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The desire to control germanium (Ge) thin film quality while keeping it cost 
effective has become one of the biggest challenges. This thesis proposes radio 
frequency (RF) magnetron sputtering as a technique to deposit Ge thin films 
(towards nanowires growth) on a glass substrate at room temperature. This 
research focuses on the structural and optical properties of Ge thin films by 
varying the pressure and RF power. The structural properties were 
characterized using atomic force microscopy (AFM), high surface profilometer, 
and x-ray diffraction (XRD). Meanwhile, the optical properties were investigated 
using ultraviolet-visible spectroscopy (UV-Vis) and Raman spectroscopy. 
 

Based on the study, at a high pressure of 15 mTorr, the thickness obtained was 
114.76 ± 2.89 nm for the as-deposited Ge thin film. This is due to the 
bombardment of the atom during the sputtering process caused the thickness 
to decrease as the pressure was increased. Meanwhile, at a higher RF power 
of 100 Watt, the thickness obtained was found to increase to 232.32 ± 5.67 nm. 
This was caused by the atoms that gained more kinetic energy to be 
bombarded onto the glass substrate when the RF power was increased.  
 

The AFM studies show that the lowest root-mean-square (rms) surface 
roughness obtained the in lowest pressure of 5 mTorr was 1.898 nm. On the 
other hand, at 50 Watt of RF power, the lowest rms surface roughness 
obtained was 10.283 nm. Moreover, based on the band gap energy analysis 
using UV-Vis, values obtained were in the range of 3.84 to 3.91 eV. Besides, 
the phase analysis using XRD also shows all the deposited Ge thin films 
obtained were in an amorphous phase. In addition, Raman analysis also shows 
second-order Ge phonon modes at the region of 535 to 610 cm-1 which tend to 
shift due to its amorphous behavior.   
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The heat treatment was applied at a different annealing temperature of 280 ˚C 
and 450 ˚C in order to recover and alter the microstructure of Ge thin film. The 
thickness was found to be increased from 40.53 ± 2.026 nm to 126.06 ± 6.378 
nm as the pressure was increased when the thin films were annealed at a 
temperature of 280 ˚C. Meanwhile, at annealing temperature of 450 ˚C, the 
thickness of thin films decreased from 148.76 ±7.4 nm to 69.83 ± 3.471 nm as 
the pressure was increased. In comparison, when the annealing process was 
applied, the thickness increased as the RF power was increased in both of the 
annealing temperatures of 280 ˚C and 450 ˚C from 102.07 ± 5.12 nm to 137.43 
± 5.471 nm and 76.46 ± 3.387 nm to 177.43 ± 6.832 nm, respectively.  
 

In this study, it is found that the most optimized Ge thin film was from annealed 
Ge thin film at temperature of 450 ˚C with a thickness of 148.76 ±7.4 nm and 
the rms surface roughness of 1.898 nm, which was deposited at a lower 
pressure and RF power of 5 mTorr and 25 Watt, respectively. This shows that 
the deposition parameters influence the surface morphology, phase, band gap 
energy, and phonon modes of Ge thin films. By controlling these parameters, 
Ge thin films surface morphology can be optimized, thus producing low rms 
surface roughness. The development of Ge thin films as the high-quality film 
might be useful in the future especially in the growth of nanowire for solar cell 
application.  
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Keinginan untuk mengawal kualiti saput nipis germanium (Ge) sambil 
mengekalkan kos yang efektif menjadi satu cabaran yang terbesar. Tesis ini 
mencadangkan kaedah frekuensi radio (RF) percikan magnetron sebagai 
teknik untuk menghasilkan saput nipis Ge yang berkualiti tinggi (ke arah 
aplikasi pertumbuhan nanowayar) pada substrat kaca pada suhu bilik. 
Penyelidikan ini memberi tumpuan kepada sifat struktur and sifat optikal saput 
nipis Ge dengan menvariasikan tekanan dan kuasa RF. Sifat struktur dikaji 
dengan menggunakan kaedah pencirian mikroskopi daya atom (AFM), 
profilometri permukaan tinggi, dan belauan sinar-x (XRD). Manakala, sifat 
optikal pula disiasat menggunakan spektroskopi ultra-lembayung (UV-Vis) dan 
spektroskopi Raman. 
 

Berdasarkan kajian, pada tekanan yang tinggi iaitu 15 mTorr, ketebalan yang 
diperolehi adalah 114.76 ± 2.89 nm bagi saput nipis Ge yang termendap. Ini 
akibat daripada tekanan yang tinggi, pembedilan atom semasa proses percikan 
menyebabkan ketebalan berkurang sejajar dengan tekanan yang meningkat. 
Sementara itu, pada kuasa RF yang tinggi iaitu 100 Watt, ketebalan yang 
diperolehi ialah 232.32 ± 5.67 nm. Atom memperoleh lebih tenaga kinetik untuk 
membedil pada substak kaca apabila kuasa RF bertambah.  
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Kajian AFM menunjukkan kekasaran permukaan punca-minimum-persegi 
(rms) yang paling rendah diperolehi pada tekanan 5 mTorr ialah 1.898 Selain 
itu, pada kuasa RF 50 Watt, kekasaran permukaan rms paling rendah ialah 
10.283 nm. Tambahan pula, berdasarkan kajian UV-Vis, jurang jalur tenaga 
yang diperolehi di antara 3.84 ke 3.91 eV. Selain itu, analisis fasa yang 
menggunakan XRD juga menunjukkan semua saput nipis Ge yang 
didepositkan adalah fasa amorfus. Sebagai tambahan, analisis Raman juga 
menunjukkan jelas puncak serakan pada rantau 535 – 610 cm-1 di mana 
mempunyai kecenderungan untuk beralih disebabkan oleh sifat amorfus 
bahan. 
 

Rawatan haba dikenakan pada suhu penyepuhlindapan yang berbeza iaitu 280 
˚C dan 450 ˚C untuk memulihkan dan mengubah struktur micro saput nipis Ge. 
Ketebalan didapati bertambah dari 40.53 ± 2.026 nm kepada 126.06 ± 6.378 
nm apabila tekanan bertambah untuk penyepuhlindapan pada suhu 280 ˚C. 
Sementara itu, ketebalan pada suhu penyepuhlindapan 450 ˚C, ketebalan 
saput tipis berkurang dari 148.76 ±7.4 nm kepada 69.83 ± 3.471 nm apabila 
tekanan bertambah. Sebagai perbandingan, apabila process 
penyepuhlindapan dilakukan, ketebalan bertambah apabila kuasa RF 
meningkat pada kedua-dua keadaan suhu penyepuhlindapan iaitu 280 ˚C dan 
450 ˚C dari 102.07 ± 5.12 nm kepada 137.43 ± 5.471 nm dan 76.46 ± 3.387 
nm kepada 177.43 ± 6.832 nm, masing-masing. 
 

Kajian ini mendapati saput nipis yang paling optimum adalah saput tipis yang 
telah dipenyepuhlindapan pada suhu 450 ˚C dengan memiliki ketebalan iaitu 
148.76 ±7.4 nm dan kekasaran permukaan rms iaitu 1.898 nm dimana ianya 
telah didepositkan pada tekanan dan kuasa RF yang paling rendah iaitu 
masing-masing pada 5 mTorr dan 25 Watt. Ini menunjukkan bahawa 
parameter pemendapan dapat mempengaruhi permukaan morfologi, fasa, 
jurang jalur, dan mod fonon dalam tipis Ge. Dengan mengawal parameter-
parameter ini, saput nipis Ge permukaan morfologi dapat dioptimumkan, 
sehingga menghasilkan saput nipis Ge yang berkualiti tinggi dengan kekasaran 
permukaan rms yang rendah. Perkembangan saput nipis Ge sebagai saput 
nipis yang berkualiti tinggi mungkin berguna pada masa akan datang 
terutamanya dalam pertumbuhan nanowayar untuk aplikasi sel solar. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

1.1 Background 
 

The development of thin film technology starts around 1965 with the 
manufacturing of an integral part of the mass manufacturing process in the 
semiconductor and optical industry (Seshan, 2002). Many studies have been 
done due to high demand in the thin film technology which can be a 
fundamental basis of a product development. The demand has been evolved 
through many fields including; integrated circuits, optoelectronics (Colace et al., 
2010), aerospace, biomedicine, and photovoltaic applications (Tsao et al., 
2011a; Shahahmadi et al., 2016).  
 

Nowadays, the deposition of germanium (Ge) thin film becomes the centre of 
attention due to its attractive properties and behaviour. From an optical 
perspective, due to high refractive index and minimal optical dispersion, Ge thin 
film is useful for lenses and optical elements for infrared imaging (Cariou et al., 
2014). Owing to the small energies band gap and high carrier mobility, Ge can 
be used as a bottom layer multijunction solar cell application (Goh et al., 2010; 
Cariou et al., 2014). Further investigation of optical properties of Ge thin film 
reported by Liu et al. and Tsao et al., have found out that the energy band gap 
of Ge thin films can be varied by thermal treatment during the deposition 
process. Therefore, Ge thin film has become a reliable candidate for future 
electronic devices (Tsao et al., 2011b; Liu et al., 2015).  
 

For electronic devices, Ge thin film demanding a specific requirement. The 
most important parameter to obtain high-quality Ge thin film is the film 
thickness and surface morphology. Nguyen et al., and Zhang et al., have 
reported that the stress due to lattice mismatch between Si substrate and Ge 
thin film fabricated using RF magnetron sputtering exhibits low root-mean-
square (rms) surface roughness of 1.6 nm and thickness of 100 nm (Nguyen et 
al., 2013; Zhang et al., 2010).  
 

In this study, we aim to deposit low surface roughness and desired thickness of 
Ge thin film on a glass substrate by using RF magnetron sputtering utilizing ex-
situ annealing process. Parameters such as pressure and RF power were 
optimized in order to achieve the desired Ge thin film quality whereby 
nanowires can be grown for the solar cell application in the future. 
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1.2   Motivation and problem statement 
 

Ge thin film usually utilizes as a buffer layer or virtual substrate for the 
integration and fabrication of GaAs-based optical devices and III-V compound 
semiconductor metal-oxide-semiconductor-field-effect-transistor for (MOSFET) 
on Si due to its specific advantages (Choi et al., 2008). The main advantages 
of Ge thin film are their electrical and structural properties are close to Si (Shah 
et al., 2011a), provide a good epitaxial structure with near-perfect lattice match 
to GaAs (Choi et al., 2008), and low deformation of layer (Nguyen et al., 2013). 
However, further investigation is needed to study the implementation of Ge thin 
film since large thermal expansion coefficient (Choi et al., 2008), high threading 
dislocation density at the interface and high surface roughness limiting the 
performance of the solar cell. 
 

The thermal coefficient expansion is known as a measure of a fractional 
change in surface, per unit degree of changes in temperature. A thin film with a 
larger thermal expansion will give higher tensile strain (Shah et al., 2011a). 
Therefore, it is common to avoid depositing a thin film with a mismatch of 
thermal expansion, which caused the malfunction devices (Fang and Lo, 2000).  
 

The mismatches between the thin film and the substrate generally refer as the 
line imperfection in the lattice (Kittel, 2015). The imperfection of lattice structure 
can be caused by different bonding energy between atoms. A higher density of 
threading dislocation resulted from large lattice mismatch and high thermal 
expansion coefficient between thin film and substrates degrade the carrier 
mobility and increasing the current leakage path in the devices (Wong et al., 
2010). 
 

As the film growth, the problem from the dislocation might contribute to the 
surface roughness irregularity and unevenness on the plane of a thin film. The 
roughness of thin film on nanostructure such as solar cell will affect the 
structural properties (Suh et al., 2010). Therefore, low surface roughness will 
improve the strength and ductility of the thin film.  
 

RF magnetron sputtering was used to improve the strength and ductility of the 
thin film since it has high deposition rate, good reproducibility and a possibility 
of using commercially available large area sputtering system (Kurdesau et al., 
2006). Several studies reported that the RF magnetron sputtering can produce 
a lower surface roughness of Ge thin film compared to others typical method 
(Samavati et al., 2013; Choi et al., 2008). Moreover, low surface roughness 
may avoid the deposition of a thicker film. The thicker film caused clusters and 
coarsening effect which leads to the high surface roughness in film deposition.  
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Hence, the annealing process has been introduced to overcome this problem. 
The annealing process was reported can produce a smoothing effect and 
lowers the surface roughness of the thin film (Shah et al., 2011b). The 
annealing process is a common process used to recover structural quality in 
materials. In the highly damaged semiconductor materials caused by ion 
bombardment, annealing allows atoms to move back into their lattice sites, 
removing structural damage and recrystallize material from an amorphous 
structure to a crystalline or polycrystalline structure (Kang et al., 2009). 
 

Therefore, this study related to the deposition of the lower surface roughness of 
Ge thin film using RF magnetron sputtering technique. Parameters such as 
pressure and RF power were varied throughout the study. The annealing 
process was applied in order to investigate the effect of thermal treatment on 
the thin film. 
 

1.3   Research objectives 
 

The interest of this research is to study the properties of Ge thin films by RF 
magnetron sputtering technique. Thus, this research embarks the following 
objectives: 
 

i. To deposit Ge thin film using radio-frequency (RF) magnetron sputtering 
by varying the pressure and RF power.  

ii. To investigate the effect of annealing process of deposited Ge thin films. 
iii. To investigate the structural properties (thin film thickness, surface 

morphology, rms surface roughness, and crystal phase) of Ge thin film 
using a high surface profilometer, atomic force microscopy (AFM) and X-
ray diffraction (XRD) techniques. 

iv. To characterize the optical properties (energy band gap and phonon 
modes) of Ge thin film using ultra-violet visible (UV-Vis) and Raman 
spectroscopy techniques. 
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1.4   Thesis outline 
 

The thesis is divided into five chapters. Chapter 1 introduces the thesis 
background, problem statement and the objectives of this research. Chapter 2 
reviews the literature studies that have been done. Meanwhile, Chapter 3 
explains about the methodology used in this study. Chapter 4 discusses the 
effect of pressure and RF power to the surface morphology of the films. The 
effects of annealing process also being discussed in this chapter. Finally, 
Chapter 5 summarizes the results of the study and suggests directions for 
future work. 
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