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Normally, paddy straw was disposed of via open burning even though it 
contains valuable lignocellulosic materials which can be readily converted into 
fermentable sugar for bioethanol production. The second-generation of 
bioethanol production utilizes useful lignocellulosic substrates especially 
cellulose for bioconversion process. However, this material is enclosed within 
hemicellulose and lignin matrix in the cell wall, making the accessibility of 
cellulose become the major problem in bioethanol production from such 
sources in consolidate bioprocessing (CBP). The CBP is preferable as it 
produces faster saccharification result, low risk of contamination and cost-
effective. Nevertheless, finding an optimize condition for efficient bioethanol 
production in CBP is still ambiguous as a different strain of lignocellulolytic 
fungi has their own environment preferences. Therefore, the main aim of this 
study is to explore a new approach in converting paddy straw into bioethanol 
using only filamentous fungi throughout the entire CBP process, thus 
eliminating the use of yeast as a fermenter organism. In this study, the 
research objectives involves the pretreatment method of paddy straw, selecting 
the best lignocellulolytic agent for hydrolyzation, optimizing all factors 
influencing the bioethanol production via one-factor-at-a-time (OFAT) as well 
as Response Surface Methodology analysis (RSM) and evaluating the final 
CBP set-up. 
 
 
Paddy straw sieved into three different sizes; 2 mm, 5 mm and 8 mm were 
prepared and underwent several physical pretreatment (autoclave, boil) and 
chemical pretreatment (HNO3 and NaOH). Size five millimeter paddy straw 
showed the highest cellulose content (35.61%) and the percentage of cellulose 
content went escalated to 72.47% when pretreated with 2% (w/v) sodium 
hydroxide (NaOH). Pretreatment of 2% (w/v) NaOH also shown the most 
efficient delignification and desilication process (1.02% lignin; 5.44% ash 
content) compared to others.  All strains of fast-growing fungi were 
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quantitatively assayed and the results indicate that the highest cellulases 
enzyme producer were Trichoderma asperellum B1581 (3.93 U/mL 
endoglucanase; 2.37 U/mL exoglucanase; 3.00 U/mL β-glucosidase; 54.87 
U/mL xylanase), followed by Aspergillus niger B2484 (5.60 U/mL 
endoglucanase; 1.08 U/mL exoglucanase; 1.57 U/mL β-glucosidase; 56.85 
U/mL xylanase). A further test on compatibility test revealed mutual 
intermingling between both T. asperellum B1581 and A. niger B2484. Six single 
factors that are crucial for bioethanol production were tested in one-factor-at-a-
time (OFAT) analysis for both selected strains of lignocellulolytic fungi. With all 
factors combined, T. asperellum B1581 prefers 2 days of both saccharification 
and fermentation process at 30°C with an amount of 3% substrate level and 
10% of media level. While A. niger B2482 prefers 3 days of saccharification, 1 
day of fermentation; at 30°C with an amount of 2% substrate level and 20% of 
media level. The results produced by OFAT were used as the centre point in 
the Central Composite Design (CCD) through Response Surface Methodology 
(RSM) software. However, comparison between the actual and the predicted 
value of ethanol produced in RSM’s recommended CBP set-up for both T. 
asperellum B1581 and A. niger B2484 showed no significant difference, thus 
proving the model’s stability to navigate experiment.  In order to test 
effectiveness T. asperellum B1581 and A. niger B2484 as a fungi consortium, 
several combination of consortia concentrations (spore/mL) were tested and 
the amount of ethanol was quantified.  However, a single strain of T. 
asperellum B1581 (6:0) was able to match the amount of ethanol produced by 
consortia of T. asperellum B1581 and A. niger B2484 (5:1, 4:2, 3:3, 2:4 and1:5) 
by producing the highest total amount of ethanol (1.11 g/L).  The final amount 
of ethanol detected by GC-FID was 1.25 g/L; which was not significantly 
different from the ethanol assayed spectrometrically (1.11 g/L).  
 
 
As a conclusion, a pretreatment of size 5 mm using 2% (w/v) NaOH had 
enhanced the breaking of cellulose-lignin complex, delignification, and 
desilication. Thus making the paddy straw becomes feasible for biofuel 
production. Both T. asperellum B1581 and A. niger B2484 were found to 
produce the highest cellulase enzyme and displayed mutual intermingling 
relationship suggesting the possibility of fungal consortium formation between 
these two species. Even though the recommended model for CBP set-up by 
RSM showed no significant differences between an actual and predicted value 
of ethanol produced, both species unable to improve the value of ethanol 
produced as consortia compare to single T. asperellum B1581 culture set-up. 
Thus, indicating that the potential of T. asperellum B1581 as single culture for 
bioethanol production in consolidated bioprocessing (CBP). 
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Pada kebiasaannya, jerami padi dilupuskan secara pembakaran terbuka 
walaupun ianya mengandungi bahan lignoselulosa yang dapat diubah menjadi 
gula fermentasi bagi penghasilan bioetanol. Bioetanol generasi kedua 
menggunakan substrat lignoselulosa yang penting terutamanya selulosa untuk 
proses biopenukaran. Namun begitu, bahan tersebut dilindungi rapi oleh 
hemiselulosa dan matriks lignin dalam dinding sel, lantas telah menjadi 
masalah utama dalam mengakses selulosa untuk pengeluaran bioetanol dari 
sumber tersebut menggunakan kaedah penyatuan bioproses (CBP). Keadah 
CBP adalah lebih sesuai digunakan kerana ia membolehkan proses 
pensakaridaan berlaku lebih cepat, kurang risiko pencemaran dan kos efektif. 
Walau bagaimanapun, pencarian keadaan yang optima bagi penghasilan 
bioetanol melalui CBP masih tidak jelas kerana kulat lignoselulolitik yang 
berlainan mempunyai pilihan persekitaran yang tersendiri. Oleh itu, tujuan 
utama kajian ini adalah untuk meneroka pendekatan baru dalam mengubah 
jerami padi menjadi bioetanol dengan hanya menggunakan kulat filamen 
sepanjang proses CBP, dan seterusnya mengelak penggunaan yis sebagai 
organisma penapaian. Oleh itu, matlamat penyelidikan merangkumi kaedah 
pra-rawatan untuk jerami padi, memilih agen lignoselulolitik yang terbaik untuk 
hidrolisis, mengoptimakan semua faktor yang mempengaruhi penghasilan 
bioetanol melalui satu faktor-pada-satu masa (OFAT) serta kaedah analisis 
tindakbalas permukaan (RSM) dan menilai tetapan akhir CBP. 
 
 
Jerami padi telah ditapis menggunakan saiz yang berlainan; 2 mm, 5 mm dan 
8 mm yang disediakan dan dikenakan pelbagai pra-rawatan fizikal (autoklaf, 
pendidihan) dan pra-rawatan kimia (HNO3 dan NaOH). Saiz lima millimeter 
jerami padi telah menunjukkan kandungan selulosa tertinggi (35.61%) dan 
peratusan kandungan selulosa meningkat sehingga 72.47%. apabila dirawat 
dengan 2% (w/v) Natrium hidroksida (NaOH). Pra-rawatan 2% (w/v) NaOH 
juga menunjukkan proses penghapusan lignin dan desilikasi yang paling 
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berkesan (1.02% lignin; 5.44% kandungan abu) berbanding dengan yang lain. 
Semua jenis kulat yang mempunyai kadar pertumbuhan yang cepat telah diuji 
secara kuantitatif dan hasilnya telah menunjukkan bahawa pengeluar enzim 
selulase yang tertinggi adalah Trichoderma asperellum B1581 (3.93 U/mL 
endoglucanase; 2.37 U/mL exoglucanase; 3.00 U/mL β-glucosidase; 54.87 
U/mL xylanase), diikuti oleh Aspergillus niger B2484 (5.60 U/mL 
endoglucanase; 1.08 U/mL exoglucanase; 1.57 U/mL β-glucosidase; 56.85 
U/mL xylanase). Ujian lanjut mengenai keserasian antara dua jenis kulat yang 
berbeza telah menunjukkan tiada persaingan antara kedua-dua pencilan T. 
asperellum B1581 dan A. niger B2484. Enam faktor telah diuji dalam analisis 
satu faktor-pada-satu masa-(OFAT) untuk kedua-dua jenis kulat lignoselulolitik 
yang terpilih. Dengan menggabungkan semua faktor, T. asperellum B1581 
memberi respon yang optima pada hari kedua bagi kedua-dua proses 
sakarifikasi dan penapaian pada suhu 30°C dengan jumlah paras substrat 3% 
dan 10% tahap media. Sementara A. niger B2482 memberikan respon yang 
optimum pada hari ketiga proses sakarifikasi, 1 hari penapaian; pada suhu 
30°C dengan jumlah substrat 2% dan 20% tahap media. Keputusan yang 
dihasilkan oleh OFAT telah digunakan sebagai titik tengah dalam Rekabentuk 
Komposit Sentral (CCD) melalui kaedah analisis tindakbalas permukaan 
(RSM). Walau bagaimanapun perbandingan antara nilai sebenar dan nilai 
ramalan etanol yang diberikan oleh perisian RSM untuk T. asperellum B1581 
dan A. niger B2484 tidak menunjukkan perbezaan yang nyata, dan telah 
membuktikan kestabilan model untuk digunapakai bagi tujuan eksperimen. 
Untuk menguji keberkesanan T. asperellum B1581 dan A. niger B2484 sebagai 
konsortium kulat, beberapa kombinasi kepekatan konsortia (spora/mL) telah 
diuji dan jumlah penghasilan etanol ditentukan. Namun, T. asperellum B1581 
(6:0) dapat menandingi jumlah etanol yang dihasilkan oleh konsortium T. 
asperellum B1581 dan A. niger B2484 (5:1, 4:2, 3:3, 2:4 dan 1:5) dengan 
penghasilan jumlah etanol yang tertinggi (1.11 g/L). Jumlah akhir etanol yang 
dikesan oleh GC-FID adalah 1.25 g/L; di mana nilainya tidak jauh berbeza 
dengan nilai etanol yang diuji secara spektrometri (1.11 g/L). 

Sebagai kesimpulan, pra-rawatan padi dengan saiz 5 mm menggunakan 2% 
(w/v) NaOH telah meningkatkan pemecahan kompleks selulosa-lignin, 
penghakisan lapisan lignin dan desilikasi. Oleh itu menjadikan jerami padi 
layak dan sesuai digunakan untuk penghasilan bioetanol. Kedua-dua T. 
asperellum B1581 dan A. niger B2484 menunjukkan keupayaan dalam 
menghasilkan enzim selulase tertinggi dan mempunyai hubungan 
percampuran yang baik untuk pembentukan konsortium kulat antara dua 
spesies ini. Walaupun model yang disyorkan untuk proses CBP oleh RSM tidak 
menunjukkan perbezaan yang nyata antara nilai sebenar etanol dan ramalan 
yang dihasilkan, kedua-dua spesies tidak dapat meningkatkan nilai etanol yang 
dihasilkan secara konsortia berbanding dengan tetapan kultur tunggal T. 
asperellum B1581. Oleh itu, penggunaan kulat T. asperellum B1581 secara 
tunggal mempunyai potensi untuk digunakan bagi pengeluaran bioetanol 
menerusi proses CBP. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1  Background of the study 
 
In December 2017, the Food and Agriculture Organization (FAO) has elevated 
its estimation of global rice production in the year 2017 by 2.9 million tonnes to 
759.6 million tonnes (503.9 million tonnes, milled basis) and China remains the 
largest paddy producer in the Asia region (FAO, 2018). Rice is one of the most 
favorite staple food for Malaysian, and with the implementation of National 
Agrofood Policy 2011-2020 (NAP 4), the local rice production has been 
increased to ensure country’s stock of rice is sufficient to meet future demands 
as the population of Malaysian increases over the years (Rajamoorthy, Abdul 
Rahim and Munusamy, 2015). About 23% of overall paddy weight will generate 
a by-product known as paddy straw, which is frequently disposed off by open 
burning to clear the fields for the next cycle of rice planting (Kaur and Phutela, 
2018). Paddy  straw  are  also refered as an agricultural waste comprising of 
the dry stalks of crops and  usually collected  after  harvesting period (Bakker, 
Elbersen, Poppens and Lesschen, 2013).  The disposal of paddy straw through 
open burning was carried out to eliminate the sources of rat infestation, insect 
pests and to prevent rice diseases (Rosmiza, Davies, Rosniza Aznie, Mazdi 
and Jabil, 2014). Burning of biomass material releases wide-range of gases 
such as carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), 
aldehyde, organic acid and inorganic elements, volatile and semi-volatile 
organic compounds, and particulate matter (PM); affecting people lives nearby 
(Yadav and Devi, 2018). 
 
 
Paddy straw is normally being utilised as materials for cattle feed, fuel for 
residential cooking, thatching for rural houses, gasification, power generation, 
mulching material, and paper mills (Roy and Kaur, 2015). The compositions of 
paddy straw are 32.15% cellulose, 28% hemicellulose and 19.6% lignin; which 
contains major constituents of lignocellulosic materials (Shawky, Mahmoud, 
Ghazy, Asker and Ibrahim, 2011). Ideally, only cellulose and hemicellulose 
have the ability to be converted into fermentable sugars (Moiser et al., 2005). 
These lignocellulosic materials (wood and agricultural crops residue) are 
promising feedstock for generating variety of great products such as bioethanol 
(Yoswathana, Phuriphipat, Treyawutthiwat and Eshtiaghi, 2010).  
 
 
Biofuels are renewable and sustainable energy resources which offer an 
alternative solution to our conventional fuel sources dilemma as well as an 
effort to put a halt to climate change (Hidayat, Rochmadi, Wijaya and Budiman, 
2016). Up to June 2017, the Malaysia Automotive Association (MAA) has 
released the total number of Malaysian vehicles on the roads standing at 
28,181,203 units (MAA, 2017). With the advancements in the transportation 
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industry in Malaysia, the demands of energy have increased over the years and 
urged scientist to develop new renewable energy source to replace the ordinary 
conventional fuel. Research on renewable energy has gained supports from 
Malaysian government with the implementation of 5-Fuel Policy (2001) under 
the 8th Malaysia Plan, in which targeted to achieve 5% mixture of RE, but, only 
manage to achieve 1.8% in the following year (Loh and Choo, 2013). 
 
 
The development of first-generation bioethanol based on food crops suffers 
from the criticism due to competition between food supply and bioethanol 
development; causing a sudden increase in food prices (Naik, Goud, Rout and 
Dalai, 2010). The weakness of first-generation bioethanol has highlighted the 
need to develop second-generation bioethanol based on lignocellulosic agro 
waste (Sims, Mabee, Saddler and Taylor, 2010). The second generation 
bioethanol develops from woody biomass are more energy efficient, flexible in 
terms of their feedstock and not competing with the human food resources 
(Havlik et al., 2011). Currently, the most progressive technologies in bioethanol 
production are focusing on transforming lignocellulosic feedstock into 
transportation energy (Bakker et al., 2013). Theoretically, paddy straw can 
generate up to 205 billion liter ethanol across the globe, from a single biomass 
feedstock with only 5% of total consumption (Belal, 2013).  
 
 
In order to develop bioethanol efficiently and cost-effective from cellulosic 
feedstock, the degradation of biomass by energetic cellulases and fermentation 
by dynamic fermentative microorganism are basically important (Takano and 
Hoshino, 2012). In this case, the lignocellulolytic fungi are the best choice. 
There are many species of lignocellulolytic fungi such as Aspergillus sp., 
Trichoderma sp., Fusarium sp. and Neurospora sp. (Ferreira, Mahboubi, 
Lennartsson and Taherzadeh, 2016). These natural occurring fungi may have 
several benefits with their fermentability in producing bioethanol over the 
standard baker's yeast Saccharomyces cerevisiae (Okamoto, Nitta, Maekawa 
and Yanase, 2011). Most of the lignocellulolytic fungi secrete extracellular and 
hydrolytic enzymes that work as a biocatalyst for lignin and cellulosic materials 
degradations (Mtui, 2012). These enzymes comprise of cellulolytic enzymes 
(e.g cellulase) and ligninolytic enzymes (e.g lignin peroxidase, manganese 
peroxidase and laccase) (Manavalan, Manavalan and Heese, 2015). Cellulase 
is a family of at least 3 groups of enzymes; endo-(1,4)-β-D-glucanase (EC 
3.2.1.4),  exo-(1,4)-β-D-glucanase (EC 3.2.1.91), and β-glucosidases (EC 
3.2.1.21) (Kuhad, Gupta and Singh, 2011a). Researchers have developed 
strong interests in the production of cellulases as of their utilizations in 
industries of alcohol fermentation, brewing, pulp and paper industry as well as 
textile industry (Nasr, Badawi, Mona, Demerdash and Barakat, 2015). Besides, 
cellulose and hemicellulose content can be enzymatically degraded into simple 
sugars by cellulases and hemicellulases (Berlowska et al., 2016).  
 
 
There are 4 significant processes for robust lignocellulosic biomass production 
which depend on the variations in saccharification or fermentation conditions: 
separate hydrolysis and fermentation (SHF), simultaneous saccharification and 
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fermentation (SSF), consolidated bioprocessing (CBP) and simultaneous 
saccharification and co-fermentation (SSCF) (Parisutham, Kim, and Lee, 2014). 
The consolidated bioprocessing, or CBP, converts lignocellulosic material into 
desired products in a single step without adding exogenous enzymes and this 
process certainly has been a subject of research interest in recent years (Olson, 
McBride, Shaw and Lynd, 2012). A combination of enzyme secretion, 
saccharification, and fermentation process in the same bioreactor has been 
known for economical manufacturing of bioethanol by evading the high 
expenses on investment, feedstock as well as the equipment for microbial 
enzyme production (Hasunuma et al., 2013). The principal of cost reduction in 
CBP derives from either: (1) fermentative organism secretes essential 
cellulolytic enzymes for degradation of biomass or (2) cellulolytic organism 
which has the ability to ferment and thus eliminating the need for a separate 
enzyme production step (Linger and Darzins, 2013). 
 
 
1.2  Problem statement 
 
Even though bioethanol may induce various benefits that lead towards 
minimizing the environmental impact, more research is required especially in 
fermentation technology modification, preparation of raw materials and for 
economical bioethanol production (Bhatia, Johri and Ahmad, 2012). Paddy 
straw is a good material for the development of bioethanol but the presence of 
high ash and silica content in the feedstock has limited the bioconversion 
process to occur efficiently (Ibrahim, 2012). Unlike the first-generation of 
bioethanol, the second-generation utilizes the lignocellulosic substrates known 
as cellulose which is enclosed within hemicellulose and lignin matrix in the cell 
wall, making the accessibility of cellulose become the major problem in 
bioethanol production from such sources (Wi, Choi, Kim, Kim and Bae, 2013).  
 
 
The mechanism of bioconversion process involved the production of sugars 
from biomass which requires new biotechnological improvements in order to 
ensure their efficiency enhancement and also economically applicable. 
Although some fungal strains are exclusively known as lignocellulolytic and 
thermostable, most of these fungal strains failed to secrete satisfactory amounts 
of cellulolytic enzymes that are mandatory for a productive cellulose conversion 
into desired product (Dashtban, Schraft and Qin, 2009). Choosing an 
appropriate cellulase for saccharification process is extremely challenging as 
each material have structural difference and difference of enzymatic activities in 
industrial cellulase reagents (Takano and Hoshino, 2018).  
 
 
Besides selecting a productive strain, designing a suitable culture condition is 
also crucial to improve the efficiency of ethanol production systematically by 
either adding or eliminating components from the formulation, which resulted in 
a more stabilized and reproducible culture conditions (Dong, Zhao, Ma and 
Zhang, 2012). The amount of cellulase production seems to rely upon several 
factors such as incubation period, pH, temperature, carbon, nitrogen sources 
and cations (Gautam et al., 2011).  
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The consolidated bioprocessing (CBP), in which enzyme secretion, break down 
of substrate, and fermentation process is achieved in one-step using either 
single microorganism or a group of compatible microorganisms and also known 
as the most economically attractive method for bioconversion of lignocellulosic 
biomass into bioethanol (Olson et al., 2012; Ho et al., 2012; Wang et al., 
2015a). However, the most difficult step in CBP is the selection of an 
appropriate microorganism or microbial consortium that secretes suitable 
hydrolytic enzymes corresponding to the lignocellulosic material, and produce 
ethanol (Paulova, Patakova, Branska, Rychtera and Melzoch, 2015).  
 
 
1.3  Objectives of the study 
 
The idea of this study is to utilize pretreated paddy straw as bioethanol material 
using consolidated bioprocessing (CBP) approach with the help from 
lignocellulolytic fungi. Therefore, the main aim of the study is to explore the use 
of lignocellulolytic fungi in consolidated bioprocessing (CBP) for an efficient 
conversion of paddy straw into bioethanol. The outline of the research approach 
is shown in Figure 1.1 and the design of the study was based on the following 
specific objectives to address the foregoing issues as stated in 1.2: 
 
 

i. To determine the optimized pretreatment method for paddy straw in 
removing silica, delignification and enhanced the accessibility towards 
cellulosic content 

ii. To determine the best lignocellulolytic agent for hydrolyzation of 
lignocellulosic materials of paddy straw.  

iii. To determine the factors that influences the optimization of bioethanol 
production via one-factor-at-a-time (OFAT) analysis and optimizing the 
physico-chemical parameters using Response Surface Methodology 
analysis (RSM). 

iv. To evaluate the efficiency of the final CBP set-up using either single 
microbe or consortium microbes to improve the amount of ethanol yield. 
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Figure 1.1: Summary of research design and attainment of objectives  
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