochromic properties. *Cryst. Eng. Comm.* 2013, 15, 2753-2760.
- Livage, J. Sol-gel chemistry and electrochemical properties of vanadium oxide gels. Solid State Ionics. 1996, 86-88, 935-942.
- Livage, J.; Bouhedja, L.; Bonhomme, C.; Chemically controlled condensation of polyoxovanadates. J. Sol-Gel Sci. Technol. 1998, 13, 65-70.

- Lopez, R.; Haynes, T. E.; Boatner, L. A.; Feldman, L. C.; Haglund, R. F. Size effects in the structural phase transition of VO₂ nanoparticles. *Phys. Rev. B* 2002, 65 (22), 224113. https://doi.org/10.1103/PhysRevB.65.224113.
- Loquai, S.; Baloukas, B.; Zabeida, O.; Klemberg-Sapieha, J. E.; Martinu, L. Hipims-Deposited thermochromic VO₂ films on polymeric substrates. *Sol. Energ. Mat. Sol. C.* 2016, 155, 60–69.
- Lv, T.; Pan, L.; Liu, X.; Lu, T.; Zhu, G.; Sun, Z. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloy. Compd. 2011, 509 (41), 10086–10091.
- Lv, W.; Huang, D.; Chen, Y.; Qiu, Q.; Luo, Z. Synthesis and characterization of Mo–W co-doped VO₂ (R) nano-powders by the microwave-assisted hydrothermal method. *Ceram. Int.* 2014, 40 (8), 12661–12668.
- Maaza, M.; Bouziane, K.; Maritz, J.; McLachlan, D. S.; Swanepool, R.; Frigerio, J. M.; Every, M. Direct production of thermochromic VO₂ thin film coatings by pulsed laser ablation. *Opt. Mater. (Amst).* **2000**, *15* (1), 41–45.
- Madida, I.G.; Simo, A.; Sone, B.; Maity, A.; Kana, J.B.; Gibaud, A.; Merad, G.; Thema, F.T.; Maaza, M. Submicronic VO₂-PVP Composites coatings for smart windows applications and solar heat management. *Sol. Energy.* 2014, 107, 758– 769.
- Mbonyiryivuze, A.; Mwakikunga, B.; Dhlamini, S. M.; Maaza, M. Fourier transform infrared spectroscopy for sepia melanin. *Physics and Materials Chemistry*. **2015**, *3*, (2), 25-29.
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. Cyclone damage. *Nat. Clim. Chang.* 2012, *2* (3), 205–209.
- Mettler Toledo (2007) A Guide to pH Measurement The theory and practice of laboratory pH applications. <u>http://instrumentationandcontrol.net/wp-content/uploads/2016/02/METTLER-TOLEDO-2007-A-Guide-to-pH-Measurement-The-theory-and-practice-of-laboratory-pH-applications.pdf</u>. (accessed on December 22, 2018).
- Mjejri, I.; Etteyeb, N.; Sediri, F. Vanadium oxides nanostructures: hydrothermal synthesis and electrochemical properties. *Mater. Res. Bull.* **2014**, *60*, 97–104.
- Mlyuka, N. R.; Niklasson, G. A.; Granqvist, C. G. Mg doping of thermochromic VO₂ films enhances the optical transmittance and decreases the metal-insulator transition temperature. *Appl. Phys. Lett.* **2009**, 95, 2–4.
- Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature hill. *Phys. Rev. Lett.* **1959**, *3*, 2–4.
- Mott, N. F. Metal-Insulator Transitions; Taylor and Frances: London, 1990.
- Mott, N. F. The transition to the metallic state. Philos. Mag. 1961, 6 (62), 287-309.
- Murau, P. C. Dissolution of tungsten by hydrogen peroxide. *Anal. Chem.* **1961**, *33* (8), 1125–1126.
- Nag, J.; Haglund, R. F. Synthesis of vanadium dioxide thin films and nanoparticles. J. Phys. Condens. Matter. 2008, 20 (26).
- Nazari, M. Vibrational and Optical Properties of Vanadium Dioxide. Ph.D. Dissertation, Texas Tech University, Texas, 2013.

- Needleman, D. B. Optical Design Guidelines for Spectral Splitting Photovoltaic Systems: A Sensitivity Analysis Approach. Master's Thesis, Massachusetts Institute of Technology, Massachusetts, 2014.
- Nejat, P.; Jomehzadeh, F.; Mahdi, M.; Gohari, M. A global review of energy consumption, CO₂ emissions and policy in the residential sector (with an overview of the top ten CO₂ emitting countries). *Renew. Sustain. Energy Rev.* 2015, 43, 843–862.
- Ni, J.; Jiang, W.; Yu, K.; Gao, Y.; Zhu, Z. Hydrothermal synthesis of VO₂ (B) nanostructures and application in aqueous Li-ion battery. *Electrochim. Acta* 2011, 56, 2122-2126.
- Oka, Y.; Yao, T.; Yamamoto, N.; Voz, I. Powder X-ray crystal structure of VO₂(A). J. Solid State Chem. **1990**, 86, 116-124.
- Osmolovskaya, O. M.; Murin, I. V.; Smirnov, V. M.; Osmolovsky, M. G. Synthesis of vanadium dioxide thin films and nanopowders: A brief review. *Rev. Adv. Mater. Sci.* **2014**, *36* (1), 70–74.
- Peng, R. D.; Bobb, J. F.; Tebaldi, C.; Mcdaniel, L.; Bell, M. L.; Dominici, F. Toward a quantitative estimate of future heat wave mortality under global climate change. *Cryst. Eng. Comm.* 2011, 119 (5), 701–707
- Penson, K. A.; Holz, A.; Bennemann, K. H. Theory of the Peierls transition in coupled electron and classical spin systems. *Phys. Rev. B.* **1976**, *13* (1), 433–440.
- Pergament, A.; Crunteanu, A.; Beaumont, A. Vanadium dioxide: Metal-insulator transition, electrical switching and oscillations. A review of state of the art and recent progress. *Energy Mater. Nanotechnol. Meet. Comput. Theory.* 2015, 9– 12.
- Piccirillo, C.; Binions, R.; Parkin, I. P. Synthesis and characterisation of W-doped VO₂ by aerosol assisted chemical vapour deposition. *Thin Solid Films* **2008**, *516* (8), 1992–1997.
- Popuri, S. R.; Miclau, M.; Artemenko, A.; Labrugere, C.; Villesuzanne, A. Rapid hydrothermal synthesis of VO₂ (B) and its conversion to thermochromic VO₂ (M1). *Inorg. Chem.* 2013, 52, 4780-4785.
- Popuri, S.; Artemenko, A.; Labrugere, C.; Miclau, M.; Villesuzanne, A.; Pollet, M. VO₂ (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms. J. Solid State Chem. 2014, 213, 79–86.
- Qi, J.; Niu, C. Characterization and thermodynamic analysis of VO₂ synthesized by NH₄VO₃. *Energy Procedia*. **2012**, *17* (20086105), 1953–1959.
- Qureshi, U.; Manning, T. D.; Parkin, I. P.; Oaj, W. C. H. Atmospheric pressure chemical vapour deposition of VO₂ and VO₂/TiO₂ films from the reaction of VOCl₃, TiCl₄ and Water. **2004**, 1190–1194.
- Saeli, M.; Piccirillo, C.; Parkin, I.P.; Binions, R.; Ridley, I. Energy modelling studies of thermochromic glazing. *Energ. Buildings.* 2010, 42, 666–1673.
- Saeli, M.; Piccirillo, C.; Warwick, M. E. A.; Binions, R. Thermochromic Thin Films: Synthesis, Properties and Energy Consumption Modelling. In *Materials and Processes for Energy: Communicating Current Research and Technological* Developments; Formatex Research: Spain. 2013.

- Sediri, F.; Gharbi, N. Controlled hydrothermal synthesis of VO₂ (B) nanobelts. *Mater. Lett.* **2009**, *63* (1), 15–18.
- Seyfouri, M. M.; Binions, R. Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application. Sol. Energy Mater. Sol. Cells 2017, 159, 52–65.
- Sharpe, L. T.; Stockman, A.; Jagla, W.; Jägle, H. A luminous efficiency function, V*(λ), for daylight adaptation. J. Vision. 2005, 5, 948-968.
- Shen, N.; Chen, S.; Chen, Z.; Liu, X.; Cao, C.; Dong, B.; Luo, H.; Liu, J.; Gao, Y. The synthesis and performance of Zr-doped and W-Zr co-doped VO₂ nanoparticles and derived flexible foils. *J. Mater. Chem. A* 2014, *2* (36), 15087–15093.
- Shen, N.; Dong, B.; Cao, C.; Chen, Z.; Liu, J. Lowered phase transition temperature and excellent solar heat shielding properties of well-crystallized VO₂ by W doping. *Phys. Chem. Chem. Phys.* 2016, *18*, 28010–28017.
- Shinde K.N.; Dhoble S.J.; Swart H.C.; Park K. Methods of Measurements (Instrumentation). In *Phosphate Phosphors for Solid-State Lighting. Springer Series in Materials Science*; Springer, Berlin, Heidelberg, 2012; vol 174. pp 79-100.
- Shindo, D.; Murakami, Y. Fundamentals of Characterization. In Morphology Control of Materials and Nanoparticles: Advanced Materials Processing and Characterization; Waseda, Y., Muramatsu, A., Eds.; Springer Berlin Heidelberg, 2004; pp 153–181.
- Sol, C.; Schläfer, J.; Parkin, I. P.; Papakonstantinou, I. Mitigation of hysteresis due to a pseudo-photochromic effect in thermochromic smart window coatings. *Sci. Rep.* 2018, 8 (13249), 1–6. https://doi.org/10.1038/s41598-018-31519-x.
- Soltane, L.; Sediri, F. Rod-like nanocrystalline B-VO₂: Hydrothermal synthesis, characterization and electrochemical properties. *Mater. Res. Bull.* **2014**, 53, 79–83.
- Son, J.; Wei, J.; Cobden, D.; Cao, G.; Xia, Y.; Engineering, B.; Louis, S. Hydrothermal synthesis of monoclinic VO₂ micro- and nanocrystals in one step and their use in fabricating inverse opals. **2010**, No. 23, 3043–3050.
- Subba Reddy, C. V.; Walker, E. H.; Wicker, S. A.; Williams, Q. L.; Kalluru, R. R. Synthesis of VO₂ (B) nanorods for Li battery application. *Current Applied Physics.* 2009, 9 (6), 1195–1198.
- Sugimoto, T. Underlying mechanisms in size control of uniform nanoparticles. J. Colloid Interf. Sci. 2007, 309, 106–118.
- Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Semiconductor to metal phase transition in the nucleation and growth of VO₂ nanoparticles and thin films. J. Appl. Phys. 2004, 96 (2), 1209–1213. https://doi.org/10.1063/1.1762995.
- Takahashi, I.; Hibino, M.; Kudo, T. Thermochromic properties of double-doped VO₂ thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti. *Jpn. J. Appl. Phys*, **2001**, *40*, 1391–1395.
- Tan, X.; Yao, T.; Long, R.; Sun, Z.; Feng, Y.; Cheng, H.; Yuan, X.; Zhang, W.; Liu, Q.; Wu, C.; et al. Unraveling metal-insulator transition. *Sci. Rep-UK.* 2012, 2, 1– 6.

- Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. *Chem. Rev.* **2014**, *114* (15), 7610–7630.
- Thermo. (2019) In *Merriam-Webster*. <u>https://www.merriam-webster.com/dictionary/</u> thermo. (accessed on January 25, 2019)
- Thermochromic. (2019) In *Merriam-Webster*. <u>https://www.merriam-webster.com/dic</u> tionary/thermochromic. (accessed on January 25, 2019
- Thomas, C. D.; Cameron, A.; Green, R. E.; Bakkenes, M.; Beaumont, L. J.; Collingham, Y. C.; Erasmus, B. F. N. Extinction risk from climate change. *Nature*. 2004, 427, 145–148.
- UV-Visible Spectroscopy. <u>https://www2.chemistry.msu.edu/faculty/reusch/VirtT</u> xtJml/Spectrpy/UV-Vis/uvspec.htm#uv1. (accessed on January 10, 2019).
- Valmalette, J.-C.; Gavarri, J.-R. High efficiency thermochromic VO₂ (R) resulting from the irreversible transformation of VO₂ (B). *Mater. Sci. Eng. B.* **1998**, *54* (3), 168–173.
- Velichko, A. A.; Pergament, A. L.; Stefanovitch, G. B.; Boriskov, P. P. Nonlinear phenomena and deterministic chaos in systems with vanadium dioxide. *Journal* on Selected Topics in Nano Electronics and Computing, 2014, 2 (1), 20–25.
- Venta, K.; Shemer, G.; Puster, M.; Rodriguez-Manzo, J. A.; Balan, A.; Rosenstein, J. K.; Shepard, K.; Drndic, M. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano. 2013, 7, 4629–4636.
- Vernardou, D.; Pemble, M.E.; Sheel, D.W. The growth of thermochromic VO₂ films on glass by atmospheric-pressure CVD: A comparative study of precursors, CVD methodology, and substrates. *Chem Vapor Depos.* 2006, 12, 263–274.
- Wang, N.; Magdassi, S.; Mandler, D.; Long, Y. Simple sol-gel process and one-step annealing of vanadium dioxide thin films: Synthesis and thermochromic properties. *Thin Solid Films*. 2013, 534, 594–598.
- Wang, S.; Liu, M.; Kong, L.; Long, Y.; Jiang, X.; Yu, A. Recent progress in VO₂ smart coatings: Strategies to improve the thermochromic properties. *Prog. Mater. Sci.* 2016, 81, 1–54.
- Warwick, M. E. A.; Ridley, I.; Binions, R. Thermochromic vanadium dioxide thin films from electric field assisted aerosol assisted chemical vapour deposition. *Sol. Energy Mater. Sol. Cells.* 2013, 230, 163–167.
- Wegkamp, D.; Stähler J. Ultrafast dynamics during the photoinduced phase transition in VO₂. Prog. Surf. Sci. 2015 90, 464–502.
- Wegmann, S.; Medalsy, I.; Mandelkow, E.; Muller, D. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. *Proc. Nat. Acad. Sci.* **2012**, E313-E321.
- Wei, W.; He, L. China building energy consumption: Definitions and measures from an operational perspective. *Energies*. **2017**, *10*, 1–16.
- Wilson, A. H. The theory of electronic semi-conductors. II. Proc. R. Soc. A Math. Phys. Eng. Sci. 1931, 134 (823), 277–287.
- Xu, G.; Jin, P.; Tazawa, M.; Yoshimura, K. Optimization of antireflection coating for VO₂-based energy efficient window. *Sol. Energy Mater. Sol. Cells* 2004, 83, 29–37. <u>https://doi.org/10.1016/j.solmat.2004.02.014</u>.

- Xu, H. F.; Liu, Y.; Wei, N.; Jin, S. W. From VO₂(B) to VO₂(A) nanorods: Hydrothermal synthesis, evolution and optical properties in V₂O₅-H₂C₂O₄-H₂O system. *Optik.* 2014, *125* (20), 6078–6081.
- Xu, X.; Yin, A.; Du, X.; Wang, J.; Liu, J.; He, X.; Liu, X.; Huan, Y. A novel sputtering oxidation coupling (SOC) method to fabricate VO₂ thin film. *Appl. Surf. Sci.* 2010, 256, 2750-2753.
- Yusoff, W. F. M.; Mohamed, M. F. Building Energy Efficiency in Hot and Humid Climate; Elsevier, 2017; Vol. 2.
- Zaid, S. M.; Myeda, N. E.; Mahyuddin, N.; Sulaiman, R. Malaysia's rising GHG emissions and carbon 'lock-in' risk: A review of Malaysian building sector legislation and policy. *J. Surveying, Construction and Property.* **2015**, *6* (1), 1–13.
- Zhang, Y. VO₂ (B) conversion to VO₂ (A) and VO₂ (M) and their oxidation resistance and optical switching properties. *Mater. Sci. Pol.* **2016**, *34* (1), 169–176.
- Zhang, K. F.; Bao, S. J.; Liu, X.; Shi, J.; Su, Z. X.; Li, H. L. Hydrothermal synthesis of single-crystal VO₂ (B) nanobelts. *Mater. Res. Bull.* 2006, 41 (11), 1985–1989.
- Zhang, S.; Fu, J.; Su, Q.; Wu, L.; Li, X. In situ characterization on thermal transitions of VO₂ (B): Toward VO₂ (R) and V₂O₃. *Rare Met. Mater. Eng.* **2016**, 45 (6), 1374– 1380. https://doi.org/10.1016/S1875-5372(16)30116-3.
- Zhang, Y.; Huang, Y. A facile hydrothermal synthesis of tungsten doped monoclinic vanadium dioxide with B phase for supercapacitor electrode with pseudocapacitance. *Mater. Lett.* **2016**, *182*, 285–288.
- Zhang, Y.; Li, W.; Fan, M.; Zhang, F.; Zhang, J.; Liu, X.; Zhang, H.; Huang, C.; Li, H. Preparation of W- and Mo-doped VO₂ (M) by ethanol reduction of peroxovanadium complexes and their phase transition and optical switching properties. J. Alloys Compd. 2012, 544, 30–36.
- Zhang, Y.; Tan, X.; Meng, C. The influence of VO₂ (B) nanobelts on thermal decomposition of ammonium perchlorate. *Mater. Sci. Pol.* **2015**, *33* (3), 560–565.
- Zhao, L.; Miao, L.; Liu, C.; Li, C.; Asaka, T.; Kang, Y.; Iwamoto, Y.; Tanemura, S.; Gu, H.; Su, H. Solution-processed VO₂-SiO₂ composite films with simultaneously enhanced luminous transmittance, solar modulation ability and anti-oxidation property. *Sci. Rep.* **2014**, *4* (7000), 1–11. https://doi.org/10.1038/srep07000.
- Zhou, J.; Gao, Y.; Liu, X.; Chen, Z.; Dai, L.; Cao, C.; Luo, H.; Kanahira, M.; Sun, C.; et al. Mg-doped VO₂ nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. *Phys. Chem. Chem. Phys.* **2013**, *15*, 7505–7511.
- Zou, J.; Chen, X.; Xiao, L. Phase transition performance recovery of W-doped VO₂ by annealing treatment. *Mater. Res. Express.* **2018**, 065055.

BIODATA OF STUDENT

Hamdi Muhyuddin Didaagun Barra was born and raised in Marawi City, Philippines. He completed his primary and secondary levels of education at the Dansalan College Foundation, Inc. in Marawi City. In 2005, he then earned the degree of Bachelor of Science in Physics through the full academic scholarship granted by the Mindanao State University (MSU) Marawi Campus. He was a consistent honor student from the first grade until the undergraduate level wherein he graduated *cum laude*. He was also a finalist to the Ten Outstanding Young Muslims (TOYM) award in the Philippines. Due to his love for physics, he pursued Master of Science in Physics at the University of the Philippines Diliman through the scholarship grants accorded by the Philippine Council for Advanced Science and Technology Research and Development (PCASTRD, DOST) and the Advance Personnel Development Program Scholarship (APDP) of MSU. He is presently a PhD candidate in the field of Materials Science at the Universiti Putra Malaysia (UPM). For his doctoral studies, he became a recipient of the Malaysia International Scholarship (MIS) granted by the Ministry of Higher Education.

Mr. Barra has been involved in various research projects since his undergraduate years. He has presented some research outputs in various national and international conferences. In 2018, he won the Best Paper Award for the science category as well as the Grand Award at the International STEAM Research Congress held in the Philippines. He has also published some research articles in peer-reviewed journals. Needless to say, he still considers himself a novice researcher and still in the process of honing his research skills. Furthermore, Mr. Barra has a passion for teaching and has worked as a lecturer at MSU for six years.

LIST OF PUBLICATIONS

Journal Articles

- Barra, H. M.; Chen, S. K.; Tamchek, N.; Talib, Z. A. A Facile Preparation of VO₂-PVP Nanocomposite Coating for Smart Window Application with Improved Visible Transmittance. *Innovative Technology and Management Journal* 2018, 1, 1. (ISSN: 2546-1117)
- Barra, H. M.; Chen, S. K.; Tamchek, N.; Talib, Z. A; Lee, O. J.; Tan, K. B. Effects of Annealing Parameters on Phase, Structure and Thermochromic Properties of VO₂ (M) Derived from Nanostructured VO₂ (B). *Materials Science-Poland*. (Accepted Paper)
- Barra, H. M.; Chen, S. K.; Tamchek, N.; Talib, Z. A; Lee, O. J.; Tan, K. B.; Nanostructured VO₂ Polymorphs: Preparation and Analyses of Their Structural, Thermal, Optical and Thermophysical Properties. (Submitted to *Materials Research Bulletin*)

International Conference

- Barra, H. M.; Chen, S. K.; Tamchek, N.; Talib, Z. A. Effects of Filling Ratio on the Hydrothermally Prepared Nanostructured VO₂. Paper Presented at the 6th International Conference on Solid State Science and Technology (ICSSST) 2017. Penang, Malaysia. 13 – 16 November.
- Barra, H. M.; Chen, S. K.; Tamchek, N.; Talib, Z. A. Preparation and Analysis of VO₂-PVP Nanocomposite Coating. Paper Presented at the 2nd International Science, Technology, Engineering, Agri-Fisheries and Mathematics (STEAM) Research Congress 2018. Tacloban City, Philippines. 28 – 30 August.
- Barra, H. M.; Chen, S. K.; Tamchek, N.; Talib, Z. A; Lee, O. J.; Tan, K. B. Hydrothermal Synthesis of W-Doped VO₂ Nanopowder with Simultaneously Enhanced Phase Transition Temperature and Visible Transmittance. Paper Presented at the 2nd International Multidisciplinary Research Conference (IMRC) 2019. Tacloban City, Philippines. 4 – 6 March.

UNIVERSITI PUTRA MALAYSIA

PENGESAHAN STATUS UNTUK TESIS/LAPORAN PROJEK DAN HAKCIPTA

SESI AKADEMIK :

TAJUK TESIS/LAPORAN PROJEK:

ASPEK BAHASA DAN FALSAFAH DALAM MUKUN MELAYU SARAWAK

NAMA PELAJAR : HAMSIAH BT JUKI

Saya mengaku bahawa hakcipta dan harta intelek tesis/laporan projek ini adalah milik Universiti Putra Malaysia dan bersetuju disimpan di Perpustakaan UPM dengan syaratsyarat berikut :

- 1. Tesis/laporan projek adalah hak milik Universiti Putra Malaysia.
- 2. Perpustakaan Universiti Putra Malaysia mempunyai hak untuk membuat salinan untuk tujuan akademik sahaja.
- 3. Perpustakaan Universiti Putra Malaysia dibenarkan untuk membuat salinan tesis/laporan projek ini sebagai bahan pertukaran Institusi Pengajian Tinggi.

Tesis/laporan projek ini diklasifikasi sebagai :

*sila tandakan (√)

(mengandungi maklumat di bawah Akta Rahsia Rasmi 1972)

(mengandungi maklumat yang dihadkan edaran Kepada umum oleh organisasi/institusi di mana penyelidikan telah dijalankan)

Saya bersetuju tesis/laporan projek ini dibenarkan Diakses oleh umum dalam bentuk bercetak atau atas talian.

Tesis ini akan dibuat permohonan :

AKSES TERBUKA

PATEN

Embargo		hingga
	(tarikh)	_ 00

(tarikh)

Pengesahan oleh:

(Tandatangan Pelajar) No Kad Pengenalan / No Pasport.: (Tandatangan Pengerusi Jawatankuasa Penyeliaan) Nama:

Tarikh :

Tarikh :

[Nota : Sekiranya tesis/laporan projek ini SULIT atau TERHAD, sila sertakan surat dari organisasi/institusi tersebut yang dinyatakan tempoh masa dan sebab bahan adalah sulit atau terhad.]