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STABILITY ANALYSIS

By

NOR FADHILAH BINTI DZULKIFLI

April 2019

Chairman: Norfifah binti Bachok @ Lati, PhD
Faculty: Science

There are five unsteady boundary layer flow problems being considered which
involved the regular flow, rotating boundary layer flow, the stagnation-point flow
over a linear and an exponential stretching/shrinking surface which the flows pass
through a flat or a cylindrical surfaces. Besides, the effects such as constant mass
flux, velocity slip, Soret and Dufour are also taken into account. The mathematical
models for boundary layer problems by considering different nanoparticles namely
Copper, Alumina and Titania are dispersed into the water. The nanofluid model by
Tiwari and Das are used to study the effect of nanoparticle volume fraction towards
the flow and heat transfer behaviors at the surface. The governing equations in the
form of partial differential equations are transformed to the ordinary differential
equation using the similarity variables and is solved by using bvp4c function in
Matlab software to gain the numerical results which focused on obtaining the dual
solutions so that the stability analysis can be performed.

The results have shown the dual solutions existed for unsteady accelerating and de-
celerating flow with the presence of mass suction effect within a certain range of
stretching and shrinking surfaces. Increasing the rotation effect, nanoparticle volume
fraction, considering different nanoparticles and exponential stretching/shrinking
surface is proven can enlarge the range of solutions. Considering Copper-water
has resulted in increasing the skin friction coefficient and heat transfer rate at the
surface. Performing the stability analysis has found that the first solution is stable
solution meanwhile the second solution is unstable solution.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENYELESAIAN DUAL BAGI LAPISAN SEMPADAN TIDAK MANTAP
BENDALIR NANO TERHADAP PERMUKAAN YANG

MEREGANG/MENGECUT DAN ANALISIS KESTABILAN

Oleh

NOR FADHILAH BINTI DZULKIFLI

April 2019

Pengerusi: Norfifah binti Bachok @ Lati, PhD
Fakulti: Sains

Terdapat lima masalah aliran lapisan sempadan tak mantap yang dipertimbang iaitu
melibatkan aliran sempadan biasa, aliran putaran dan aliran titik genangan terhadap
permukaan meregang/mengecut secara linear dan eksponen di atas permukaan rata
dan silinder. Selain daripada itu, kesan-keasan seperti kesan fluks jisim, halaju
gelinciran Soret dan Dufour juga diambil kira. Model matematik bagi masalah
lapisan sempadan dengan mempertimbangkan zarah nano yang berbeza iaitu
Kuprum, Alumina dan Titania yang diserakkan ke dalam air. Model bendalir nano
oleh Tiwari dan Das telah digunakan untuk mengkaji kesan pecahan isipadu zarah
nano terhadap tingkah laku aliran dan pemindahan haba di permukaan. Persamaan
menakluk dalam bentuk persamaan pembezaan separa telah dijelmakan kepada
persamaan permbezaan biasa menggunakan penjelmaan keserupaan yang kemudi-
annya telah diselesaikan menggunakan fungsi bvp4c di dalam perisian Matlab untuk
mendapatkan penyelesaian berangka yang menumpukan kepada penyelesaian dual
supaya analisis kestabilan dapat dibuat.

Keputusan kajian menunjukan bahawa penyelesaian dual wujud untuk aliran tak
mantap yang meningkat dan merosot dengan kehadiran kesan sedutan jisim untuk
permukaan yang meregang dan mengecut dalam julat tertentu. Peningkatan kesan
putaran, pecahan isipadu zarah nano, mempetimbangkan zarah nano yang berbeza
dan permukaan yang merengang/mengecut secara ekponen terbukti meluaskan julat
penyelesaian. Pertimbangan Kuprum-air didapati telah meningkatkan pekali geseran
dan kadar pemindahan haba dipermukaan. Analisis kestabilan yang telah dibuat
telah menunjukkan bahawa penyelesaian pertama adalah penyelesaian yang stabil
manakala penyelesaian kedua adalah penyelesaian tidak stabil.
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CHAPTER 1

INTRODUCTION

1.1 Boundary Layer Flow

Boundary layer theory was introduced by Ludwig Prandtl in 1904 due to the inability
to solve the Navier-Stokes equations for calculating the shear force on a surface
immersed in a flow. Hence, Prandtls work was considered as the most significant in
the field of fluid dynamic since he had pioneered the explanation and description on
the concept of boundary layer. As the fluid flows passing through an immersed body,
a thin layer, known as boundary layer forms at the adjacent of the surface because
of the friction effect, which indicates there is no slip occurs at the surface. In this
thin layer, the frictional effect cannot be neglected. On the other hand, in the outside
of the boundary layer (inviscid flow), the effect can be ignored (Schlichting, 1979).
The formation of the boundary layer can be seen in Figure 1.1 below.

Figure 1.1: Formation of boundary layer on a flat surface

From Figure 1.1, U represents the velocity of undisturbed ambient flow along x-
axis. The velocity of the fluid attached to surface in the thin layer is assumed to be
zero and the movement of the fluid is delayed due to frictional resistance. Later, the
boundary layer starts to extend from the leading edge until a point where the velocity
of the fluid in the boundary layer equals to the velocity of fluid in the ambient flow.
The boundary layer thickness δ is a distance between the surface and a point with
free stream velocity and perpendicular to the surface. Meanwhile the flow in the
boundary layer is always to be laminar flow due to the slow flow and low Reynolds
number where the viscous forces are dominant as compared to the inertia forces that
kept the particles in the flow in line sufficiently.

1.1.1 Steady and Unsteady Boundary Layer Flow

Basically, there are two types of flow which are the steady flow and unsteady flow.
Steady flow refers to all of the properties of fluid such as velocity, temperature and
density are independent of time. Meanwhile, the unsteady flow indicates that all
the fluid properties are time dependent and is important in engineering field, for
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example in the start-up process and periodic fluid motion as mentioned by Fang and
Zhang (2011). Generally, in the study on fluid mechanics, it is assumed that the flow
is a steady flow in order to simplify the analysis. However, in reality, the fluid flow
and heat transfer are actually unsteady flow due to changes of the velocity ratio and
the temperature at the surface (Vajravelu et al. (2013)). Besides that, Fang (2008)
mentioned that the characteristic of unsteady flow was different since the parameters
in the system were time-dependent which affected the fluid motion and at the same
time the behavior of the boundary layer separation.

The acceleration of the flow can be defined as the rate of change of the velocity with
time, in which for the steady flow, the acceleration equals to zero since the velocity
is independent on time. As for unsteady flow, the acceleration has its own value
and cannot be zero. The positive acceleration is defined as accelerating flow and
the negative acceleration represents decelerating flow. The accelerating flow tends
to make the boundary layer thickness grows slowly since the flow suppresses the
thin layer and delays the boundary layer separation. Meantime, the boundary layer
thickness grows faster for the decelerating flow and speeds up the boundary layer
separation off the surface. Nevertheless, the unsteady boundary layer problem has
an important role in the industrial and engineering applications.

1.1.2 Stagnation-Point Flow

Stagnation-point flow is a flow that explains the behavior of the fluid motion near
the stagnation region. This flow occurs when the flow impinges on the solid surface
and the fluid velocity at the stagnation-point equals to zero. The idea of stagnation-
point flow is applied in various engineering and manufacturing field such as cooling
of electronic devices by fans, cooling of nuclear reactors and hydrodynamics pro-
cesses. The stagnation-point flow develops where the streamline is perpendicular to
the surface and the Navier-Stokes equations characterized the flow near the stagna-
tion point (Sin and Chio (2012)) as can be seen in figure below

Figure 1.2: Formation of stagnation-point flow on a flat plane (Graebel (2007))

2
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1.2 Heat Transfer

The heat-transport property due to the molecular motion is significantly depending
on the rate of heat transfer. Heat transfer is the kinematic process and by increasing
motion, molecules gain heat or energy where the thermal energy flows from
the higher temperature substance to the lower temperature substance due to the
thermal non-equilibrium or temperature difference. In the real world situation, the
applications of heat transfer can be found in various areas such as manufacturing,
industrial and environmental processes which involves the energy utilization,
thermal processing and thermal control. The movement of heat from one substance
to another substance can be explained in three modes or methods which are
conduction, convection and radiation as illustrated in Figure 1.3.

Conduction is the heat transfer within materials where the kinematic energy moves
from one molecule to other molecule that is adjacent to it. Convection is the heat
transfer between fluid flow and wall where the heat is being extracted from the flow
if the temperature of the surface is lower than the temperature of the ambient flow.
Conversely, when the temperature of the ambient flow is greater than the surface,
the heat will be transfered from the surface to the flow and the heat transfer process
will continue until the equilibrium temperature is obtained.

Convection of heat transfer can also be divided into three types which are mixed
convection, forced convection and free convection. The radiation transmits the heat
transfer through an empty space and the energy which is transferred by radiation
mode is known as radiant heat. The heat travels in the form of emit radiation, touch
another particle and transfers the radiant heat as the kinematic energy to that particle.
Some examples of heat transfer via radiation is the way Earth receives the energy or
heat from the sun, when microwaves is applied in heating or cooking in the oven.

Figure 1.3: Physical model of different heat transfer modes

3
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1.3 Stretching and Shrinking Surfaces

There are different conditions of the surface that may exist either it is quiescent,
stretching or shrinking surface. A quiescent surface denotes that the surface is
not moving and standing still at its place. A stretching surface is a surface that
stretch and the velocity on the boundary is moving away from a fixed point. The
applications of stretching surface can be found in the manufacturing, engineering
and industrial process generally. The polymer extrusion process is one of the
examples where the stretching surface is applied in fluid mechanics. Its mechanical
characteristic was found to improve when the stretching conveys the indirectional
orientation to the extruder.

Meanwhile, the shrinking surface occurs when the surface is shrunk after it is
stretched away and the velocity on the boundary layer is approaching the fixed point
as illustrated in Figure 1.4. The idea of abilities of surface shrinkage is applied in
various fields such as in shrink wrap packaging using a shrink film, polymer process-
ing, glass sheet production and textiles industries. The shrink wrap is one of the most
common applications in manufacturing where the film is stretched with the help of
heat to orient the particle from the initial shape and then, the film shrinks back to
the initial dimension after it is cooled. There are various types of surface that are
considered in the boundary layer flow problems such as flat plate, cylinder and cone.
In addition, the velocity ratio of the surface can also be considered in different trends
which are linear, exponential and non-linear stretching/shrinking surface.

Figure 1.4: Physical model of stretching (λ > 0) and shrinking (λ < 0) surfaces

4
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1.4 Permeable and Impermeable Surfaces

Permeable surface is defined by the presence of suction and injection effects at the
surface while the surface is said to be impermeable with the absent of both effects
as depicted in Figure 1.5. The presence of both effects shows the occurrence of
fluid movement through the bounding surfaces, for example in mass transfer cooling
which affects the fluid flow and heat transfer rate at the surface. In addition, the
effects also reduce the drag at the surface which tends to delay the boundary layer
separation of the laminar flow. It consequently enlarges the range of the solution that
can be obtained. Due to their effects on the boundary layer control which influence
the heat transfer rate at the surface that enhance the heating or cooling process, the
consideration of both effects is found to significantly reduce the cost. This has devel-
oped into interest in various physical applications such as film cooling, engineering,
chemical process, aerodynamics and space sciences.

Figure 1.5: Physical model of permeable surface

1.5 Nanofluid

Nanofluid is a fluid that can be produced by combining the nanoparticles dan base
fluid. This term was first introduced by Choi (1995). Many researchers have
issued several definition of nanofluid, for example, Wong and Leon (2010) have
pointed out that nanofluids are nanoparticles that are suspended in the manner of
the principal dimensions is lower than 100 nm. The same idea about the size of
nanoparticles has been discussed by Keblinski et al. (2005). They mentioned that
nanofluids are composite materials in the form of solid liquid that have 1-100 nm
sized nanoparticles which is suspended in liquid.

There are two types of nanofluids which are metallic nanofluids and nonmetallic
nanofluids. The difference between them is in the form of material that has been
used in dispersion nanoparticles process. Metallic nanofluid comes from metals

5
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for example Alumina, Copper and Nickel where nonmetallic nanofluid is made
from nonmetals such as metal oxides. There are several methods in producing the
nanofluid such as direct evaporation technique, chemical reduction, submerged arc
nanoparticle synthesis system, laser ablation, microwave irradiation, polyp process
and phase-transfer method.

Water, mineral oil and ethylene glycol are the three types of fluid that commonly
used as heat transfer fluid. However, these kinds of fluid are identified to have
low thermal conductivity of heat transfer Li et al. (2009). Therefore, by proposing
nanofluid as an alternative fluid, the performance of heat transfer fluids is expected
to be optimized Manca et al. (2010). Some high quality features of this fluid
are ultrafast heat transfer ability, increasing thermal conductivity and have better
stability than colloids. Nanofluid also has several traits in reduction reaction which
are the reduction of erosion and clogging in micro channels, in pumping power
and friction coefficient. Heat transfer fluids have an important function in many
industrial activities involving chemical, microelectronics, cooling and heating
processes.

Recently, nanofluids have gained popularity in various fields that involve processes
which related to heat and thermal such as in engineering, automotive, electronic,
biomedical applications, for instance in shell and tube exchanges by Afshoon and
Fakhar (2014). Therefore, any deficiency of these heat transfer fluids may cause an
obstruction to the effectiveness and compactness of heat converter. Due to weak
performance of the base fluids, the industry will face some disadvantages in terms
of production and costs due to their lower thermal conductivity (Goharshadi et al.
(2013)). Therefore, according to Anuar and Bachok (2016) the nanofluid is one of
the way and option that will help to enhance thermal conductivity and also the heat
transfer at the surface effectively compared to the base fluid.

In solving the problem of boundary layer flow and heat which involves the nanofluid
in the system, there are few nanofluid approaches have been developed and the most
frequent models are two phase model where the nanofluid is considered as two-
component mixture known as Boungiorno model, Boungiorno (2006). The second
approach is a single phase model namely Tiwari and Das model which was discov-
ered by Tiwari and Das (2007). Both models have their own focus and purpose in
determining the flow behavior and heat transfer rate at the surface when nanofluid is
taken into account. The physical model of nanofluid is illustrated in Figure 1.6.

6
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Figure 1.6: Cross section physical model of nanofluid

1.5.1 Boungiorno Model

Due to the emergence of nanofluid in the system of fluid dynamic, it has ability to
enhance the thermal conductivity as well as the heat transfer process because of the
nanoparticle motion. Hence Boungiorno (2006) has tested seven slip mechanisms
which relates between the nanoparticle and the base fluid. These mechanisms are
inertia, Brownian diffusion, thermophoresis, diffusiopherasis, Magnus effect, fluid
drainage and gravity. It can be concluded that out of these seven slip mechanisms,
only Brownion diffusion and thermophoresis have significant in nanofluid. Brown-
ion diffusion is defined as a choatic and random movement of particle in nanofluid
due to the collisions between the nanoparticle and the molecule of the base fluid.
Meanwhile, the themophoresis represents the diffusion of particle due to the temper-
ature gradient.

1.5.2 Tiwari and Das Model

This single phase model is proposed by Tiwari and Das (2007) to investigate the
behavior of the nanofluids inside two-sided lid driven square cavity. As compared
to the Boungiorno model, Tiwari and Das developed a model to analyze the effects
of nanoparticle volume fraction in the base fluid towards the flow behavior. This
model considered the range of the nanoparticle volume fraction was between
0% to 20% and it was found that the presence of nanoparticle increased the heat
transfer capacity of the water as the base fluid. Besides, by increasing the vol-
ume of Copper in the water, the heat transfer rate was found proportionally increased.

Tiwari and Das model applied the Brinkman effective viscosity model and the
Maxwel-Grannett model for spherical-particle to measure the effective thermal con-
ductivity of the fluid. Meanwhile, the effective density and the heat capacitance of
the nanofluid are taken from Xuan and Li (2003). In addition, the water was cho-
sen as the base fluid and the nanoparticle used to be dispersed in the base fluid was
Copper where the thermo physical properties of both substance can be seen in Table

7
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1.1

Table 1.1: Thermophysical properties of fluid phase and solid phase

Physical Properties Fluid phase Solid Phase
(water) (Copper)

Spesific heat Cp(J/kgK) 4179 385
Density ρ(kg/m3) 997.1 8954

Thermal conductivity k(W/mK) 0.6 400

1.6 Velocity Slip

Classical Navier-Stokes equation has an assumption of no-slip condition at the sur-
face where this assumption should be replaced since the slip between fluid and a
surface may occur in certain cases as shown in Figure 1.7. Maxwell in 1897 de-
scribed the relationship between slip and no-slip condition as the length scales in
the fluid flowed approaching the continuum limit which was defined as the velocity
difference between the wall and the fluid to the strain rate at the wall which can be
represented as follows

us = Ls
∂u
∂y

,

where us is the velocity slip, Ls is the length of the slip and (∂u/∂y)wall denotes the
strain rate at the wall. The amount of the slip depends on the roughness of the surface
where the flow passed through and also the rate of interaction between surface and
the fluid

Figure 1.7: Physical model of velocity slip

8
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1.7 Stability Analysis

Stability analysis is a mean to analyze the stability of solutions whether the solution
is stable or unstable. The stability of the solution is determined by investigating
the affect of small disturbance on the laminar flows whether the disturbance shows
the growth or decay trend. The decay of disturbance with time indicates that the
flow is stable while the growth of disturbance represents an unstable flow and there
is a possibility the occurrence of transition from laminar flow to turbulent flow.
The implementation of stability analysis is essential in solving the boundary layer
problems in order to choose a physically realizable solution in real life application.

The stability analysis was first performed by Merkin (1986) in his work since the
dual solutions were obtained for a certain range of parameter for mixed convection
in porous medium of steady boundary layer flow. The dual solutions were divided
into two types namely upper solution and lower solution. Stability of the solutions
can be identified by considering the unsteady boundary layer problem where the
variables are time-dependent.

1.8 Dimensionless Numbers

Dimensionless numbers represent a property of a physical system that has no scale
of physical units which are suitable to be used in any system of units. They reduce
the number of variables in the system and consequently reduce the amount of data
required to correlate the physical phenomena in the system. Using dimensionless
numbers has given some advantages such as the problems can be solved more easily,
the comparison between different systems can be made, the behavior of the system
can be observed, various significant relationships between dimensionless number
which describes their influences towards the system can be recognized.

1.8.1 Prandtl Number

Prandtl number was introduced by Ludwig Prandtl in 1904 where it is a dimen-
sionless number which defined the ratio between momentum diffusivity to thermal
diffusivity. The Prandtl number depends only on the fluid and the state of the fluid.
Generally, the Prandtl number can be represented as follows:

Pr =
momentum diffusivity

thermal diffusivity
=

ν

α
=

µρ

k/ρcp
=

cpµ

k
,

where ν is the kinematic viscosity, α is the thermal diffusivity, µ is the dynamic
viscosity, k is the thermal conductivity, ρ is the density and cp is the specific heat.
The Prandtl number is applied in the problem which involves the heat transfer, free
and forced convection to control the relative thickness of momentum and thermal

9
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boundary layer. The value of Prandtl number depends on the types and properties of
the fluid as listed below:

• Gases: Pr ranges are from 0.7 to 1.0

• Water: Pr ranges are from 1 to 10

• Liquid metals: Pr ranges are from 0.001 to 0.03

• Oils: Pr ranges are from 50 to 2000

Based on the list above, there are two ranges of Prandtl number which are Pr < 1
and Pr > 1. The small Prandtl number (Pr < 1) indicates that the thermal diffusiv-
ity dominates whilst when the Prandtl number is large (Pr > 1), it shows that the
momentum diffusivity dominates the behavior.

1.8.2 Reynolds Number

The Reynolds number discovered by Osborne Reynolds experimentally in 1883 is
a dimensionless number which defines the type and the behavior of the fluid flow
system based on velocity, density, dynamic viscosity and characteristics of the fluid
. Technically, the Reynold number is the ratio between the inertia forces and the
viscous forces as follows:

Re =
inertia force
viscous force

=
u/ρ

µ/L
=

ρuL
µ

=
uL
ν
,

where ρ is the density, u is the velocity, µ represents dynamic viscosity, L is the char-
acteristic length and ν = µ/ρ is the kinematic viscosity. The flow with low Reynolds
number is laminar flow whilst the turbulent flow has high Reynolds number.

1.8.3 Schmidt Number

Schmidt number is a dimensionless number which is named after Ernst Heinrich
Wilhelm Schmidt that relates the transport of momentum and mass of a fluid. It is
defined as the ratio between kinematic viscosity and mass diffusivity. This number
is applied to illustrate the diffusivity which the momentum and mass diffusion con-
vection processes occur simultaneously. The Schmidt number is given as follows:

Sc =
kinematic viscosity

mass diffusivity
=

ν

Dm
,

where ν is the kinematic viscosity and Dm is the mass diffusivity.Besides, Schmidt
number also expresses the interrelation between the velocity and concentration of a

10
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fluid which occurs simultaneously in the boundary layer as the momentum and mass
transfers happen at the surface.

1.8.4 Soret Number

In 1856, the Soret effect or thermal-diffusion effect was discovered by a German
scientist named C. Ludwig and further study on this effect was expanded by a Swiss
scientist, C. Soret in 1991. This effect refers to a situation where mass flux occurs
due to the temperature gradient and consequently affecting the characteristic of mass
transfer rate at the surface. The Soret effect can be defined as follows:

Sr =
DmkT (Tw−T∞)

Tmν(Cw−C∞)
,

where Dm is mass diffusivity coefficient, T∞ is ambient temperature,Tw is surface
temperature, Tm is mean fluid temperature, kT is thermal diffusion ratio, Cw is surface
concentration, C∞ is ambient concentration and ν is kinematic viscosity.

1.8.5 Dufour Number

Dufour effect or diffusion thermo effect represents the occurrence of heat flux due
to the concentration gradient. Thus, the existence of Dufour effect in the boundary
layer influences the behavior of heat transfer rate at the surface. This effect is defined
as

D f =
DmkT (Cw−C∞)

cscpν(Tw−T∞)
,

where Dm is mass diffusivity coefficient, T∞ is ambient temperature,Tw is surface
temperature, Tm is mean fluid temperature, kT is thermal diffusion ratio, Cw is sur-
face concentration, C∞ is ambient concentration, cp is the specific heat at a constant
pressure and cs is concentration susceptibility.

1.8.6 Skin Friction Coefficient

Skin friction coefficient is a dimensionless number which describes the frictional
force between the fluid and a surface in the boundary layer and physically personal-
izes the ratio between local surface shear stress to free stream dynamic pressure. The
friction between the fluid and the surface occurs as the fluid particles passes through
the surface which causes the drag exerted on the surface due to the viscous resistance
to the flow and becomes a force that retards the forward motion. The skin friction
coefficient can be denoted as

C f =
τw

ρU2 ,

11
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where τw is local surface shear stress, ρ is density of the fluid and U is velocity of
the flow and τw is defined as

τw = µ

(
∂u
∂y

)
y=0

,

where µ represents dynamic viscosity.

1.8.7 Nusselt Number

Nusselt number is a dimensionless number which is named after a German engineer,
Wilhelm Nusselt. It shows the measurement of convective heat transfer occurs at the
surface. The heat transfer takes place when there is temperature difference between
the surface and the fluid. The Nusselt number is denoted as

Nu =
lqw

k f (Tw−T∞)
,

where qw is heat flux at the surface, l is a characteristic geometrical length, k f is
thermal conductivity of fluid, Tw is temperature at the surface and T∞ is ambient
temperature. qw is defined as

qw =−k f

(
∂T
∂y

)
y=0

.

1.8.8 Sherwood Number

Sherwood number, which is named after Thomas Kilgore Sherwood, represents the
di- mensionless number that measures the mass convection at the surface and is used
to determine the effectiveness of mass transfer at the surface. The mass transfer in
the boundary layer occurs due to the concentration difference between the surface
and the fluid. The Sherwood number can be expressed as

Sh =
lqm

Dm(Cw−C∞)
,

where l is a characteristic geometrical length, Dm is mass diffusivity coefficient, Cw
is concentration at the surface, C∞ is ambient concentration and qm is mass flux at
the surface which is defined as

qm =−Dm

(
∂C
∂y

)
y=0

.

12
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1.9 Problem Statement

The study on the unsteady boundary layer flow has gained an interest of many re-
searchers since this kind of boundary layer is more similar to the real life situation.
The nanofluid is considered in all problems since the heat transfer enhancement has
become an issue in real life applications due to the low thermal conductivity of the
base fluid. In addition, since the problems are simulated using mathematical model
and have been solved numerically, it is necessary to obtain all of the solutions as long
as the solution exists and determines its stability. Hence, the issues that arise in the
problems are:

1. What are the parameters that contribute to the existence of the dual solutions
and expand the range of solutions?

2. What are the effects of the nanoparticle volume fraction in the base fluid to-
wards the skin friction coefficient and the heat transfer rate at the surface?

3. What are the effects of considering different type of nanoparticle on the skin
friction coefficient and heat transfer rate at the surface?

4. What are the stability of the first solution and second solution?

1.10 Objective and Scopes of The Study

The objectives of the thesis are to study the fluid flow and heat transfer behavior at
the surface for unsteady boundary layer flow immersed in nanofluid using Tiwari and
Das (2007) model by

1. formulating and deriving the mathematical model,

2. solving the mathematical model numerically using bvp4c function in Matlab
software,

3. formulating and deriving the mathematical model for stability analysis pur-
pose,

4. solving mathematical model numerically using bvp4c function in Matlab soft-
ware in order to determine the stability of the solutions,

for the following problems:

1. Unsteady boundary-layer flow and heat transfer of a nanofluid over a perme-
able stretching/shrinking sheet to Soret, Dufour and velocity slip effects with
stability analysis.

2. Unsteady shrinking sheet with mass transfer in a rotating fluid to stretch-
ing/shrinking surface in nanofluid with stability analysis.

13
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3. Unsteady boundary layer and heat transfer analysis over a stretching/shrinking
cylinder to nanofluid with stability analysis.

4. The boundary layers of an unsteady stagnation-point flow in a nanofluid to
stretching/shrinking surface with velocity slip effect and stability analysis.

5. Unsteady stagnation-point flow in a nanofluid to a permeable exponential
stretching/shrinking surface with velocity slip effect and stability analysis.

Tiwari and Das model investigates the influence of the nanoparticle volume fraction
in the base fluid on the fluid flow characteristics and the heat transfer rate at the sur-
face. As proposed by the model, the water is considered as the base fluid whilst the
Copper Cu, Alumina Al2O3 and Titania TiO2 aare the chosen nanoparticles where
each of the substance has different physical properties.

1.11 Significance of The Study

The study on unsteady boundary layer flow has an important role in real life
applications such as the start-up process and periodic fluid motion in engineering.
The unsteady boundary layer flow is different from steady boundary layer flow since
the unsteady flow has an additional contribution to the acceleration/deceleration
which changes the velocity with respect to time at a fixed point. The addition of
the properties has significantly affected the behavior of the flow and consequently
influences the fluid motion and boundary layer separation. Thus, the consideration
of unsteady boundary layer flow is an added-value in boundary layer flow study
to find a suitable solution which contributes to optimizing the sources usage, cost
reduction and time management.

The emergence of nanofluid in the boundary layer flow problem has opened the
opportunities and spaces to improve and enhance heat transfer performance in the
fluid dynamics field. This study applied Tiwari and Das model instead of Boun-
giorno model to study the influence of different types of nanoparticle where each
nanoparticle has its own thermal physical properties as compared to Boungiourno
model which focuses on the Brownion motion and thermophoresis in the fluid.
Therefore, Tiwari and Das model offers an option to choose type of nanoparticles
and the base fluid to be considered in solving a boundary layer problems.

The advantages of nanofluids can be dicussed in terms of the importance of the
nanofluid presence in the process. Bang (2009) in his work has mentioned that the
nanofluid can be an efficient heat removal agent also known as a coolant in the
thermal-fluid system. Besides considering nanofluid technology is also important in
thermal vehicle management as reported by Sidik et al. (2015) since the vehicles are
the necessity in this modern world.The nanoparticle suspensions in fluid changes the
transport properties (Devi and Andrews (2011)) and is said can enhance the thermo
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physical features for example thermal conductivity, thermal diffusivity, stickiness
and convective heat transfer compared the process that apply base fluid such as
water or oil (Wong and Leon (2010) ). Nanofluid existence indicates the thermal
conductivity rise up along with the increasing volumetric fragment of nanoparticles.
Therefore the development of nanofluid helps to manage the sources efficiently so
that the optimize output can be produced throughout the production.

In solving boundary layer problems, there are some methods that can be applied
which are experimental and theoretical method. Experimental method studies the
problem practically. However, performing the experimental method is actually
costly since the materials and instrumentals are needed in the experiment. Besides,
they might be expensive and may turn into wastage if the material cannot be used
repeatedly especially if the instrumental is broken. Meanwhile, the cost issue can
be solved by considering the theoretical method. The material and an expensive
machine are not required since they are not used in the method. Theoretical method
can be divided into two types. The first type is numerical method and the second
type is analytical method. The analytical method gives the exact solution but this
method has limited use in practical system. Numerical method can solve a problem
when the analytical method cant. In addition, this method has the abilities to solve a
problem with large system of equations, different degrees of nonlinear problem, and
various physical geometries which occurs commonly in engineering area. Hence,
with all the superiority of the numerical method, this method is the best method to
be chosen which manages to avoid the financial requirements, possible wastage of
materials and the complex boundary layer problems with various geometrical shape
and consideration can be solved.

The boundary layer problems are solved using numerical method which multiple so-
lutions can be obtained. Since there are more than a solution exist, the best solution
needs to be chosen among the solutions which can be done by performing the stabil-
ity analysis. The analysis of the solution is important in order to identify the suitable
parameter that can give the optimum results

1.12 Outline of Thesis

This thesis is divided into nine chapters including this. Chapter 1 discusses the
background of the research which includes the definitions and the explanation of the
main terms considered in this thesis. Besides, the objectives, which are the direction
of the study as well as the scope which is the limitation of the study are also stated
in Chapter 1. Next, the significant of the study describes the advantages of the study
towards the mathematical field as well as the real life applications. The literature
review is based on the previous studies which related to this study is discussed in
Chapter 2.
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Meanwhile, Chapter 3 explains the procedures that have been used in order to solve
the boundary layer problems until the numerical solutions are obtained and the
stability of the solutions is identified. The procedures begin by introducing the el-
liptic equations for an unsteady boundary layer problem over a stretching/shrinking
immersed in the nanofluid using Tiwari and Das model. The elliptic equations
will be reduced to the the parabolic boundary layer equation using boundary layer
approximation. Then, the similarity transformation is applied to transform the
parabolic equations to the ordinary differential equations system. The stability
analysis is introduced since the focus of the study is to obtain multiple solutions.
The numerical solutions and the stability of the solutions are obtained by solving
the system of ordinary differential equation and the linearized eigenvalue problem
in the form of ODE using bvp4c function in Matlab software.

Five main problems as highlighted in the objectives of the study which are studied
in this thesis as presented in Chapter 4 to 8. These five chapters can be divided
into two types of unsteady boundary layer problems in which Chapter 1 to 3 study
the stretching/surface whilst Chapter 4 and 5 consider the unsteady boundary layer
problem on stretching/shrinking stagnation-point flow. Each of the chapter presents
five sections which are introduction, problem formulation, numerical solutions,
results, discussion and the last section is the conclusion of that particular chapter.

Chapter 4 discusses the mathematical formulation of unsteady boundary layer, heat
and mass transfer over stretching/shrinking sheet in nanofluid with the effects of
Soret, Dufour, constant mass flux and slip are considered. Different surface which
is cylinder is considered in Chapter 5 for unsteady boundary layer and heat transfer
with the presence of constant mass flux parameter. Meanwhile, Chapter 6 presents
the three-dimensional unsteady rotating boundary layer flow on stretching/shrinking
surface over impermeable surface in the nanofluid.

Chapter 7 and 8 present the unsteady stagnation-point flow over a stretch-
ing/shrinking surface and an exponentially stretching/shrinking surface, respec-
tively. The results for every chapter show the parameters that affect the duality of
the solution, the influences of the parameters towards the skin friction coefficient
and heat transfer rate at the surface and also the boundary conditions are fulfilled
asymptotically.

The last chapter, Chapter 9 gives a summary for the whole thesis and extension of
the problem so that more problems that involve boundary layer problems can be
resolved.
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Roşca, N. C. and Pop, I. (2014a). Unsteady boundary layer flow of a nanofluid past
a moving surface in an external uniform free stream using Buongiornos model.
Computers & Fluids, 95:49–55.

161



© C
OPYRIG

HT U
PM
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