CHEMICAL COMPOSITION OF NYPA PALM (Nypa fruticans Wurmb.)
VINEGAR AND ITS EFFECT ON ADIPOGENESIS

MOHD ANUAR BIN AB SAMAD

FPSK(m) 2019 29
CHEMICAL COMPOSITION OF NYPA PALM (Nypa fruticans Wurmb.)
VINEGAR AND ITS EFFECT ON ADIPOGENESIS

By

MOHD ANUAR BIN AB SAMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of Master of Science

December 2018
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

CHEMICAL COMPOSITION OF NYPA PALM (Nypa fruticans Wurmb.) VINEGAR AND ITS EFFECT ON ADIPOGENESIS

By

MOHD ANUAR BIN AB SAMAD

December 2018

Chair: Amin bin Ismail, PhD
Faculty: Medicine and Health Sciences

Overweight and obesity are implications of excessive body fat that may give negative effects to health. Nowadays, overweight and obesity are known to be closely related to many types of chronic diseases such as type 2 diabetes, hypertension, coronary heart disease, stroke, and certain cancers. Anti-obesity drug therapy complemented with diet therapy and physical activity has been widely used to treat obesity. However, using the drug as a treatment of obesity could give harmful side effect to the obese patient. Therefore, the objective of this study was to evaluate the chemical composition and anti-obesity effect of nypa palm vinegar (NPV) in vitro adipocyte-induced model in comparison to pioglitazone and orlistat as the positive controls. The present study began with the characterization of chemical composition in NPV including organic acids, phenolic compounds, sugar, and alcohol contents. Changes of chemical composition in NPV have been observed base on different fermentation periods and it might be due to naturally presence of microorganisms in Nypa fruticans Wurmb. sap. Organic acids and phenolic compounds of fresh nypa sap and its vinegar at different fermentation stages were determined using a cation exchange column of HPLC-DAD. Organic acids detected were acetic acid, lactic acid, succinic acid, tartaric acid, maleic acid, malic acid, quinic acid, oxalic acid, formic acid, and fumaric acid. The prominent organic acid of vinegar was acetic acid in the range of 5-10%. The concentration of acetic acid had significantly increased \((p < 0.05)\) from 62.49 ± 0.55 mg/100 ml in fresh nypa sap to 2513.80 ± 10.24 mg/100 ml, 4510.07 ± 7.03 mg/100 ml, and 6036.32 ± 5.56 mg/100 ml in 4 months, 8 months, and 60 months fermented sap, respectively. Nine phenolic compounds including gallic acid, p-coumaric, o-coumaric, protocatechuic, and chlorogenic acid, catechin, epicatechin, quercetin, and rutin were detected in the samples. The concentration of phenolic compounds significantly diverse \((p < 0.05)\) in each sample depend on fermentation periods. Catechin was found the highest concentration in nypa sap (1014.36 ± 21.06 mg/100 ml) and 60 months fermented NPV (3249.40 ± 25.51 mg/100 ml) while protocatechuic acid showed the highest concentration in 4 months fermented NPV (1064.50 ± 24.35 mg/100 ml) and 8 months fermented NPV (1322.16 ± 7.14 mg/100 ml). HPLC-ELSD and GC-FID were employed to quantify sugar and alcohol, respectively. Sugar and alcohol showed significant decrement \((p < 0.05)\) in
fermented sap compared to non-fermented sap. DPPH, FRAP and Folin-Ciocalteu assays were used to assess antioxidant capacity in nypa sap and its vinegar. The results indicated that 60 months fermented NPV have the highest antioxidant activity compared to other samples. To assess the NPV effect on OP9 cells viability, MTT assay was carried out and IC\textsubscript{50}, 2.74% (v/v) of NPV was calculated. IC\textsubscript{20} value also was determined to represent the non-toxic concentration of NPV for further analysis. Oil Red O (ORO) staining, triglycerides (TG), and glycerol-3-phosphate (G3P) assays were applied to evaluate anti-adipogenesis properties of NPV. After ORO staining, relative lipid accumulation was calculated and NPV-supplementation decreased lipid accumulation in adipocyte up to 57 %. Regardless concentration of treatments, NPV- supplementation showed significant reduction (p < 0.05) of TG content compared to non-treated OP9 adipocytes (control). NPV-supplementation caused TG content reduction in the range of 48 - 70 %. Furthermore, 2.0 % (v/v) NPV-supplementation had also suppressed G3P concentration and comparable (p > 0.05) to positive control (orlistat), but significantly difference (p < 0.05) to pioglitazone. Collectively, the present study has determined bioactive compounds in nypa sap and its vinegar. Potential anti-obesity effects of NPV by \textit{in vitro} study also has been elucidated.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KOMPOSISI KIMIA CUKA NIPAH (Nypa fruticans Wurmb.) DAN KESANNYA TERHADAP PEMBENTUKAN SEL LEMAK

Oleh

MOHD ANUAR BIN AB SAMAD

Disember 2018

Pengerusi: Prof. Amin bin Ismail, PhD
Fakulti: Perubatan dan Sains Kesihatan

Berat badan berlebihan dan obesiti adalah implikasi daripada pengumpulan lemak badan yang berlebihan dan menyebabkan kesan negatif pada kesihatan. Pada masa kini, berat badan berlebihan dan obesiti didapati berkait rapat dengan pelbagai jenis penyakit kronik seperti diabetes jenis 2, tekanan darah tinggi, penyakit jantung koronari, angin ahmar dan kanser. Ubat-ubatan anti-obesiti yang dilengkapi dengan terapi diet dan aktiviti fizikal telah digunakan secara meluas untuk merawat obesiti. Walau bagaimanapun, penggunaan ubat-ubatan sebagai rawatan obesiti boleh memberi kesan sampingan yang berbahaya kepada orang yang obes. Oleh itu, objektif kajian ini adalah untuk menilai komposisi kimia dan kesan anti-obesiti pada cuka nipah dengan menggunakan model sel lemak in vitro yang dibandingkan dengan pioglitazone dan orlistat sebagai kawalan positif. Kajian ini bermula dengan pencirian komposisi kimia dalam nira nipah dan cuka nipah termasuk asid organik, sebatian fenolik, gula, dan kandungan alkohol. Perubahan komposisi kimia dalam nira nipah dan cuka nipah telah diperhatikan berdasarkan tempoh penapaian dan perubahan ini mungkin disebabkan oleh kehadiran mikroorganisma semulajadi dalam nira nipah. Asid organik dan sebatian fenolik dalam nira nipah segar dan cuka nipah pada peringkat penapaian yang berbeza telah ditentukan dengan menggunakan kaedah pertukaran kation HPLC-DAD. Asid organik yang dikesan dalam sampel adalah asid asetik, asid laktik, asid sukinik, asid tartarik, asid maleik, asid kuinik, asid oksalik, asid formik, asid fumarik. Asid organik yang paling banyak dalam cuka ini adalah asid asetik dalam lingkungan 5-10%. Kepekatan asid asetik telah meningkat dengan signifikan (p < 0.05) daripada 62.49 ± 0.55 mg/ 100 ml dalam nira nipah segar kepada 2513.80 ± 10.24 mg/ 100 ml, 4510.07 ± 7.03 mg / 100 ml, dan 6036.32 ± 5.56 mg/ 100 ml, masing-masing dalam cuka yang diperam selama 4 bulan, 8 bulan, dan 60 bulan. Sembilan sebatian fenolik termasuk asid galik, asid p-koumarik, asid o-koumarik, asid protokatekuik, asid klorogenik, katekin, epikatekin, kuersetin dan rutin telah dikesan dalam sampel. Kepekatan sebatian fenolik berbeza dalam setiap sampel bergantung kepada tempoh penapaian. Katekin menunjukkan kepekatan tertinggi dalam nira nipah (1014.36 ± 21.06 mg/100 ml) dan cuka nipah yang diperam selama 60 bulan (3249.40 ± 25.51 mg/100 ml) manakala asid protokatekuic menunjukkan kepekatan tertinggi dalam cuka nipah yang diperam selama 4 bulan (1064.50 ± 24.35 mg/100 ml)
dan cuka nipah yang diperam selama 8 bulan (1322.16 ± 7.14 mg/100 ml). HPLC-ELSD dan GC-FID telah digunakan untuk mengira kadar gula dan alkohol dalam sampel. Gula dan alkohol menunjukkan penurunan yang signifikan (p < 0.05) dan ketara dalam cuka nipah berbanding nira nipah segar. Kaedah DPPH, FRAP dan Folin-Ciocalteu telah digunakan untuk mengukur kandungan antioksidan dalam nira dan cuka nipah. Keputusan menunjukkan bahawa cuka nipah yang diperam selama 60 bulan mempunyai aktiviti antioksidan yang paling tinggi berbanding sampel lain (p < 0.05). Untuk menilai kesan cuka nipah pada kebolehhidupan sel OP9, ujian MTT telah dilakukan dan nilai IC₅₀, 2.74% (v/v) cuka nipah telah dikira daripada keluk kebolehhidupan sel. Nilai IC₂₀ juga telah ditentukan untuk menentukan kepekatan cuka nipah bukan toksik dalam analisis selanjutnya. Pewarnaan Oil Red O (ORO), ujian trigliserida (TG) dan gliserol-3-fosfat (G3P) telah digunakan untuk menilai ciri-ciri anti-adipogenesis cuka nipah. Selepas pewarnaan pada sel lemak, pengumpulan lemak relatif telah dikira dan penambahan cuka nipah dalam sampel telah menurunkan pengumpulan titisan lemak sehingga 57 %. Untuk ujian TG, penambahan cuka nipah sebanyak 2.0% (v/v) telah menunjukkan pengurangan kandungan TG yang lebih banyak berbanding penambahan cuka nipah yang lebih rendah kepekatannya. Penambahan cuka nipah dalam sampel menyebabkan pengurangan kandungan TG dalam sel lemak dalam kisaran 48 - 70 %. Tambahan pula, penambahan cuka nipah sebanyak 2.0% (v/v) telah menurunkan kepekatatan G3P dalam sel lemak dengan signifikan (p < 0.05) dan standing dengan kawalan positif, orlistat. Secara kolektif, penemuan kajian ini telah melaporkan kandungan bioaktif dalam nira nipah dan cuka nipah, malah potensi kesan anti-obesiti cuka nipah dalam kajian in vitro telah dijelaskan.
ACKNOWLEDGEMENTS

Apart from my effort, the success of this Master project depends largely from the encouragements and guidelines of many others. First and foremost, I would like to express my gratitude to Allah SWT, The Most Merciful and The Most Gracious, which have given me strength throughout this Master project especially when I was having obstacles and in need of help.

My deepest and sincere gratitude is to my supervisory committee, Professor Dr. Amin Ismail and Associate Professor Dr. Azrina Azlan which guide me without boundary and continuous support during this research study.

I would like to thanks to Mr. Syed Hasbullah Syed Kamaruddin, Mr. Eddy Gadafi, Mr. Simon Md Rawi, and Mrs. Che Maznah Ahmad for the laboratory guidance and technical supervision. Not to forgot, Ministry of Higher Education for MyBrain15 scholarship and Graduate Research Fund, UPM for the financial assistance throughout my research period.

In conjunction, I would also express my deepest gratitude to my beloved parents, family, and friends for their mentally support and financially support and always be with me whenever problems encountered upon completion of this thesis. Last but not least, thousands of thanks to everyone who has directly or indirectly involved in helping me to complete this research study. I really appreciate all help and moral support. Only Allah can repay all the kindness.
I certify that a Thesis Examination Committee has met on 27 December 2018 to conduct the final examination of Mohd Anuar bin Ab Samad on his thesis entitled "Chemical Composition of Nypa Palm (Nypa fruticans Wurmb.) Vinegar and its Effect on Adipogenesis" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Roslida binti Abd Hamid @ Abdul Razak, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Nurul Husna Shafie, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wan Rosli bin Wan Ishak@Wan Ahmad, PhD
Professor
Universiti Sains Malaysia
Malaysia
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 1 March 2019
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as the fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Azrina Azlan, PhD
Associate Professor
Faculty Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations, and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Mohd Anuar bin Ab Samad (GS43980)
Declaration by Members of the Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia(Graduate Studies Rules 2003 (Revision 2012-2013) are adhered to

Signature : __________________________
Name of Chairman of Supervisory Committee : Prof. Dr. Amin bin Ismail

Signature : __________________________
Name of Member of Supervisory Committee : Assoc. Prof. Dr. Azrina binti Azlan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>APPROVAL</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Research background
1.2 Problem statements
1.3 Significance of the study
1.4 Objectives
1.4.1 General objective
1.4.2 Specific objectives

2 LITERATURE REVIEW

2.1 Overweight and obesity
2.1.1 Definition and classification
2.1.2 Energy balance and dynamics of body weight
2.1.3 Adipogenesis and obesity
2.1.4 Dietary patterns and obesity
2.1.5 Nutrition transition and obesity
2.1.6 Obesity-related mortality
2.1.7 Medical treatment for obesity
2.2 Vinegar
2.2.1 Chemical composition of vinegar
2.2.2 Therapeutics value of vinegar
2.2.2.1 Anti-obesity
2.2.2.2 Anti-Diabetic
2.2.2.3 Cardiovascular diseases
2.2.2.4 Cancer
2.2.2.5 Antimicrobial
2.2.2.6 Bioavailability of vinegar and acetic acid
2.3 Nypa Palm
2.3.1 Morphological characters
2.3.2 Nypa Palm Sap
2.3.3 Nypa Palm Vinegar (NPV)
2.3.4 Food and Nutritional Components
2.3.5 Potential Applications
3 METHODOLOGY
3.1 Chemicals and reagents 29
3.2 Instruments 29
3.3 Sample Collection 29
3.4 Determination of NPV constituents 30
 3.4.1 Determination of organic acids 30
 3.4.2 Determination of alcohol/ethanol 30
 3.4.3 Determination of total sugars 31
 3.4.4 Determination of phenolic compounds 31
 3.4.5 Determination of Antioxidant capacity 32
 3.4.5.1 2,2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) 32
 3.4.5.2 Ferric reducing antioxidant power (FRAP) 32
 3.4.5.3 Total phenolic content (TPC) 32
3.5 In-vitro study 33
 3.5.1 Cultivation of OP9 cells 33
 3.5.2 Determination of cell viability 33
 3.5.3 Determination of anti-adipogenesis properties of NPV 33
 3.5.3.1 Determination of cell morphology changes after induction 34
 3.5.3.2 Determination of lipid droplets in adipocytes 34
 3.5.3.3 Determination of triglycerides (TG) content in adipocytes 35
 3.5.3.4 Determination of glycerol-3-phosphate (G3P) concentration in adipocytes 35
3.6 Statistical analysis 35
4 RESULTS AND DISCUSSION 36
 4.1 Organic acid contents of nypa sap and its vinegars 36
 4.2 Sugar contents of nypa sap and its vinegar 39
 4.3 Alcohol contents of nypa sap and its vinegar 40
 4.4 Phenolic compounds in nypa sap and its vinegar 41
 4.5 Total Phenolic Content 43
 4.6 Antioxidant capacity of nypa sap and its vinegar 44
 4.6.1 Scavenging capacity 44
 4.6.2 Ferric reducing antioxidant power (FRAP) 45
 4.7 Cell viability assay 47
 4.8 Morphological changes of OP9 cells after being induced to adipocytes 48
 4.9 Anti-adipogenic properties of NPV 49
5 SUMMARY, CONCLUSION, AND RECOMMENDATION FOR FUTURE RESEARCH 56
 5.1 Summary and conclusion 56
 5.2 Recommendation for Future Research 57
REFERENCES 58
APPENDICES
BIODATA OF STUDENT 69
LIST OF PUBLICATION 80
LIST OF PUBLICATION 81
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Proximate composition of Nypa fruticans husk and seeds</td>
</tr>
<tr>
<td>2.2</td>
<td>Mineral contents of Nypa fruticans husk and seeds</td>
</tr>
<tr>
<td>2.3</td>
<td>Phenolic contents and antioxidant capacities of unripe and ripe Nypa fruticans endosperm</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of chemical composition between nypa sap and sugarcane</td>
</tr>
<tr>
<td>2.5</td>
<td>Nutritional content of nypa flour (%)</td>
</tr>
<tr>
<td>2.6</td>
<td>Nutrition composition of nypa sugar</td>
</tr>
<tr>
<td>2.7</td>
<td>Medicinal properties and uses of Nypa fruticans Wurmb.</td>
</tr>
<tr>
<td>4.1</td>
<td>Organic acids detected in nypa sap and its vinegar</td>
</tr>
<tr>
<td>4.2</td>
<td>Sugar content of nypa sap and its vinegar</td>
</tr>
<tr>
<td>4.3</td>
<td>Ethanol percentage in nypa sap and its vinegar</td>
</tr>
<tr>
<td>4.4</td>
<td>Phenolic compound detected in nypa sap and its vinegar</td>
</tr>
<tr>
<td>4.5</td>
<td>Total phenolic content and antioxidant capacity of nypa sap and its vinegar with different fermentation time</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>(A) Nypa palm thrive well in the brackish environment; (B) A matured bract of nypa palm</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Sap collected using a transparent plastic bag</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Direct comparison of energy-dispersive X-rays (EDX) spectra of inorganic elements obtained from the ash of nypa and sugarcane saps</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>HPLC chromatograms of organic acids detected in samples</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of NPV supplementation on the viability of OP9 preadipocyte cells</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Morphological changes of OP9 pre-adipocytes into mature adipocytes</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Microscopic images on the effect of NPV and positive control supplementation against lipid droplet accumulation</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>The effect of NPV supplementation on relative lipid accumulation in OP9 adipocytes</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>The effect of NPV supplementation on intracellular triglyceride content in OP9 adipocytes</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of NPV supplementation on G3P concentration in OP9 adipocytes</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

NPV Nypa Palm Vinegar
HPLC- DAD High Performance Liquid Chromatography-Diode Array
 Detector
HPLC-ELSD High Performance Liquid Chromatography-Evaporative
 Light Scattering Detector
GC-FID Gas Chromatography – Flame Ionization Detector
TPC Total Phenolic Content
DPPH 2,2-diphenyl-1-picrylhydrazyl
FRAP Ferric reducing antioxidant power
MTT 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
 bromide
IC Inhibition concentration
TG Triglyceride
G3P Glycerol-3-Phosphate
WHO World Health Organization
NHMS National Health Morbidity Survey
BC Before Christ
UK United Kingdom
BMI Body mass index
RMR Resting metabolic rate
FAO Food and Agriculture Organization
NCD Non-communicable disease
CHD Coronary heart disease
NHANES National Health and Nutrition Examination Survey
Hg Mercury (Hydrargyrum)
SREBP-1 Sterol regulatory element-binding protein 1
mRNA Messenger Ribonucleic acid
ATP-CL Adenosine triphosphate citrate lyase
acetyl-CoA Acetyl coenzyme A
HMG-CoA 5-hydroxy-3-methylglutaryl-coenzyme A
AOX Alternative oxidase
TVB Tomato vinegar beverage
LDL Low-density lipoprotein
HDL High-density lipoprotein
PV Pomegranate vinegar
WAT White adipose tissue
BFR Body fat ratio
GC *Garcinia cambogia*
PPARα Peroxisome proliferator-activated receptor α
PPARγ Peroxisome proliferator-activated receptor γ
CPT-1a Carnitine palmitoyltransferase 1A
AMPK Adenosine monophosphate-activated protein kinase
GR Ginsam radix
ChREBP Carbohydrate-responsive element-binding protein
HSL Hormone-sensitive lipase
PARP Poly ADP ribose polymerase
AIF Apoptosis-inducing factor
DNA Deoxyribonucleic acid
TPTZ 2,4,6-Tri(2-pyridyl)-s-triazine
HCl Hydrochloric Acid
FeCl₃ Ferric chloride
FeSO₄ Ferrous Sulfate
Na₂CO₃ Sodium Carbonate
GAE Gallic acid equivalent
FBS Fetal bovine serum
MEMα Minimal essential medium α
CO₂ Carbon dioxide
PBS Phosphate-buffered saline
DEXA Dexamethasone
IBMX 3-isobutyl-1-methylxanthine
DM Differentiation media
OROSM Oil red o-stained material
SD Standard deviation
TMS Trimethyl silyl
RT Retention time
ANOVA Analysis of variance
DW Dry weight
H₂O₂ Hydrogen Peroxide
HClO hypochlorous acid
CT Cryptotanshinone
GLUT4 Glucose Transporter 4
GATA2 GATA-binding factor 2 is a transcription factor
TNF-α Tumor necrosis factor alpha
EGCG Epigallocatechin Gallate
GPDH Glycerol-3-phosphate dehydrogenase
CHAPTER 1

INTRODUCTION

1.1 Research background

Nowadays, obesity is a growing health problem and has become a major contributor to mortality and morbidity globally. Indeed, it has become a high-risk factor for many types of chronic diseases such as type 2 diabetes, hypertension, coronary heart disease, stroke, and certain cancers. According to the World Health Organization (WHO, 2016), the worldwide prevalence of overweight and obesity in the adult population aged more than 18 years old are 39% and 13%, respectively. In which, it is over more than 1.9 billion adults were overweight while over 650 million adults were obese. Moreover, WHO has stated that the worldwide prevalence of obesity nearly tripled between 1975 and 2016. In Malaysia, based on previous National Health and Morbidity Surveys (NHMSs) carried out in 2006, 2011 and 2015, an increasing trend of overweight and obesity prevalence was observed among Malaysian adults aged 18 years and older: 29.1% overweight and 14.5% obesity in 2006, 29.4% overweight and 15.1% obesity in 2011, 30.0% overweight and 17.7% obesity in 2015 (Chan et al., 2017).

An obese person may face a psychological and social problem, such as having low self-esteem, difficulty in finding jobs and so on. The risk of life-threatening diseases also increases, particularly cardiovascular disease, type 2 diabetes and certain types of cancer due to obesity. Clinical studies revealed that overweight and obesity are the main causes of high cholesterol level, hypertension, hypertriglyceridemia, glucose, and insulin tolerance.

There have been increasing interest in looking into the effect of natural products and dietary phytochemicals as potential therapeutic agents to treat obesity. Reviews done by (Vermaak et al., 2011; Yun, 2010) have shown varies of natural products contain bioactive compounds such as polyphenol and carotenoid. They have anti-obesity property which can act based on different type of mechanisms. Medicinal plants can reduce weight through five basic mechanisms: controlling appetite, stimulating thermogenesis and lipid metabolism, inhibiting pancreatic lipase activity, preventing adipogenesis, and promoting lipolysis (Kazemipoor et al., 2015). Thus, there have been progress in new dietary supplements, nutraceuticals and functional foods that have anti-obesity effects which are beneficial to health. Vinegar has also been reported its therapeutic properties on cardiovascular risk factors, hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity (Petsiou et al., 2014).

Production of vinegar involves double fermentation processes which are alcoholic and acetous. Commercial vinegar is produced either by fast or slow fermentation processes. In general, slower methods are used with traditional vinegar, and fermentation proceeds slowly over the course of months or a year. In Malaysia, there is a type of vinegar derived
from *Nypa fruticans* sap. Uniquely, nypa palm vinegar (NPV) is being produced from its sap, not like other vinegar which are derived from the fruits and grains.

Commonly, vinegar consumed by Malaysian community as food condiment is produced artificially. Natural vinegar such as NPV, apple cider vinegar and balsamic vinegar that contain functional bioactive compounds are rarely taken in Malaysian cuisine.

Vinegar is used as both food and medicine in many societies since long time ago (Kadas et al., 2014). During Biblical times, vinegar was used to flavor foods, drunk as an energizing drink, and used as a medicine. In 400 BC Hippocrates indicates vinegar was used medicinally to manage wounds (Conner, 1976).

Vinegar was used as a treatment to attenuate obesity since late 18th century. Post World War 1, antiobesity drugs such as dinitrophenol, amphetamine, and fenfluramine were started to be used and cause many health complications and side effects (Bray, 2014). Vinegar are used as a condiment and traditional medicine worldwide (Bouazza et al., 2016). Thus, scientists have done so many researches investigating the effectiveness of vinegar to be an alternative organic medicine for obesity. It's acidic and phenolic compounds such as chlorogenic acid, gallic acid, and caffeic acid were reported to enhance the lipolysis (Cho et al., 2010).

Triglycerides are water-insoluble lipids consisting of three fatty acids esterified to a glycerol backbone. TG is rapidly hydrolyzed in the capillary beds by lipoprotein lipase, releasing glycerol and free fatty acids, which are absorbed by adipose tissue for storage. The measurement of triglyceride level is useful in the diagnosis of primary and secondary hyperlipoproteinemia, dyslipidemia, and triglyceridemia. TG concentration is also useful in the diagnosis and treatment of diabetes mellitus, nephrosis, liver obstruction, and other diseases involving lipid metabolism or various endocrine disorders (Fredrickson et al., 1967). The most common method to determine triglyceride concentration is by enzymatic hydrolysis of triglycerides to glycerol and free fatty acids followed by either colorimetric or fluorometric measurement of the glycerol released (McGowan et al, 1983; Bucolo & David, 1973).

On the other hand, glycerol-3-phosphate (G3P) is produced either by glycerol via glycerol kinase or by dihydroxyacetone phosphate through glycerol-3-phosphate dehydrogenase (GPDH), and its activity could increase several folds during adipocyte differentiation. In response to cellular signals, G3P can be utilized in multiple pathways: it can be further converted into glyceraldehyde-3-phosphate and enter glycolysis or rapidly generate NAD⁺ in brain or muscle tissues through the G3P shuttle or enter the lipid biosynthetic pathway.
1.2 Problem statements

Over a decade ago, world population diets in 1970s started to have dramatic changes toward increasing consumption of processed foods, increases dining out away from home, high consumption of animal foods, edible oils, refined grains, low fiber and added sugar products (Popkin, et al., 2012). Furthermore, due to the modernization of technology, people to have sedentary lifestyles such as television viewing, driving automobiles, reading and many others (Ng & Popkin, 2012). This phenomenon is called a nutrition transition. A study by Zhou et al. (2013) showed increased urbanization has a positive change in nutrition transition which directly gives a positive effect on obesity levels in adults. Popkin (2006) stated changes in nutrition transition have increased energy imbalance and positive shift in body mass index distribution among the adult population.

Moreover, the growing prevalence rates of obesity and overweight in developing countries are advanced higher that developed countries. A systematic review revealed by Khambalia and Seen (2010) showed the trend of overweight and obesity rates in Malaysia has been dramatically increased between the years of 1996 to 2009. This is supported by Baker and Friel (2014) which showed the most population in Malaysia consume high levels of oil and fats, whereas the most population in Thailand and Philippines consume high levels of soft drinks.

Anti-obesity drugs can be classified into two categories which based on different type of action mechanisms. The anti-obesity drugs that are currently used in the market are orlistat and sibutramine. Orlistat is a pancreatic lipase inhibitor which to regulate the gastrointestinal system to reduce fat absorption. Whereas sibutramine is a serotonin and noradrenaline inhibitor, which regulates the central nervous system to suppress appetite. Using these two drugs as a treatment of obesity could give harmful side effects to the obese patient while various natural products could be drug replacer due to their anti-obesity activity (Yun, 2010). A review was done by Rucker et al., (2007) reported that patients who prescribed orlistat treatment have increased rates of gastrointestinal side effect and reduced concentration of high-density lipoprotein while patients who prescribed sibutramine as a treatment of obesity has increased their blood pressure and pulse rate.

Apart from morbidity and mortality burden, obesity also gives a burden in the economic aspects. Wang et al., (2011) reported the projection of obese adult population in the United States (USA) and United Kingdom (UK) by 2030 are more than 65 million and 11 million. The researchers also estimated the combination of the medical cost associated with the treatment of obesity and co-morbidities will increase by $48–66 billion/year in the USA and by £1.9–2 billion/year in the UK by 2030. According to Withrow & Alter (2011), the medical cost of obese individuals is more than 30% greater than normal weight individuals. Thus, alternative actions prior to the treatment should be made as well as effective policies like health promotion and lifestyle intervention can reduce the prevalence of obesity and related diseases which will also give economic benefits to the world.
Due to the undesirable side-effects associated with the currently available anti-obesity medications and limited efficacy, much attention has been focused on developing drugs that directly modulate energy metabolism without affecting the central nervous system. Some natural products such as genistein, epigallocatechin gallate (EGCG), capsaicin, and catechin are known to have anti-obesity effects (Furuyashiki et al., 2014; Hwang et al., 2005). These natural compounds ameliorate obesity either by increasing energy expenditure or by inhibiting adipocyte differentiation.

Vinegar is well known from ancient time and used as a food and medicine product because of its properties (Dogaru et al., 2009; Fushimi & Sato, 2005). All vinegar solutions that primarily contain acetic acid and have been reported to possess physiological effects in human such as blood pressure lowering effects and provide refreshment after exercise (Ou & Chang 2009), antihypertensive properties (Kondo et al., 2001; Nakamura et al., 2010), anticancer effects (Shizuma et al. 2011), improvement of glycogen repletion in liver and muscles (Fushimi & Sato, 2005), reduction of serum cholesterol and triacylglycerols (Fushimi et al., 2006).

Cider vinegar is popular in folk medicine and is suggested as a remedy for various diseases, including obesity and overweight, arthritis, asthma, cough, diarrhea, hair loss, and many other conditions. It can be used as a flavoring agent and a food preservative (Joshi & Sharma, 2009). Mahmoodi et al. (2013) determined the effect of apple vinegar on hematological and blood biochemical factors in type 2 diabetic patients. The results showed that apple vinegar consumption decreased fasting blood sugar glycated hemoglobin, cell volume, and cell hemoglobin, whereas platelets increased. Apple vinegar is reported to have a hypoglycemic effect and may be used in the treatment of type 2 diabetes.

Yamashita et al. (2007) reported that acetic acid is converted to acetate in vitro and acetate metabolism by tissues activates adenosine monophosphate-activated protein kinase (AMPK) which play a key role in lipid homeostasis which may explain the lipid-lowering effects of ingested acetic acid in animals. Vinegar consumption also protects from lipid accumulation in liver and skeletal muscle (Yamashita, 2016). Mitrou et al. (2015) reported that vinegar consumption lowers the triglyceride level, whereas no change was observed in non-esterified fatty acid and glycerol in the blood of diabetes mellitus patients.

Worldwide, various kind of natural vinegar such as apple cider vinegar, balsamic vinegar, pomegranate vinegar, and many more have been showed their health-promoting properties. To our concern, there is no study has been reported on the effect of nypa palm vinegar (NPV) in inhibiting adipogenesis and alleviating obesity.
1.3 Significance of the study

Currently, a common anti-obesity drug used is found to have possible side effects to the obese patient (Rucker et al., 2007). It has increased awareness of researchers to seek the safest approach and effective natural treatment, especially from natural sources to treat obesity (Vasudeva et al., 2012). Therefore, this study may provide the evidence base of the uses of nypa palm vinegar (NPV) in treating obesity and limit the usage of the drug as a treatment of obesity.

Vinegar has been found to be effective in weight reduction among the populations (Anastasovska et al., 2009). Acetic acid is the main organic acid present in vinegar and showed numerous health beneficial effects against hyperlipidemia (Beheshti et al. 2012).

Studies have reported that vinegars possess physiological effects in humans such as antihypertensive properties (Nakamura et al., 2010), enhancement of glycogen repletion in liver and muscle (Fushimi & Sato, 2005), anticarcinogenic effects (Baba et al., 2013) and reduction of serum cholesterol and triacylglycerol (Fushimi et al., 2006). Seo et al. (2015) reported that persimmon vinegar reduced body weight and body fat and suppress obesity. Vinegar consumption has been associated with diminished post prandial glucose response following a high glycemic load meal (Johnston & Buller, 2005).

Many underutilized natural products in Malaysia had been reported previously contain high antioxidants with various therapeutic properties. In maximizing utilization of nypa palm, the sap is often used as a beverage, converted to sugar, vinegar, and bioethanol. In fact, consumption of NPV is very minimum, specifically Malaysian even though it has a big potential as an alternative to anti-obesity and other disease medications.

In Malaysia, nypa palm cover almost brackish and swampy area. Nypa sap can be considered very promising for sugar and natural vinegar production. Therefore, the present study was conducted to determine, spread and increase awareness regarding our underutilized natural product and its health benefits.
1.4 Objectives

1.4.1 General objective

To study the chemical compositions of nypa palm vinegar (NPV) and its effect on adipogenesis.

1.4.2 Specific objectives

1. To quantify the organic acid, phenolic compounds, sugar content, alcohol, and antioxidant capacity in NPV.

2. To determine the effect of NPV on OP9 cells viability.

3. To determine the effects of NPV on the lipid accumulation, intracellular triglyceride (TG) content, and glycerol-3-phosphate (G3P) concentration in induced OP9 cells.
REFERENCES

vinegar on delayed gastric emptying in patients with type 1 diabetes mellitus: a
pilot study. *BMC Gastroenterology, 7,* 46.

Hinchy, V. M. (1940). The relation between frond transpiration and yield of sap in the

production, composition and health benefits of vinegars: A review. *Food Chemistry,
221,* 1621–1630.

Fat and carbohydrate overfeeding in humans: Different effects on energy storage.

and o-coumaric acid ameliorate obesity induced by high-fat Diet in rats. *Journal of

against obesity and their underlying molecular signaling mechanisms. *Molecular
Nutrition and Food Research, 52*(1), 53–61.

(2005). Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process
via activating AMP-activated protein kinase. *Biochemical and Biophysical

Institute for Public Health (IPH). The Third National Health and Morbidity Survey

Institute for Public Health (IPH). National Health and Morbidity Survey 2011 (NHMS

Institute for Public Health (IPH). National Health and Morbidity Survey 2015 (NHMS

Jin, S., Yuan, S., Kim, Y., Choi, I., & Kim, G. (2014). Effect of fermentation on the

Therapies and the Aging Population, 8*(2), 433–443.

Foods to Reduce Postprandial Glycemia. *Journal of the American Dietetic
Association, 105*(12), 1939–1942.

to a High-Carbohydrate Meal in Subjects With Insulin Resistance or Type 2

reduced fasting blood glucose concentrations in healthy adults at risk for type 2

Examination of the Antiglycemc Properties of Vinegar in Healthy Adults. *Annals
of Nutrition and Metabolism, 56*(1), 74–79.

In *Vinegars of the World* (pp. 197-207). Milano: Springer.

In *Vinegars of the World* (pp. 197-207). Milano: Springer.

Yamashita, H. (2016). Biological Function of Acetic Acid–Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats. *Critical reviews in food science and nutrition, 56*(sup1), S171-S175.

Biodata of Student

Mohd Anuar bin Ab Samad was born in Segamat, Johor on 1st August 1991. His primary education was obtained from SK Felda Selancar Dua, Rompin, Pahang from 1997-2003. In the year 2004-2008, he continued her secondary education in Sekolah Sains Sultan Haji Ahmad Shah, Pekan, Pahang, where he passed his PMR (Penilaian Menengah Rendah) and SPM (Sijil Pelajaran Malaysia) examinations. He continued his foundation in Asasi Sains Pertanian (ASPER), Universiti Putra Malaysia (UPM) in 2009-2011.

In the year 2011, he continued his undergraduate study in UPM and graduated with the degree of Bachelor of Agricultural Science. After graduation, he worked as a research assistant under the supervision of Professor Dr. Amin Ismail. His interest in the academic and research fields have driven him to further study in Master in UPM (2015).

Collaboration
- 2017 - Research attachment under JASSO Scholarship, Kyushu Institute of Technology, Japan - Special Audit Student

Conferences
- 2017 - International Society of Nutraceutical and Functional Food (ISNFF), Jeonbuk, Korea - Poster Presenter
- 2017 - International Symposium on Applied Engineering and Sciences (SAES2017), UPM, Malaysia - Poster Presenter
- 2016 - 1st Food Chemistry Conference, Amsterdam, The Netherlands - Poster Presenter
- 2015 - Food Science Asia 2015, Biopolis, Singapore - Poster Presenter
LIST OF PUBLICATIONS

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ________________

TITLE OF THESIS / PROJECT REPORT :

CHEMICAL COMPOSITION OF NYPA PALM (Nypa fruticans Wurmb.) VINEGAR AND ITS EFFECT ON ADIPOGENESIS

NAME OF STUDENT: MOHD ANUAR BIN AB SAMAD

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (X)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from ____________ until ____________

(date) (date)

Approved by:

(Signature of Student) ________________________________ (Signature of Chairman of Supervisory Committee) ________________________________

New IC No/ Passport No.: ________________________________ Name: ________________________________

Date: ____________________ Date: ____________________

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]