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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

FIXED POINT FOR DERIVATIVE AND DIFFERENTIATION OF
SINGLE-VALUED AND SET-VALUED FUNCTIONS ON METRIC SPACES

By

MOHAMAD MUSLIKH

March 2019

Chair : Professor Adem Kilicman, PhD
Faculty : Science

Study of the fixed point for derivative functions is an effort to expand the knowledge
of fixed point for functions. This study represents original research on the existence of
the fixed point for derivative functions which has been not studied before. Therefore
this study attempts to explore the existence of fixed point for derivative functions.
The research found that the derivative function defined on a closed unit interval into
itself has a fixed point. In addition, this study attempts to extend those results for
the derivative function defined on the whole real number line. By the concepts of
commutativity and compatibility between the function and its derivatives show that
the derivative function of the real-valued function has a fixed point. Meanwhile, in
the case of set-valued function, we use the definition of the generalizations of the
Hukuhara derivative. By using hybrid compositemapping compatiblewithHausdorff
metric, this study shows that derivative of the interval-valued function has a fixed
point. Furthermore, based on the absolute derivative notion on metric spaces in the
study of differentiation for single-valued functions, we introduce the new notions
of the "Straddle Lemma" and the class of the "Darboux function". Other results
in this study are the absolute derivative and the metric derivative of the set-valued
functions. This expansion adds the literature on differentiability references for set-
valued functions, among others the continuity of the set-valued function, absolute
derivative of the constant set-valued function, and comparisons with the Hukuhara
derivative and generalization of the Hukuhara derivative. The metric derivative
concept introduced for the set-valued function generates the generalization of the
famous Rademacher’s theorems.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TITIK TETAP UNTUK TERBITAN DAN PEMBEZAAN FUNGSI
BERNILAI TUNGGAL DAN BERNILAI SET PADA RUANGMETRIK

Oleh

MOHAMADMUSLIKH

March 2019

Pengerusi : Professor Adem Kilicman, PhD
Fakulti : Sains

Kajian ini adalah usaha untuk mengembangkan pengetahuan berkenaan titik tetap
untuk fungsi. Kajian ini merupakan penyelidikan baharu berkenaan kewujudan titik
tetap bagi fungsi terbitan yang belum pernah dikaji sebelum ini. Kajian ini cuba
meneroka kewujudan titik tetap bagi fungsi terbitan. Kajian ini mendapati bahawa
fungsi terbitan yang ditakrifkan pada sela unit tertutup itu sendiri mempunyai titik
tetap. Di samping itu, kajian ini cuba untukmengembangkan dapatan tersebut kepada
fungsi terbitan untuk keseluruhan jajaran nombor nyata. Menggunakan konsep kalis
tukar tertib dan keserasian antara fungsi dan terbitannya menunjukkan bahawa fungsi
terbitan bernilai sebenar mempunyai titik tetap. Sementara itu, dalam kes fungsi
bernilai set, kajian ini menggunakan takrif pengitlakan terbitan Hukuhara. Meng-
gunakan pemetaan hibrid gubahan metrik Hausdorff yang bersesuaian, kajian ini
menemui bahawa fungsi terbitan dari fungsi bernilai sela mempunyai titik tetap.
Tambahan pula, berdasarkan idea terbitan mutlak pada ruang metrik dalam kajian
pembezaan bagi fungsi bernilai tunggal, kajian ini memperkenalkan idea baharu
berkenaan “lemma Straddle” dan kelas “fungsi "Darboux”. Hasil lain dalam kajian
ini adalah terbitan mutlak dan terbitan metrik untuk fungsi bernilai set. Dapatan
daripada kajian ini memperkaya literatur rujukan untuk terbitan fungsi bernilai set,
antaranya kesinambungan fungsi bernilai set, terbitan mutlak fungsi bernilai set tetap,
perbandingan dengan terbitan Hukuhara dan pengitlakan terbitan Hukuhara. Konsep
terbitan metrik yang diperkenalkan bagi fungsi bernilai set menghasilkan pengitlakan
teorem Rademacher yang terkenal.
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CHAPTER 1

INTRODUCTION

This Chapter begins with the background of the study that presents an overview of
the progress of the fixed point theory and the current fixed point theorems. The im-
portance of fixed point for derivative of single-valued or set-valued functions is also
highlighted. Furthermore, the problem statement addressing fixed points, derivatives,
and gaps are also identified in the study. This section is followed by the research
objectives and research questions of the study. The significance and scope of the
study are also presented. The last section is the organization of the thesis.

1.1 Background of the Study

The study of fixed point theory began in 1912 with a theorem given by a Dutch
mathematician Brouwer. This is the most famous and important theorem on the
topological fixed point property. It can be formulated as; A closed unit ball Bk ⊆ Rk

has the topological fixed point property or for every continuous self maps on a closed
unit ball in Rk has a fixed point. Moreover, he also proved fixed point theorems for a
square, a sphere and their k-dimensional counterparts. Brouwer’s theorem has many
applications in analysis and differential equation. Its discovery had a tremendous
influence in the development of several branches of mathematics, in particular, alge-
braic topology.

An important generalization of Brouwer’s theorem into Banach spaces was discov-
ered in 1930 by Schauder stating "every continuous map on the compact convex
subspace of the Banach spaces has a fixed point". Whereas in 1935 Tychonoff mod-
ified Brouwer result with stated: "every continuous map on the compact convex
subspace of the locally convex topological vector spaces has a fixed point".

The study of fixed point problems for set-valued mappings was initiated by Kakutani
(1941) in the finite dimensional spaces by generalizing Brouwer’s fixed point theo-
rem. This was the beginning of the fixed point theory for set-valued mappings having
a vital connection with the minimax theory in game theories.

In Mathematics, the existence and uniqueness of a problem’s solution are essential
and that is the main purpose to solve the problems. Therefore, researchers have
made various efforts to study the fixed point theory for continuous mappings. Stefan
Banach, in that year, introduced a concept of mapping called contraction mapping
and he showed that a contraction self-mapping on a complete metric space has a
unique fixed point. In 1969, Meir and Keller have weakened the contraction mapping
that they called weakly uniformly strict contraction so that the requirements are more
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general than in the Banach principle.

The contraction mapping is continuous, due to this a natural question arises: does
there exist a contractive mapping, which does not enforce a mapping to be continu-
ous? In 1969, Kannan proved the existence of a fixed point for "contraction" mapping
that are not continuous. Since Kannan (1969) introduced the field of "contraction"
mapping, many researchers have expanded the study in this field (Reich, 1971; Chat-
terjea, 1972).

In 1976, Caristi introduced the fixed point theorem which was one of the generaliza-
tions of the Banach’s fixed point theorem but the method used is different from other
generalizations. Namely, there is no "contraction" impression of its mapping. This
class of mapping introduced by Caristi is larger and covers all types of contraction
mapping developed before.

The study of fixed point of set-valued mappings on a metric space was initiated by
Nadler (1969). By using the Hausdorff metric he proved that every contraction of
the set-valued mapping in the sense of the Hausdorff metric has a fixed point on a
complete metric space.

The celebrated Banach contraction principles is one of the main tools for both the
theoretical and computational aspects in mathematical sciences. In this case, Jungck
(1976) obtained an important generalization of Banach contraction principles in the
form of common fixed point theorems for the pairs of commuting maps. Subse-
quently, Sessa (1982) obtained the same thing but by using the weaker concepts of
commuting maps. This concept was further improved by Jungck (1986) which in-
troduced compatible map to observe common fixed point. On the other hand, Singh
and Mishra (1994) studied coincidence and fixed points of reciprocally continuous
and compatible hybrid maps.

Ciesielski asked in the article (Gibson and Natkaniec, 1998/1999) whether the com-
position of two derivative mappings from a closed unit interval into itself always has
a fixed point? An affirmative answer is given by Elekes et al. (2001/2002). Similarly,
answer also has been given by Cs Üornyei et al. (2001/2002) as an alternative proof.
This result is very interesting to be developed in this thesis.

1.2 Problem Statement

The concept of fixed point comprises a triplet (X, x, f ) where X is the set, x is an
element of X , and f is a self-mapping of X such that x = f x. In other words, the
point x remains invariant under the mapping f .

2
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Theorems concerning the existence and properties of fixed point are known as fixed
point theorems. By a fixed point theorem, one will understand a statement which
asserts that under what conditions the mapping f and / or the set X , the self-mapping
f on the set X has one or more fixed points (Brouwer, 1912; Banach, 1922; Caristi,
1976). The condition also holds in the set-valued mapping (Kakutani, 1941; Nadler,
1969). Thus the mapping f and the set X plays an important role in determining the
existence of fixed point.

In calculus, the derivative of a function is an important theme that supports the de-
velopment of other areas especially in identifying the behaviour of function on its
domains. Study of the fixed point for derivative is relatively new and undeveloped.
Recently, Elekes et al. (2001/2002) and Cs Üornyei et al. (2001/2002) proved with
different ways that the composition mapping of two derivative functions on the closed
unit interval into itself has a fixed point. Csornyei et al. (2001/2002) proved that
composition of two Darboux Baire-1 functions1 on the closed unit interval into itself
has a fixed point since derivative functions are examples of Darboux Baire-1 func-
tions. Whereas Elekes et al. (2001/2002) proved directly of the composition of two
derivative functions.

Implicitly the above problems are related to function with intermediate value property
2. This property was believed, by some 19th-century mathematicians, to be equiva-
lent to the property of continuity (Bruckner, 1978). In 1875, Darboux showed that
this belief is not justified. He proved that every derivative has the intermediate value
property and he gave examples of some rather badly discontinuous derivatives (see
(Gordon, 1994)). Because of Darboux’s work on the subject, one now usually calls
a function having the intermediate value property as Darboux function (Bruckner,
1978).

It is clear that every continuous function is a Darboux function. A more interesting
result is the fact that every derivative is a Darboux function. In fact the derivative
may not be continuous. Thus the class of Darboux function is a generalization of
continuous functions class (Gordon, 1994).

Obviously, there is still a need to further investigate on the existence of fixed point
for derivatives. Among the issue to be investigated are the extent of the derivative
functions and their behaviour at their fixed point. However, not many research has

1. A function f : [a, b] −→ R is a Darboux Baire-1 function if f is the pointwise limit of a sequence
of continuous functions.

2. A function f : [a, b] −→ R is said to have the intermediate value property if whenever x. and y
are in [a, b], and c is any number between f (x) and f (y), there is a number z between x and y, such that
f (z) = c.

3
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explored the fixed point for composition mapping of two derivatives on the closed
unit interval (Elekes et al., 2001/2002). Their result is only in response to questions
related to the Darboux function class.

The researcher did not focus on investigating areas that support the existence of a
fixed point for derivatives. Therefore, the present study focuses on those neglected
areas. To fill the gap, the present study will study on the existence of a fixed point for
the derivative of a real-valued function and derivative of an interval-valued function.
This study seeks to expand discourse on fixed point in the context of derivative on
real number and differentiation in metric spaces.

1.3 Research Objectives

The research on the fixed point for the derivative and the differentiation of mapping
in metric spaces may open a new path to produce a fixed point of a derivative and help
researchers to develop the derivative concepts in abstract metric spaces. Therefore,
the major objective formulated for this study is to investigate the existence of a fixed
point for derivative (single-valued, set-valued functions) and to develop differentia-
tion (single-valued and set-valued) in metric spaces.

This study has five major objectives:

1. To determine the existence of a fixed point of the derivative function on closed
unit interval [0, 1].

2. To determine the existence of a fixed point of the derivative function on real
numbers R.

3. To determine the existence of a fixed point on the derivative of the interval-valued
functions.

4. To identify the relationship between existence of a fixed point of the derivative
functions and a fixed point of the original functions.

5. To develop the differentiation concepts of single-valued and set-valued mappings
on metric spaces.

1.4 Research Questions

Based on the objectives, the following research questions are developed.

Q1 : What is the necessary conditions for the derivative a function to have a fixed
point? In this case, is the fixed point unique or not?

Q2 : What is the necessary conditions for the derivative a set-valued function to
have a fixed point? In this case, is the fixed point unique or not?

4



© C
OPYRIG

HT U
PM

Q3 : What is the relation between the fixed point of a function and the fixed point
of its derivative?

Q4 : How to define the derivative of a set-valued mapping defined on metric spaces?

1.5 Significance of the Study

This study adds to the existing frame of Mathematical rules by observing the charac-
ter of the function in the context of determining the existence of the fixed point for
its derivative. Such insight can be used to explain many questions pertaining to the
additional or simplification requirements, and proofing strategy. More importantly,
these insights may develop a greater understanding of how to determine the fixed
point for derivative, where the existence of the derivative depends on the function
given to the problem being studied. This study also introduces the new notions of
derivative on the abstract metric spaces.

1.6 Scope of the Study

Since the scope of the study is focused on extending the existing fixed point for the
derivative function model, the main conceptual framework of this study is built from
that model. The main scope of this study is to integrate the existing fixed point of the
function into its derivative function. The investigation in the study is focused on the
real-valued functions with real number domain. The scope of the study will cover the
existence and uniqueness of the fixed point for single-valued functions (real-valued
function) and set-valued functions (interval-valued function).

1.7 Organization of the Thesis

This subsection will describe the organization of the whole thesis and content of
every chapter. Chapter 1 presents an overview of the fixed point as the phenomenon
which preserves a point by mapping. This chapter includes background of the study;
problem statement; research objectives; research questions; significance of the study;
scope of the study; and organization of the thesis. Chapter 2 presents the literature
review for all ingredients used for the design of the theoretical framework. There are
eight sections in this chapter: metric spaces, Euclidean space, single-valued map-
pings, set-valued mappings, differentiation, fixed points, common fixed points and
fixed point of derivatives. In line with the literature study, Chapter 3 explains hypoth-
esis development and research result in fixed point theorems form for the derivative
of single-valued function on a closed unit interval and real number lines.

The result of the fixed point for the derivative of the set-valued functions is presented
in Chapter 4. This chapter covers the fixed point for the derivative of the interval-
valued functions. The fifth chapter presents the development process and discussion

5
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on differentiation and the characterization of Caristi’s type mappings. The last
chapter discusses on general conclusion, the contributions of the study from three
perspectives, that is theoretical, conceptual, and simplicity contributions. Limitations
of the study and suggestions for future research are presented in the final chapter.

6
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