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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
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FREE AND MIXED CONVECTION BOUNDARY LAYER FLOW, HEAT
AND MASS TRANSFER IN NANOFLUID USING BUONGIORNO MODEL

By

NOR ASHIKIN BINTI ABU BAKAR

October 2018

Chairman: Norfifah binti Bachok @ Lati, PhD
Faculty: Science

The Buongiorno model is used in the study which takes into account the effects
of Brownian motion and thermophoresis on free and mixed convections boundary
layer problem. The governing partial differential equations are transformed into a
nonlinear ordinary differential equations using similarity transformations. These
ordinary differential equations are then solved numerically using shooting method
with the help of Maple software and bvp4c codes in Matlab software.

Numerical results for the skin friction coefficient, local Nusselt number and local
Sherwood number as well as velocity, temperature and nanoparticle concentration
profiles are presented graphically. The governing parameters in this study are
Brownian motion parameter Nb, thermophoresis parameter Nt, suction parameter S,
mixed convection parameter λ , stretching or shrinking parameter ε , velocity ratio
parameter ϖ , velocity slip parameter σ , Biot number Bi, nonlinear parameter n,
curvature parameter γ , Soret number Sr and Dufour number Du. It is observed that
the skin friction coefficient and local Nusselt and Sherwood numbers both represent
the heat and mass transfer rate are significantly controlled by these parameters.
Brownian motion and thermophoresis parameters are able to enhance the heat
transfer rate when both have small values. An increment of the heat transfer rate
increases the cooling process, while the decrement of heat transfer rate enhanced
the heating process at the surface.

Dual solutions are found exists for a certain range of suction, stretching or shrin-
king, mixed convection and moving parameters. It is noticed that suction and partial
slip widens the range in which the dual solutions exist. Furthermore, the first solu-
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tion is found stable meanwhile the second solution is unstable and it is obtained by
performing a stability analysis.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

OLAKAN BEBAS DAN CAMPURAN ALIRAN LAPISAN SEMPADAN,
PEMINDAHAN HABA DAN JISIM DALAM NANOBENDALIR

MENGGUNAKAN MODEL BUONGIORNO

Oleh

NOR ASHIKIN BINTI ABU BAKAR

Oktober 2018

Pengerusi: Norfifah binti Bachok @ Lati, PhD
Fakulti: Sains

Model Buongiorno telah digunakan dalam kajian ini yang mengambil kira kesan
gerakan Brownan dan termoforesis terhadap masalah lapisan sempadan bagi
olakan bebas dan campuran. Persamaan pembezaan separa menakluk telah dijel-
makan kepada persamaan pembezaan biasa tak linear menggunakan penjelmaan
keserupaan. Persamaan pembezaan biasa ini telah diselesaikan secara berangka
menggunakan kaedah meluru dengan bantuan perisian Maple dan kod bvp4c dalam
perisian Matlab.

Keputusan berangka untuk pekali geseran kulit, nombor Nusselt setempat dan
nombor Sherwood setempat dan juga profil halaju, profil suhu dan profil kepekatan
nanozarah telah ditunjukkan dalam bentuk graf. Parameter menakluk dalam
kajian ini adalah parameter gerakan Brownan Nb, parameter termoforesis Nt,
parameter sedutan S, parameter olakan campuran λ , parameter helaian meregang
atau mengecut ε , parameter nisbah halaju ϖ , parameter halaju gelinciran σ , nombor
Biot Bi, parameter tak linear n, parameter kelengkungan γ , nombor Soret Sr dan
nombor Dufour Du. Didapati bahawa pekali geseran kulit dan nombor Nusselt
setempat dan nombor Sherwood setempat yang kedua-duanya mewakili kadar
pemindahan haba dan kadar pemindahan jisim telah dikawal dengan ketara oleh
parameter ini. Parameter gerakan Brownan dan termoforesis dapat meningkatkan
kadar pemindahan haba apabila kedua-duanya nilai kecil. Peningkatan kadar
pemindahan haba akan meningkatkan proses penyejukan, sementara penguran-
gan kadar pemindahan haba akan mempercepatkan proses pemanasan di permukaan.
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Penyelesaian dual wujud untuk sebahagian julat bagi parameter sedutan, meregang
atau mengecut, olakan campuran dan nisbah halaju. Diperhatikan bahawa sedutan
dan gelinciran separa menambah julat bagi penyeselaian dual wujud. Tambahan
pula, penyelesaian pertama didapati stabil manakala penyelesaian kedua tidak stabil
dan diperhatikan dengan mempersembahkan analisis kestabilan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Science and engineering devices can be studied either experimentally or analy-
tically. This thesis is focus on analytical approach and numerical approach, which
are fast and inexpensive. The results obtained are subject to the accuracy of the
assumptions, approximations and idealizations made in the analysis. The study of
physical phenomena is provided in precise mathematical model for some physical
laws. Thus, the mathematical modeling is used to investigate a wide variety of
problems in science and engineering. Sometimes, there is an unrealistic model that
obviously give unaccurate and unacceptible results. In that case, the model should
be modified and rearrange so that it will be more realistic and gives an accurate
results.

One of the field in physical science that deals with both stationary and moving
bodies under the influences of forces is called mechanics. Fluid mechanics can be
defined as the science that deals with the behaviour of fluids at rest (fluid statics) or
fluid in motion (fluid dynamics) and the interactions of fluids with solids or other
fluids at the boundaries. Fluid mechanics phenomenon can be observed in natural
way, daily activities, an engineering systems and human body. For example in the
pumping of blood in the heart, breathing machines, an artificial hearts, refrigerator,
fuel pump, lubricants systems, piping systems for water and gas for an individual
house, aircraft, wind turbines, power plants and ocean waves.

The conception of heat arises from that particular sensation of warmth and coldness
which are immediately experienced on touching a body. This is accomplished by
the transfer of energy from the warm medium to the cold one. These phenomenon
deals with the determination of the rates of such energy transfers and it is called
heat transfer. Heat can be transferred in three different modes, namely conduction,
convection and radiation. Conduction can be explained as the transfer of energy
from the more energetic particles of a substance to the adjacent less energetic ones
as a result of interactions between the particles. Conduction can take place in
solids, liquids or gases. In gases and liquids, conduction is due to the collisions
and diffusion of the molecules during random motion. In solids, it is due to the
combination of vibrations of the molecules in a lattice and the energy transport by
free electrons. Convection is the mode of energy transfer between a solid surface and
the adjacent liquid or gas that is in motion and it involves the combined effects of
conduction and fluid motion. The faster the fluid motion, the greater the convection
heat transfer. Convection can be classified into two types which are natural (or
free) convection and forced convection. Natural convection happens when the fluid
motion is caused by buoyancy forces that are induced by density differences due to
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the variation of temperature in the fluid. In contrast, forced convection occurs if the
fluid is forced to flow over the surface by external sources such as a fan, pump or
the wind. However, there has another mechanism which has been called as mixed
convection where the phenomenon where both forced and natural (free) convection
mechanisms significantly and concurrently contribute to the heat transfer. In this
thesis, the natural convection and mixed convection are considered to investigate the
behaviour the flow and heat transfer towards these two convections. The last mode
of heat transfer is radiation, where it is the energy emitted by matter in the form
of electromagnetic waves (or photons) as a result of the changes in the electronic
configurations of the atom or molecules.

Mass transfer is another important mechanism in fluid mechanics field. Mass trans-
fer specifically refers to the relative motion of species in a mixture due to concen-
tration gradients. The definition is the movement of a chemical species from a high
concentration region towards a lower concentration one relative to other chemical
species present in the medium. Heat and mass transfer are analogous to each other
and several parallels can be drawn between them. Some applications of mass trans-
fer include the dispersion of contaminants, drying and humidifying, segregation and
doping in materials, vaporisation and condensation in a mixture, evaporation (boil-
ing of a pure substance is not mass transfer), combustion and most other chemical
processes, cooling towers, sorption at an interface (adsorption) or in a bulk (absorp-
tion), and most living-matter processes as respiration (in the lungs and at cell level),
nutrition, secretion and sweating.

1.2 Research Background

Fluid dynamics relate to many branches of science and engineering and have consid-
ered many aspects in our daily life. In this subsection, some important keywords in
the thesis will be introduced.

1.2.1 Boundary Layer Theory

The concept of boundary layer flow was introduced by a German engineer, Ludwig
Prandtl in 1904. Boundary layer is a thin layer of fluid near to the solid surface for
which the velocity flow changes form zero at the surface to the free stream velocity
away from the surface. According to Prandtl’s theory, when a real fluid flows past
a stationary solid boundary, the flow will be divided into two regions. First, a thin
layer adjoining the solid boundary where the viscous force and rotation cannot be
neglected, and second, an outer region where the viscous force is very small and
can be neglected. The flow behaviour is similar to the upstream flow (Schlichting,
1979). The flow within the boundary layer is useful in many problems, especially in
aerodynamics, including, wing stall, the skin friction drag on an object and the heat
transfer that occurs in high speed flight. The boundary layer theory is explained and

2
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it requires some assumptions in order to express out the boundary layer equations.

• All of the viscous effects of the flowfield are confined to the boundary layer,
adjacent to the wall. Outside of the boundary layer, viscous effects are not im-
portant, so that flow can be determined by inviscid solutions such as potential
flow or Euler equations.

• The viscous layer is thin compared to the length of the wall. If L is a charac-
teristic length of the the wall, then δ/L� 1. Also, x = O(L) and y = O(δ ).
This assumption is obviously not valid near the leading edge of the wall; other
methods (such as stagnation flow) are used to determine the upstream bound-
ary condition.

• The boundary conditions of the boundary layer region are the no-slip condition
at the wall, and the free-stream condition at infinity; u(x,0) = 0, v(x,0) = 0,
u(x,∞) =U and v(x,∞) = 0, where u and v are velocity component in x- and
y-directions.

• In the boundary layer, u = O(U).

The boundary layer equations in partial differential equation form is discussed in de-
tail in Chapter 3. The boundary layer is divided into two which are velocity boundary
layer and thermal boundary layer.

1.2.2 Moving Plate

Moving plate is described as a plate that moves downstream or upstream from the
origin in a uniform free stream. Any flow disturbance created by the roll or moving
is neglected. The boundary layer behavior here appears to be different from what
would be expected if the sheet is considered as a moving flat plate of finite length
on which the boundary layer would grow in a direction opposite to the direction of
motion of the plate, or away from the leading edge of the plate. The study of moving
plate is important in engineering area such as polymer industry, glass fiber drawing,
crystal growing or plastic extrusion.

1.2.3 Stretching and Shrinking Surface

Stretching surface is a surface which being stretched in its own plane or it occurs
when the velocity at the boundary is stretched from a fixed point. Some applications
in engineering and industrial processes are aerodynamic extrusion of plastic and rub-
ber sheets, hot rolling, wire drawing and glass-fiber production. Shrinking surface
is a surface that has a shrunk surface when the velocity of the boundary is moving
towards a fixed point. It is applied to the shrinking film for packing of bulk products,
effects of capillary in small pores and hydraulic behaviors of clay for agriculture pur-
poses. Recently, there are number of studies that considering stretching or shrinking

3
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due to a flat plate and cylinder. A flow past a cylinder will acquire vorticity in a thin
boundary layer adjacent to a cylinder. Boundary layer separation can occur behind
the cylinder and cause the lower pressure to drag the flow to the downstream of the
cylinder.

Figure 1.1: Physical model of stretching or shrinking in flat plate

1.2.4 Stagnation-Point

A stagnation point is a point in a flow field where the local velocity of the fluid is
zero. Stagnation points exist at the surface of objects in the flow field, where the fluid
is brought to rest by the object. Fluid does not accumulate at the stagnation point, it
flows away one way or the other. Close to the stagnation point, it flows very slowly
and the closer you get, the slower it flows. Streamlines can terminate at a stagnation
point. Many attention has been given to the study of stagnation-point flows because
of their importance in many engineering disciplines for example cooling of electronic
devices by fans, cooling of nuclear reactors, and many hydrodynamics processes.
Stuart (1959) among the earlier work who investigated the stagnation-point flow.

1.2.5 Permeable Surface

Permeable surface is described by defining the terms of suction and injection. Suc-
tion is the movement of fluid out of the surface or plate, while injection is happens
when the fluid move in the surface. So, permeable surface can be defined as a surface

4
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Figure 1.2: Physical model of stretching or shrinking in cylinder

Figure 1.3: Physical model of stagnation-point

that allows the fluid to move in and out. An interest has been shown in the applica-
tion of suction or injection through the surface, the former to maintain laminar flow
and to prevent or postpone boundary layer separation to reduce drag, the latter to
provide surface cooling on the wings of high-speed aircraft or on turbine blades. It
is also well known that suction or injection of fluid through the surface, as in mass
transfer cooling can significantly modify the flow field and affect the rate of heat
transfer convection (Pop and Watanabe, 1992).

1.2.6 Partial Slip

Partial slip occurs when the fluid and the plate cannot stick together due to slippery
surface of the plate. Some of the reseachers investigated the boundary layer flow

5



© C
OPYRIG

HT U
PM

Figure 1.4: Physical model of permeable surface

with no slip condition. Sometimes, in certain cases, the no slip condition can be
change to partial slip condition, which is given by

u(x,y) = L
∂u
∂y

,

where u is velocity of the fluid, L is the length of slip.

Figure 1.5: Physical model of partial slip

1.2.7 Linear and Nonlinear

In this research, the fluid velocity u for similarity solutions comes in the form of
linear and nonlinear. A simple equation for linear case is given by ax+b = 0, where
a and b are constant and a 6= 0. A linear equation gives straight line when graphed.
It has a constant slope value and the degree of a linear equation is always 1. A
nonlinear equation is written as axn + b = 0, where n is number of degree and a
and b are constant. This equation look like a curve when plotted in a graph and
has a variable slope value. The degree of a nonlinear equation is at least 2 or other
higher integer values. As the number of degree increases, the curvature of the graph
increases. In this study, it is important to examine the linear and nonlinear case on
the behaviour of the existence of dual solutions.

6
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1.2.8 Nanofluid

Nanofluid technology has emerged as a new enhanced heat transfer technique in re-
cent years. It is formed by adding nanoparticles and a base fluid for which can greatly
enhance the thermal conductivity and convective heat transfer. The size of nanopar-
ticles is very small within the range 1 to 100 nanometer. Nanofluid can be classified
as a new class of fluid mixtures engineered by suspending nanometer-sized parti-
cles in conventional base fluids. The applications of nanofluids in engineering area
such as microelectronics, coolant, fuel cells, pharmaceutical processes, domestic re-
frigerator and chiller. With the recent improvements in nanotechnology, there are
two successful modeling of heat transfer convection in nanofluids. The first model-
ing was pioneered by Buongiorno (2006) and second, Tiwari and Das (2007). Since
then, a large number of studies about nanofluid have been widely investigated toward
various aspects. These two nanofluid are described as follows

Figure 1.6: Physical model of nanofluid

1.2.8.1 Buongiorno Model

This model is a two phase model where the slip velocity between base fluid and
nanoparticles are not equal to zero. Buongiorno (2006) takes into account seven slip
mechanisms which produce a relative velocity between the base fluid and nanopar-
ticles, including, inertia, thermophoresis, diffusiophoresis, Brownian motion, fluid
drainage, gravity and Magnus effect. However, only two out of these seven slip
mechanisms are totally important in nanofluids, which are Brownian motion and
thermophoresis. These two mechanisms play an important role in heat transfer con-
vection and can be defined as follows

• Brownian motion: is a random movement of particles suspended in a
nanofluid. Brownian motion has ability to enhance the thermal conductivity.
It only exists when the size of nanoparticles is small enough.

• Thermophoresis: it occurs due to kinetic energy in which the molecule with
high temperature at higher energy produces greater momentum compared to
the molecules at low temperature. This causes the movement of particles in
opposite directions with the temperature gradient.

7
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1.2.8.2 Tiwari and Das Model

This model is a phase model which considered the viscosity models proposed by
Brinkman (1952) and Maxwell-Garnet thermal conductivity. Since this model is
a phase model, base fluid and nanoparticles are said to be in thermal equilibrium,
flowing at the constant velocity and no-slip condition between them. This model
takes into account the effect of nanoparticles volume fraction. An increment in
the nanoparticle volume fraction rate increases the effective thermal conductivity
of nanofluid. According to Jang and Choi (2007), only a small amount of the solid
volume fraction is needed to make sure its effectiveness. Futhermore, increase the
thermal conductivity leads to enhance the performance of the heat transfer occurs on
the wall.

1.2.9 Dimensionless Parameters

There are some dimensionless parameters that that have an important role in the
behaviour of fluids. Nondimensional scaling provides a method for developing di-
mensionless groups that can provide physical insight into the importance of various
terms in the system of governing equations. Furthermore, dimensionless number is
able to solve a problem more easily.

1.2.9.1 Prandtl Number

Prandtl number, Pr can be referred as a dimensionless parameter used in the calcu-
lation of heat transfer between a moving fluid and a solid body. The main use of
the Prandtl number in heat transfer problems is to control the relative thickness of
the momentum and thermal boundary layers. It is noted that the heat diffuses very
quickly compared to the velocity (momentum) when the Pr is small. This means
that the thickness of the thermal boundary layer is much bigger than the momen-
tum boundary layer for liquid metals. This Prandtl number was proposed by Ludwig
Prandtl in 1904. The equation of the Prandtl number can be expressed as follows

Pr =
viscous diffusion rate
thermal diffusion rate

=
µCρ

k
=

ν

α
,

where µ is the dynamic viscosity, Cp is the specific heat, ρ is the fluid density, k is
the thermal conductivity, ν is the kinematic viscosity and α is thermal diffusivity.
The Prandtl number is often used in heat transfer and free and forced convection
calculations. Prandtl number gives the information about the type of fluid. Besides, it
provides the information about the thickness of thermal and hydrodynamic boundary
layer.

8
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1.2.9.2 Reynolds Number

Reynolds number was introduced by Sir George Stokes in 1851, but Osborne
Reynolds was popularized the usage of this number in 1883. Reynolds number is
a dimensionless number used in fluid mechanics to indicate whether fluid flow past
a body or in a duct is steady or turbulent. This is evaluated as the ratio of inertial
forces to that of viscous forces. It is given by the following relation

Re =
inertial force
viscous force

=
ρuL

µ
=

uL
ν
,

where ρ is density of the fluid, u is velocity of the fluid, L is characteristic linear
dimension, µ is dynamic viscosity of the fluid and ν is kinematic viscosity of the
fluid. On the other hand, when the Reynolds number is less than about 2000, flow
in a pipe is generally laminar, where as, at values greater than 2000, flow is usually
turbulent.

1.2.9.3 Grashof Number

Grashof number was named after Franz Grashof in 1921. Grashof number is a nondi-
mensional number used both in fluid mechanics and heat transfer. This number is
frequently used in cases where natural convection is involved. Essentially, it is use
where buoyancy force is predominant. Grashof number can be defined as the ratio
of buoyancy force to viscous force, and it is written as

Gr =
buoyancy force
viscous force

=
gβ (Tw−T∞)L3

ν2 ,

where g, β , Tw, T∞, L and ν are defined as acceleration due to gravity, coefficient
of thermal expansion , surface temperature, bulk temperature, vertical length and
kinematic viscosity, respectively. Grashof number is very similar to the Reynold
number. Only difference is that Reynolds number is used for forced convection cases
where Grashof number is used for natural convection phenomenon. When Gr >> 1,
the viscous force is negligible compared to the buoyancy and inertial forces.

1.2.9.4 Lewis Number

Lewis number is the ratio of thermal diffusivity and mass diffusivity. It is used to
characterize fluid flows where there is simultaneous heat and mass transfer. The
Lewis number is therefore a measure of the relative thermal and concentration
boundary layer thicknesses. The Lewis number can also be expressed in terms of
the Prandtl number and the Schmidt number, Sc. Here, the term is written as

Le =
thermal diffusion rate

mass diffusion rate
=

Sc
Pr

=
α

D
,

9



© C
OPYRIG

HT U
PM

where α is thermal diffusivity and D is mass diffusivity. The Lewis number physi-
cally relates the relative thickness of the thermal layer and concentration boundary
layer. Besides, it indicates that thermal boundary layer and mass transfer by diffusion
are comparable, and temperature and concentration boundary layers almost coincide
with each other.

1.2.9.5 Biot Number

A French physicist Jean-Baptiste Biot was introduced the Biot number which is a
dimensionless quantity used in heat transfer calculations. It gives a simple index of
the ratio of the heat transfer resistances inside of and at the surface of a solid. The
Biot number is defined as

Bi =
conductive resistance in solid

convective resistance in thermal boundary layer
=

hL
ksolid

,

where h is heat transfer coefficient, L is characteristic length and k is thermal con-
ductivity of the solid. Biot number determines uniformity of temperature in solid.
The heat flow experiences two resistances. First, within the solid and second, at the
surface of the solid. Bi� 1 If the thermal resistance of the fluid or solid interface
exceeds that thermal resistance offered by the interior of the solid and when Bi>> 1,
the interior resistance to heat flow will exceed that of the fluid or solid boundary.

1.2.9.6 Soret Number

Soret number or thermal-diffusion was first observed and reported by Carl Ludwig
in 1856 and further understood by Charles Soret in 1879. Soret number is a phe-
nomenon observed in mixtures of mobile particles where the different particle types
exhibit different responses to the force of a temperature gradient. When heat and
mass transfer occur simultaneously in a moving plate, the relations between the
fluxes and the driving potentials are of a more intricate nature. Hence, mass flux
can be created by temperature gradients. It can defined as

Sr =
thermodiffusion coefficient

diffusion coefficient
=

DT
D

=
DmKT (Tw−T∞)

Tmν(Cw−C∞)
,

where Dm is coefficient of mass diffusivity, KT is thermal diffusion ratio, Tw is wall
temperature, T∞ is bulk temperature, Tm is mean fluid temperature, ν is kinematic
viscosity, Cw is wall concentration and C∞ is bulk concentration.

1.2.9.7 Dufour Number

Dufour number was first observed by L. Dufour in 1873. Dufour number or
diffusion-thermo is the phenomenon where the energy flux caused by a composition

10
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gradient. This happen when heat and mass transfer occurs simultaneously between
the fluxes, the driving potential is of more intricate nature, as energy flux can be
generated not only by temperature gradients but by composition gradients as well.
Dufour number is equal to the increase in enthalpy of a unit mass during isothermal
mass transfer divided by the enthalpy of a unit mass of mixture.

Du =
DmKT (Cw−C∞)

cscpν(Tw−T∞)
,

where Dm is coefficient of mass diffusivity, KT is thermal diffusion ratio, Cw is wall
concentration, C∞ is bulk concentration, cs is concentration susceptibility, cp is spe-
cific heat at constant pressure, ν is kinematic viscosity, Tw is wall temperature and
T∞ is bulk temperature.

1.2.9.8 Brownian Motion

The random movement of microscopic particles suspended in a liquid or gas, caused
by collisions between these particles and the molecules of the liquid or gas. This
movement is named after a Scottish botanist, Robert Brown (1773-1858) namely
Brownian motion. He investigated the movement of pollen suspended in water. It
provided strong evidence in support of the kinetic theory of molecules. The equation
is mentioned as

Nb =
(ρc)pDB(Tw−T∞)

(ρc) f ν(Cw−C∞)
,

where (ρc)p is heat capacity of the nanofluid, (ρc) f is heat capacity of the fluid,
DB is Brownian diffusion coefficient, Tw is wall temperature, T∞ is bulk tempera-
ture, Cw is wall concentration, C∞ is bulk concentration and ν is kinematic viscosity.
Brownian motion plays an important role in the heat transfer.

1.2.9.9 Thermophoresis

Thermophoresis is the phenomenon where the particle motion in a temperature gra-
dient, from a hotter to a colder region. The thermophoresis number can be written
as

Nt =
(ρc)pDT (Tw−T∞)

(ρc) f T∞ν(Cw−C∞)
,

where (ρc)p is heat capacity of the nanofluid, (ρc) f is heat capacity of the fluid, DT
is thermophoresis diffusion coefficient, Tw is wall temperature, T∞ is bulk tempera-
ture, Cw is wall concentration, C∞ is bulk concentration and ν is kinematic viscosity.
Samilar to Brownian motion, the thermophoresis plays an important role in the heat
transfer as well as the thicknesses of the thermal and concentration boundary layer.

11
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1.2.9.10 Skin Friction Coefficient

Skin friction coefficient is a dimensionless skin shear stress which is nondimension-
alized by the dynamic pressure of a free stream. It can be defined the shearing stress
exerted by the wind at the earth’s surface, and the square of the surface wind speed.
The friction may occurs between a fluid and the surface of a solid moving through
it or between a moving fluid and its enclosing surface. The skin friction coefficient
can be expressed as

C f =
τw

ρU∞
2 ,

where τw is local wall shear stress, ρ is fluid density and U∞ is free stream velocity.
The local wall shear stress τw is defined as

τw = µ

(
∂u
∂y

)
y=0

,

with µ is kinematic viscosity.

1.2.9.11 Nusselt Number

Nusselt number is a dimensionless parameter that can solve the thermal convection
and it is describe as the ratio of convective to conductive heat transfer across (normal
to) the boundary. The Nusselt number is

Nu =
convective heat transfer
conductive heat transfer

=
hL

kfluid
,

where h is the convective heat transfer coefficient of the flow, L is the characteristic
length, k is the thermal conductivity of the fluid. Moreover, when Nu is smaller, the
conduction is more significant, while Nu is greater, the convection is more promi-
nent. Besides, the heat is transferred accross the boundary layer by pure conduction
when Nu = 1.

1.2.9.12 Sherwood Number

Lastly, Sherwood number is one of the dimensionless parameter that related to mass
transfer. Sherwood number represents the dimensionless concentration gradient at
the solid surface and it can be expressed as the ratio of convective to diffusive mass
transport.

Sh =
convective mass transfer
diffusive mass transfer

=
hDL

Dfluid
,

12
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where hD is the mass transfer coefficient of the flow, L is the characteristic length,
D is the mass diffusivity of the fluid. Sherwood number is able to find the diffusion
boundary layer thickness and hence the concentration gradient.

1.3 Problem Statement

The problems regarding the boundary layer flow due to a stretching or shrinking
surface in nanofluid have been given an attention by many authors. For the present
study, the term rotating boundary layer flow over three different problems which
are linear, exponential and nonlinear with suction effects at the surface are studied.
Some of the issues about the rotating flow are:

1. How does the mathematical model for free convection (and mixed convection)
past a stretching or shrinking sheet (and moving plate) are formulated?

2. What happens to the nature of skin friction coefficient, local Nusselt number
and local Sherwood number when considering moving plate and stretching or
shrinking sheet?

3. What are the values of suction on boundary layer flow over a stretching or
shrinking sheet for cases of cylinder and nonlinear to get dual solutions?

4. What are the distinction in the values of partial slip for the dual solutions exist
when deal with free and mixed convection?

5. How does the impact of Brownian motion and thermophoresis in nanofluid to
the flow, heat and mass transfer characteristics?

6. How does the thermal convective boundary condition, Soret and Dufour effects
would impact the behaviour of the flow, heat and mass transfer rate?

1.4 Objective and Scopes

The main objectives of the study are:

1. To extend the problem of

(a) Free convection boundary layer stagnation-point flow over a stretching
or shrinking sheet to a cylinderical case.

(b) Free convection boundary layer flow over a nonlinearly stretching or
shrinking sheet to suction, partial slip, Soret and Dufour effects.

(c) Free convection boundary layer flow over a stretching or shrinking sheet
to a cylinderical case, suction, Soret and Dufour effects.

(d) Mixed convection boundary layer flow over a moving plate to the case of
partial slip and thermal convective boundary condition.

13
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(e) Mixed convection boundary layer flow over a moving plate to the case of
Soret and Dufour effects.

2. To construct the mathematical formulation, design an algorithm and interpret
numerically the free and mixed convection boundary layer flow, heat and mass
transfer of nanofluid toward the problems of 1(a), 1(b), 1(c), 1(d) and 1(e)
utilizing the shooting technique in Maple programming.

3. To perform stability analysis for dual solutions exist in problem 1(a) by finding
the smallest unknown eigenvalues.

The scope is limited to the two-dimensional free and mixed convection boundary
layer flow, steady (no change of velocity, temperature or pressure at a point with
time), laminar (smooth layer of fluid) and incompressible (density is constant) in
nanofluid for which the nanofluid model is proposed by Buongiorno (2006). This
model contemplates the impact of the Brownian motion and thermophoresis.

1.5 Significant of the Study

Free convection heat transfer can be observed in our daily life. It is also exten-
sively used in the areas of engineering. One of the applications can be found in
telecommunication where the air flow and temperature distribution are analyzed in
a sealed telecommunications module that is cooled only by free convection. The
aluminum enclosure contains several heat-generating components. No fans or other
active devices are used to provide component cooling. All heat transfer is caused by
buoyancy-driven flow within the enclosure and by conduction to the outer casing.
The module is simulated in a still-air environment. This means that free convection
of the surrounding air is the primary mechanism for removing heat dissipated by
the components. Due to the external air is not simulated, it is simulate this with a
film coefficient (convection) boundary condition applied to the external surfaces of
the enclosure. Sometimes, free convection alone is not enough to dissipate all the
necessary heat generated (Ahmad et al., 2016). It has been solved by considering
combined of free and force convection, called mixed convection. Some purpose of
mixed convection are are nuclear reactor technology and some aspects of electronic
cooling (Chaurasia et al., 2016).

The rapid development of nanofluid technology aimed to enhance heat transfer.
Throughout the transfer of heat energy, it require heat to be added, removed or
moved from one process to another process and this situation provide the fluid
heating or cooling. New technological developments are increasing thermal loads
and requiring faster cooling. Nanofluid is one of the medium to taking part in the
enhancing the heat transfer. The motivations of using nanofluid can be explained by
adding of nanoparticle with higher thermal conductivity into a conventional fluid
with low thermal conductivity where the mixture is able to enhance the thermal
conductivity. Due to small size of nanoparticle, it has better dispersion behaviour,
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less clogging and abrasion as well as it has the larger surface area. The using of
nanofluid may create a saving in energy, reduce process time, raise thermal rating
and lengthen the working life of equipment. Cooling is one of the most important
technical challenges facing numerous industries such as automobiles, biomedical
and electronics.

The most important part in the automobile cooling system of an vehicle engine is
radiator (Dhale et al., 2015). When the coolant flows through the radiator tubes,
heat is dissipated along the tube walls and fins due to the flow of air through
conduction and convection. Some of the conventional fluids used in the radiator are
water, coolants, engine oil or ethylene glycol. However, it give less adequacy. To
acquire more viability, the nanoparticles are added in the fluid. Radiator system
plays a vital role in preventing the vehicle engine from overheating due to friction.
Conventionally, a car radiator pumps water as the heat transfer medium through the
chambers within the engine block to absorb the heat and spread it away from other
important parts. A radiator is designed with louvered fins, so that the heat transfer
at the surface area can be created and thus, interrupt the growth of a boundary layer
formed along the surface (Sidik et al., 2015).

The most essential part in the car cooling arrangement of a vehicle motor is
radiator (Dhale et al., 2015). The coolant courses through radiator tubes, warm
is disseminated through the tube dividers and balances because of stream of air
through conduction and convection. The customary liquids utilized for warmth
move in radiator are water, coolants, motor oil or ethylene glycol. However, this is
not effect enough. To acquire more viability, nanoparticles are included the liquid.
Radiator framework assumes an essential job in keeping the vehicle motor from
overheating because of rubbing. Customarily, an auto radiator directs water as the
warmth exchange medium through the chambers inside the motor square to retain
the warmth and spread it far from other essential parts. A radiator is structured with
louvered balances so extra warmth exchange at the surface zone can be made and
interfere with the development of a limit layer framed along the surface (Sidik et al.,
2015).

One of the biomedical applications is photodynamic cancer therapy which is based
on the destruction of the cancer cells by laser generated atomic oxygen, which is
cytotoxic (Salata, 2004). A greater quantity of a special dye that is used to generate
the atomic oxygen is taken in by the cancer cells when compared with a healthy
tissue. Hence, only the cancer cells are destroyed then exposed to a laser radiation.
Unfortunately, the remaining dye molecules migrate to the skin and the eyes and
make the patient very sensitive to the daylight exposure. This effect can last for
up to six weeks. To avoid this side effect, the hydrophobic version of the dye
molecule was enclosed inside a porous nanoparticle. The dye stayed trapped inside
the Ormosil nanoparticle and did not spread to the other parts of the body. At the
same time, its oxygen generating ability has not been affected and the pore size of
about 1 nanometer freely allowed for the oxygen to diffuse out.
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Due to higher density of chips, design of electronic components with more compact
makes heat dissipation more difficult. Advanced electronic devices face thermal
management challenges from the high level of heat generation and the reduction of
available surface area for heat removal. So, the reliable thermal management sys-
tem is vital for the smooth operation of the advanced electronic devices. In general,
there are two approaches to improve the heat removal for electronic equipment. One
is to find an optimum geometry of cooling devices and second, is to increase the
heat transfer capacity. Nanofluids with higher thermal conductivities are predicated
convective heat transfer coefficients compared to those of base fluids. Recent re-
searches illustrated that nanofluids could increase the heat transfer coefficient by
increasing the thermal conductivity of a coolant. Jang and Choi (2006) introduced
a cooler, combined microchannel heat sink with nanofluids. Higher cooling per-
formance was obtained when compared to the device using pure water as working
medium. Nanofluids reduced both the thermal resistance and the temperature differ-
ence between the heated microchannel wall and the coolant. A combined microchan-
nel heat sink with nanofluids had the potential as the next generation cooling devices
for removing ultra-high heat flux .

1.6 Outline of Thesis

This thesis is divided into ten chapters. Chapter 1 starts with an introduction, the
research backgrounds for which the basic explanations of important keywords is
presented, followed by the problem statements, objectives and scope, the signifi-
cance of the study and lastly the thesis outline. The literature reviews of the previous
studies related to the problem identified in the thesis are discussed in Chapter 2.

The steps in obtaining the mathematical formulation is presented in Chapter 3 where
the governing partial differential equations (PDEs) are transformed into the ordinary
differential equations (ODEs) by using similarity transformation and taking into
consideration an appropriate initial and boundary conditions.

Chapter 4 presented the mathematical formulation for free convection stagnation-
point boundary layer flow over a stretching or shrinking cylinder. Followed by
Chapter 5 which enlighten the mathematical formulations for free convection
boundary layer flow over a nonlinearly stretching or shrinking sheet and Chapter 6
considers the mathematical formulations for free convection boundary layer flow
over a permeable stretching or shrinking cylinder.

Chapter 7 elucidate the mathematical formulation for mixed convection over a
moving plate in the presence of partial slip and thermal convective boundary
condition. Then, Chapter 8 is extension of Chapter 7 where the Soret and Dufour
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effects are taken into consideration to continue the investigations. In Chapter 9, the
stability analysis is carried out to identify that the first solution is stable, meanwhile
the second solution is unstable.

Next, an overall conclusions and some recommendations for future research are pre-
sented in Chapter 10.
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