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In this thesis, in order to solve single objective optimization problem and bi-objective 

objective optimization problem in non-linear functions, two methods are created 

during the course of the present work. Firstly, a new strategy based on a combined 

method (i.e. single-objective Gravitational Search (GSA) with Bat Algorithm (BAT) 

(SOGS-BAT)) algorithm is proposed in which relies on the closed interval between 0 

and 1 to avoid falling into local search. The lack of local optimum mechanism 

decreases the intensification of the search space, whereas diversity remains high. 

Secondly, two meta-heuristics, namely, Bi-Objective Gravitational Search Algorithm 

(BOGSA) and Bi-Objective Bat Algorithm (BOBAT), were combined to form a 

(BOGS-BAT) algorithm. Later, this algorithm was used to solve bi-objective 

Production Planning (PP) and Scheduling Problem (Sch.P).  

 

 

The BOGS-BAT algorithm is based on three techniques. The first technique is to move 

or switch solution from single function to functions that contain more than one 

objective functions. The use of the BOGSA algorithm aims to create a new equation 

for the calculation of the masses of population individuals, as found in the theoretical 

work in the Strength Pareto Evolutionary Algorithm two (SPEAII) algorithm. The 

second technique is to solve bi-objective functions by using the BOBAT algorithm. 

The third technique is an integration of BOGSA with BOBAT to produce a BOGS-

BAT algorithm. The gravitational search with BAT algorithm is used to balance 

exploitation and exploration, thereby resulting in efficient and effective (speed and 

accuracy) solution for the production planning model.  

 

 

 



© C
OPYRIG

HT U
PM

 

ii 

 

Finally, to verify the efficiency of the SOGS-BAT and BOGS-BAT and to 

demonstrate the effectiveness and robustness of the proposed algorithms, the 

numerical experiments based on benchmark test functions were performed. In 

addition, the simulation random data for were used to solve single and bi-objective 

optimization PP and Sch.P to improve the validation and verify the performance of the 

proposed algorithms. The results reveal that the proposed algorithms are promising 

and efficient. 
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Perancangan pengeluaran (PP) dan masalah penjadualan (Sch.P) adalah penting untuk 

sistem pengeluaran yang cekap. Dalam masalah sebenar PP dan Sch.P, nilai input atau 

nilai parameter, termasuk sumber, permintaan, dan kos, mungkin tidak tepat. Di 

samping itu, pertimbangan semua parameter dalam model PP dan Sch.P membuat 

penjanaan jadual pengeluaran induk sangat rumit, di mana data input atau parameter 

sering tidak tepat kerana maklumat yang tidak lengkap atau tidak dapat dikesan dan 

perubahan pola harian permintaan dan kapasiti pengeluar. Oleh itu, kajian ini cuba 

mencadangkan skema novel yang mampu menangani halangan-halangan dalam 

masalah PP dan Sch.P. Skema ini mengambil kira ketidakpastian dan membuat tukar 

ganti pelbagai objektif bertentangan pada masa yang sama. Teknik yang dicadangkan 

terdiri daripada dua langkah utama: pertama, beberapa keputusan kritikal mengenai 

penentukan kadar pengeluaran dan perancangan sumber manusia (data rawak) 

dipertimbangkan; seterusnya, keputusan mengenai kuantiti dan kaedah penyimpanan 

inventori dan pengedaran produk akhir kepada pelanggan. 

 

 

Semasa menjalankan kerja ini, dua kaedah dicipta. Pertama, strategi baru berdasarkan 

kaedah gabungan (iaitu Algoritma Pencarian Graviti Objektif Tunggal dengan 

Algoritma Bat (SOGS-BAT)) dicadangkan untuk menyelesaikan masalah 

pengoptimuman tunggal, yang bergantung pada selang tertutup antara 0 dan 1 untuk 

mengelakkan terjatuh ke dalam carian tempatan. Kekurangan mekanisme optimum 

tempatan menurunkan intensifikasi pencarian, sedangkan kepelbagaian masih tinggi. 
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Kedua, kombinasi antara dua meta-heuristik: Algoritma Pencarian Graviti Bi-Objektif 

(BOGSA) dan Algoritma Bi-Objektif BAT (BOBAT) untuk membentuk algoritma 

BOGS-BAT. Kemudian, algoritma ini digunakan untuk menyelesaikan pelbagai 

masalah pengaturcaraan linear PP dan Sch.P. Algoritma (BOGS-BAT) ini berdasarkan 

tiga teknik. Teknik pertama adalah untuk memindahkan atau menukar penyelesaian 

dari fungsi tunggal ke fungsi yang mengandungi lebih daripada satu fungsi objektif. 

Tujuan menggunakan algoritma BOGSA adalah untuk membentuk persamaan baharu 

yang digunakan untuk mengira massa individu individu, seperti yang didapati dalam 

kerja teori dalam Algoritma Kekuatan Pareto Evolusi Algoritma dua (SPEAII). Teknik 

kedua adalah untuk menyelesaikan fungsi pelbagai oleh algoritma BOBAT. Teknik 

terakhir adalah integrasi BOGSA dan BOBAT, untuk menghasilkan BOGS-BAT. 

Pencarian Graviti dengan Algoritma BAT (GSA-BAT) digunakan untuk 

mengimbangi eksploitasi dan eksplorasi, sehingga menghasilkan penyelesaian yang 

efisien dan berkesan (kecepatan dan ketepatan) untuk model perancangan produksi. 

 

 

Akhir sekali, untuk mengesahkan kecekapan SOGS-BAT dan BOGS-BAT, 

eksperimen berangka berdasarkan fungsi ujian tanda aras telah dilakukan untuk 

menunjukkan keberkesanan dan keteguhan algoritma yang dicadangkan. Di samping 

itu, untuk meningkatkan pengesahan dan untuk mengesahkan prestasi algoritma yang 

dicadangkan, data rawak simulasi untuk perancangan pengeluaran digunakan untuk 

menyelesaikan masalah pengoptimuman bi-objektif PP dan Sch.P. Keputusan 

menunjukkan bahawa algoritma yang dicadangkan adalah memberangsangkan dan 

cekap.  
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CHAPTER 1 

1  INTRODUCTION 

1.1 Research Background and Motivations 

Classical optimization algorithms do not provide a suitable solution for optimization  

problems with a high-dimensional search space because of the exponential increase in 

the search space with the increase in the problem size.  Therefore, solving such 

problems using exact techniques, such as comprehensive research is impractical 

(Alatas, 2010).  

The increasing interest in algorithms over the last decade is inspired by naturalistic 

phenomena (Dorigo, Maniezzo, & Colorni, 1996), various heuristic algorithms have 

been proposed and show an efficient and effective performance, such as ant colony 

search algorithm by Dorigo et al. (1996), artificial bee colony (ABC) algorithm by 

Ning, Liu, Zhang, and Zhang (2018), genetic algorithm by Tang, Man, Kwong, and 

He (1996), bat algorithm (BAT) by X.-S. Yang (2011), particle swarm optimization 

(PSO) by Kennedy (2011), simulated annealing by Kirkpatrick, Gelatt, and Vecchi 

(1983) and gravitational search algorithm (GSA) by Rashedi et al. (2009).  

Many researchers have proven that these algorithms are well suited for solving 

complex computational problems, such as:  objective function optimization  (Du & Li, 

2008); (Yao, Liu, & Lin, 1999), pattern recognition (Tang et al., 1996); (Y. Liu, Yi, 

Wu, Ye, & Chen, 2008), control objective (Baojiang & Shiyong, 2007) and (Karakuzu, 

2009), image processing (Nezamabadi-Pour, Saryazdi, & Rashedi, 2006), filter 

Modelling (Kalinli & Karaboga, 2005); (Y.-L. Lin, Chang, & Hsieh, 2008), scheduling 

problem (Kan, 2012)  and production planning problems (Karimi-Nasab & Ghomi, 

2012).  

In the meantime, the optimization  problems in many industrial and academic research 

sectors generally have more than one objective. The involved optimization problems 

with conflicted and incommensurable objectives are called bi-objective optimization  

problems (BOPs). Given the high-dimensional search space in BOPs, traditional 

optimization algorithms using exact techniques (e.g. exhaustive search) are no longer 

suitable because the search space grows dramatically as problem size increases 

(Alatas, 2010).  

Algorithms are gradually powered in different areas Wolpert and Macready (1997), 

Tripathi, Bandyopadhyay, and Pal (2007) and Rashedi et al. (2009) to solve various 

optimization problems. However, no specific algorithm is used to find the best 

solutions for all the problems in finite iterations, and certain algorithms exhibit better 

performance for particular problems than others. Thus, searching for new heuristic 
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optimization  algorithms is an open problem (Tripathi et al. (2007). For example, GSA 

is based on the movement of particles that are affected by the gravitational force. 

Moreover, GSA can be used to improve the convergence rates of BAT during 

iterations and enhance BAT behavior for high-dimensional problems.  

"No-Free-Lunch Theorem" (Wolpert & Macready, 1997) indicates that no method can 

solve all problems optimally. For heuristic optimization algorithms, the hybrid 

technique has become an important tool to improve its performance. Hybridization of 

two algorithms is a common technique to take advantage of both algorithms while 

decreasing their disadvantages. By hybridization of algorithms, exploration and 

exploitation of the entire algorithm can be improved (S Sarafrazi, Nezamabadi-Pour, 

& Saryazdi, 2011).  In particular, the lack of precision of an algorithm can be improved 

by hybridization with a local search procedure that refines the results.  

In most cases, GSA achieves better performance than other heuristic optimization 

algorithms Rashedi et al. (2009), consequantly most GSA variants have been 

developed by combining GSA with other heuristic optimization  algorithms and 

techniques to avoid some of these complexity. Han, Quan, Xiong, and Wu (2013) 

proposed a hybrid algorithm that combines the quantum-inspired binary gravitational 

search algorithm with the K-nearest neighbor method to solve the problem of feature 

selection could be treated as a problem of optimization in a search space. H.-C. Tsai, 

Tyan, Wu, and Lin (2013)  presented the gravitational particle swarm (GPS) 

algorithm, which modified the velocity formula by combining PSO velocity with GSA 

acceleration  to the outstanding performance and interesting concepts embodied in the 

GPS. 

J.-S. Wang and Song (2017) inrodused four kinds of improved GSA-PSO hybrid 

algorithm by introducing a small constant updating mechanism, which adopts PSO 

strategy to optimize the velocity and position in the running process of the GSA. The 

simulation analysis results show that the improved hybrid algorithm greatly improves 

the function optimization convergence speed and optimization accuracy. 

Khajehzadeh, Taha, and Eslami (2014) a new hybrid algorithm combining an adaptive 

gravitational search algorithm (AGSA) with pattern search (PS) method is introduced 

and applied for bi-objective optimization of reinforced concrete  RC retaining walls. 

Moreover, X.-S. Yang (2010b) proposed a new optimization  algorithm called BAT. 

This algorithm is inspired by the echolocation behaviour of bats.the echolocation 

behavior of bats shows their capability to find their prey and discriminate different 

types of insects even in complete darkness. Pure BAT has two featuers namly, 

exploration and exploitation are controlled by the equations X.-S. Yang (2010b). 

Exploration and exploitation, also referred to as diversification and intensification, are 

the two main aspects of the population-based heuristic algorithms; the balance 

between these features in any meta-heuristic algorithm is the performance 

measurement of its success in solving each given bi-objective optimization problem 

(BOP) (Hassanzadeh and Rouhani (2010). Exploration is the ability to search the space 
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that allows the meta-heuristic algorithm to scan the expanding parts of the search space 

without falling into local optima. By contrast, exploitation is the ability to search 

locally in search space to provide accurate search and convergence (Rashedi, Rashedi, 

and Nezamabadi-pour (2018). 

In view of the above, we note that researchers who have hybridized the algorithm of 

attraction with other algorithms and did not use it with the Bat algorithm, hence our 

basic idea to build a hybrid algorithm linking the gravity algorithm and the bat 

algorithm to inrodused single objective gravitational search with bat algorithm namly 

(SOGS-BAT).   

Although population-based search algorithms achieve excellent performance results 

(Xiao, Li, Liu, and Ni (2018), none of the meta-heuristic algorithms can perform 

superiorly in solving all problems. In practice, the performance of an algorithm in 

solving BOPs may be controversial from one problem to another. Thus, developing a 

hybrid meta-heuristic algorithm by combining different meta-heuristic concepts can 

improve the quality of performance and satisfy the promising balance between 

diversity and convergence (H.-L. Liu, Chen, Deb, and Goodman (2017). To tackle the 

aforementioned issues and improve the balance between the diversity and convergence 

in BOPs, we propose a combined meta-heuristic algorithm called bi-objective 

gravitational search with BAT algorithm (BOGS-BAT). 

1.2 Problem Statement  

The success of any company depends on proper production planning and scheduling. 

International companies obtain critical success on a remarkable level on the basis of 

this idea. Production planning and scheduling problems have become quite complex 

and large scale. Most industries produce various products, and companies strive to 

provide new products everyday depending on the market requirements. This situation 

has led to many challenges and modern logistic problems for product manufacturers. 

Production planning and scheduling problems are essential in the tactical planning 

level of a production-based management system that is generally dependent on the 

parameters with an uncertain value in the manufacturing environment. Although 

production planning is a bi-objective decision-making problem, most models for this 

problem have focused on it as a single- objective. (Leung, Tsang, Ng, & Wu, 2007) 

stated that this consideration may be the reason for the difficulty in solving production 

planning problems. (Sadjadi, Makui, Dehghani, & Pourmohammad, 2016) illustrated 

that the complexity of the bi-product production planning problem makes it an NP-

hard (i.e. non-deterministic polynomial-time hard problem as classified by (Garey & 

Johnson, 1979)) and complex problem. 

Thus, the research community seeks to resolve complicated problems by using meta-

heuristic and hybrid meta-heuristic algorithms (Sajadi & Rad, 2016); (G. Yang, Tang, 

& Zhao, 2017). Meta-heuristic and hybrid meta-heuristic algorithms are based on the 
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assumption that inexact parametric values are deterministic; however, this assumption 

produces useless and impractical results (Yaghin, Torabi, & Ghomi, 2012). Although 

meta-heuristic algorithms have been successfully used to solve complex real-world 

production problem, an algorithm to solve all problems in optimization  in a single run 

is unavailable (Wolpert & Macready, 1997). 

As result, several researchers have used the heuristic approach with meta-heuristic or 

hybrid meta-heuristic algorithms to solve bi-objective production scheduling 

problems (Ponsignon & Mönch, 2012); (Wong, Chan, & Chung, 2012); (Karimi-

Nasab & Aryanezhad, 2011); (Mehdizadeh, Niaki, & Rahimi, 2016); (Beheshti 

Fakher, Nourelfath, & Gendreau, 2017).  

However, only two types of products are considered in the problem of these methods. 

In particular, these methods generally focus on solution algorithms for a company but 

ignore generalised large-scale production planning problems. These methods are also 

incompatible to the actual production environment and are inefficient in terms of 

accuracy and runtime. Therefore, the current study proposes a general and specific 

algorithm to solve large-scale and random single and bi-objective production planning 

and scheduling problems. 

1.3 Research Objectives 

This study is conducted on the basis of the following objectives: 

i. to propose a combination of single-objective gravitational search algorithm 

with bat algorithm (SOGS-BAT) for solving single objective optimization  

problems. 

ii. to propose a combination of bi-objective gravitational search algorithm with 

BAT algorithm (BOGS-BAT) for solving BOPs. 

iii. to investigate and validate the performance of SOGS-BAT in solving an SOP. 

iv. to justify the use of BOGS-BAT in solving an BOP. 

v. to determine the performance of BOGS-BAT by comparing it with other 

existing meta-heuristic approaches. 

vi. to apply the proposed algorithms in an existing production planning and 

scheduling problem models. 
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1.4 Contributions 

The contributions of this thesis are enumerated below.  

 Proposed two new general methods; (1) single combination algorithm (SOGS-

BAT) is introduced to solve single-objective optimization problems for PP and 

Sh.P issues. (2) A bi-objective combination algorithm (BOGS-BAT) is 

introduced to solve bi-objective optimization problems for PP and Sh.P issues. 

 

 

These methods can be used by any decision maker to obtain a good results 

from the same problem. In the past, the tolerance and rejection levels were 

subjectively chosen by decision makers depend on their experiences. Hence, 

there exist several implication from the outcomes of the present study. 

 

 

 BOGS-BAT is used to solve the large-scale data for production planning and 

to demonstrate its capability in enhancing the performance. 

 A create a new equation for the masses that belong to gravitational search 

algorithm (GSA) to expand the search space and transformation all the solution 

from single objective to bi-objective in the interval [0,1]. 

On the basis of the proposed approach, GSA was initially allowed to search 

for the global optimal by using a given objective function. During the search 

process, the GSA did not improve the fixed number of iterations and was 

trapped in the local optima. So, we augmented the search space by starting with 

N solutions rather than one solution to improve the performance and alleviate 

the deficiencies in problem solving. 

 The convergence speed of SOGS-BAT and BOGS-BAT are enhanced using 

two novel combinations, namely, GSA by Rashedi et al. (2009) with BAT 

algorithm by X.-S. Yang (2010b). As any meta-heuristic algorithms, SOGS-

BAT and BOGS-BAT contain two components, namely, exploration and 

exploitation. 

Any successful meta-heuristic algorithm requires a good balance of the two 

important and opposite components intensification and diversification (Das, 

Chatterjee, & Goswami, 2015) (X.-S. Yang, Deb, & Fong, 2014). Only a 

fraction of local space may be visited when intensification is strong, and a 

trapping risk is observed in a local optimum. When diversification is strong, 

the algorithm slowly converges with solutions jumping around several 

potential optimal solutions (X.-S. Yang, 2009b). Therefore, two types of 

algorithm (global and local search algorithms) were utilised to balance the 

exploration and exploitation for SOGS-BAT and BOGS-BAT. 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 

 

6 

 

1.5 Thesis Outline 

This thesis presents and discusses the production planning and scheduling problems 

in literature. New combination algorithms (SOGS-BAT and BOGS-BAT) are applied 

to solve these problems. Chapter 1 describes the summary of the thesis and the 

introduction of production planning and scheduling problems. The problems in 

literature and their solutions are discussed. The importance of the proposed objectives 

is also presented. Chapter 2 presents a detailed literature review on production 

planning scheduling and general swarm intelligence. Studies using general meta-

heuristic algorithms for SOPs and BOPs, challenges and limitations are also reported. 

Chapter 3 provides the methodology to solve SOPs and BOPs by using a proposed 

combination algorithm. The aims of the model to determine the optimal production 

limits and decrease the cost of production per item are discussed in details. Chapter 

4 investigates the benchmark problem instances. The experimental design and test 

problem are provided. Simulation and experimental results for benchmark SOPs and 

BOPs are presented. Lastly, Chapter 5 elaborates the conclusions and possible future 

research. 
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