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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Doctor of Philosophy 

GENERATING TOPOLOGIES USING EDGES AND VERTICES IN 

GRAPHS AND SOME APPLICATIONS 

By 

KHALID ABDULKALEK ABDU 

October 2018 

Chairman :   Professor Adem Kiliçman, PhD 

Faculty :   Science  

The issue of topologizing discrete structures is highlighted by several 

researches. In that regards, graph theory is one of the major aspects of discrete 

structures, and the topological graph theory is a crucial branch of it. The 

investigation of topology on graphs is motivated by the embedding of digital 

images in a discrete space, interpreted as a graph. Applications in various 

aspects had been found for topology on graphs, such as in digital geometry, 

contractions, and strong maps.  

In this study, a combination between graph theory and topology has been 

made. The research adopted a new approach in the investigation of topology 

on graphs. This is through studying topology on the set of edges of different 

undirected graphs. It encompasses both simple and non-simple graphs such 

as multigraph and pseudograph. A subbasis family is introduced to generate 

a topology on the set of edges of undirected graphs, called the edges topology. 

Further, properties of this topology are also investigated. In particular, 

functions between graphs, connectivity, and dense subsets are discussed in 

this topology. A fundamental step towards studying some properties of 

undirected graphs by their corresponding topological spaces is displayed. 
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Additionally, in this research, the new approach is applied to directed graphs 

by introducing two subbases families to generate two non-similar topologies 

on the set of edges of any directed graph, called compatible and incompatible 

edges topologies. Furthermore, the characteristics of these topologies were 

examined in detail. The relation between directed graphs and their 

corresponding topologies is presented as well.  

 

 

In the same vein, the present study generalised the graphic topology defined 

on the set of vertices of any locally finite simple graph in which every vertex 

has a finite degree. This is done by presenting a subbasis family to generate a 

new topology on the set of vertices of simple graphs with vertices of 

finite/infinite degree, which is called the incidence topology. Accordingly, this 

study investigated the properties of the incidence topology and made a useful 

comparison between the two topologies. Moreover, by considering the 

graphic topology and the incidence topology, this research explored 

bitopological space on the set of vertices of locally finite simple graphs which 

was not studied before. Therefore, properties of this bitopological space were 

discussed in detail. The relation between locally finite graphs and their 

corresponding bitopological spaces is introduced as well. 

 

 

Lastly, the edges topology on undirected graphs is used to solve graph 

problems. This is through identifying all paths between any two distinct 

vertices, determining all spanning trees (or spanning paths), and finding all 

Hamilton cycles in simple graphs. In addition, a MATLAB code is written to 

represent previous applications and allows them to be appropriate for large 

graphs.     
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

MENJANA TOPOLOGI DENGAN MENGGUNAKAN TEPI DAN 

MERCU DALAM GRAF DAN BEBERAPA APLIKASI 

Oleh 

KHALID ABDULKALEK ABDU 

Ogos 2018 

Pengerusi :   Profesor Adem Kiliçman, PhD 

Fakulti :   Sains 

Isu penjanaan topologi struktur diskret diserlahkan dalam beberapa 

penyelidikan. Dalam hal ini, teori graf merupakan salah satu aspek utama 

struktur diskret, and teori graf bertopologi adalah suatu cabang penting. 

Penyiasatan topologi pada graf didorong oleh pemasukan imej digital ke 

dalam ruang diskret, yang ditafsirkan sebagai sebuah graf. Aplikasi dalam 

pelbagai aspek telah dijumpai untuk topologi pada graf, seperti dalam 

geometri digital, pengecutan, dan pemetaan yang kukuh.  

Dalam kajian ini, teori graf telah digabungkan dengan topologi. Kajian ini 

menggunakan pendekatan baru untuk menyiasat topologi pada graf  dengan 

cara mengkaji set tepi beberapa graf tak berarah yang berlainan. Ia 

merangkumi kedua-dua graf mudah dan tidak mudah seperti multigraf dan 

pseudograf. Suatu keluarga sub asas diperkenalkan untuk menjana topologi 

pada set tepi graf tak berarah, yang dipanggil topologi tepi. Selanjutnya, sifat 

topologi ini juga disiasat. Khususnya, fungsi antara graf, kesambungan, dan 

subset padat dibincangkan dalam topologi ini. Langkah asas ke arah mengkaji 

beberapa sifat graf tak berarah oleh ruang topologi sepadannya dipaparkan. 
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Selain itu, dalam kajian ini, pendekatan baru digunakan terhadap graf berarah 

dengan memperkenalkan dua keluarga sub asas untuk menjana dua topologi 

yang tidak serupa pada set tepi setiap graf berarah, yang disebut sebagai 

topolgi tepi serasi dan tidak serasi. Tambahan pula, ciri-ciri topologi ini 

diperiksa secara terperinci. Hubungan antara graf berarah dan topologi 

mereka yang berkaitan juga ditunjukkan.  

 

 

Pada masa yang sama, kajian ini merumuskan topologi grafik yang 

ditakrifkan pada set bucu mana-mana graf mudah terhingga setempat, di 

mana setiap bucu mempunyai darjah terhingga. Ini dilakukan dengan 

membentangkan suatu keluarga sub asas untuk menjana topologi baru pada 

set bucu graf mudah dengan bucu darjah terhingga/tak terhingga, yang 

dipanggil topologi kejadian. Sewajarnya, kajian ini menyiasat sifat topologi 

dan membuat perbandingan yang berguna antara dua topologi tersebut. 

Lagipun, dengan mempertimbangkan topologi grafik dan topologi kejadian, 

kajian ini meneroka ruang bitopologi pada set bucu graf terhingga mudah 

setempat yang tidak pernah dikaji sebelum ini. Kemudian, sifat ruang 

bitopologi ini dibincangkan secara terperinci. Hubungan antara graf 

terhingga setempat dan ruang bitopologi mereka yang berpadanan juga 

diperkenalkan. 

 

 

Akhir sekali, topologi tepi pada graf tak berarah digunakan untuk 

menyelesaikan masalah graf dengan mengenal pasti semua laluan di antara 

mana-mana dua bucu yang berbeza, menentukan semua pepohon rentang 

(atau lintasan rentang), dan mencari semua kitaran Hamilton dalam graf 

mudah. Di samping itu, kod MATLAB ditulis untuk mewakili aplikasi 

terdahulu dan membolehkan mereka menjadi sesuai untuk graf yang besar.     
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1 

CHAPTER 1 

1 INTRODUCTION 

1.1 General Introduction 

Graph theory is considered one of the most valuable structures in discrete 

mathematics. Its origin can be found in games and puzzles, including 

Hamilton’s icosian game and Euler’s Konigsburg bridge problem. The field 

has exploded and established itself as a prominent mathematical tool in many 

subjects, ranging from geography and electrical engineering to architecture 

and sociology, and from chemistry and operational research to linguistics and 

genetics. Although graph theory is one of the combinatorics branches, it is 

considered as a cross-disciplinary tool between math, operations research, 

electrical engineering and computer sciences. An indication of the growing 

maturity of graph theory is the strong increase in the links between graph 

theory and other branches of mathematics. A prominent example is the 

analysis situs, known today as topology. 

Within the field of mathematics, topology is of great value. It began as a 

milestone development in geometry during the middle of the nineteenth 

century and then, become a significant force in modern mathematics. 

Topological structures are important modification for extraction and 

processing knowledge, used in analyzing data without the notion of distance. 

Topological concepts like denseness, connectedness, and compactness are 

basic knowledge for mathematicians. 

A large number of publications have considered the problem of topologizing 

discrete structures. Two reasons essentially caused these efforts: First, as a 

robust tool, topology leads to several valuable concepts such as homotopy, 

continuity, and connectivity. The other reason is that a discrete topology is 

needed at each time spatial relations are modeled on a computer. As close as 

possible this discrete topology resembles an ordinary topology in the sense of 

implicitly containing the “intrinsic” spatial information as much as possible. 

The development in computer science, especially in computer graphic and 

image analysis makes the topologies on graphs much more essential. Studying 

topological properties of digital images is known as digital topology. Any 
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digital image can be “embedded” in a discrete space (interpreted as a graph); 

the vertices are representing the pixels (grey level intensity and geometric 

points) of the image and the edges define connectedness and nearness. This 

background has paved the way to study topology on graphs. 

A number of authors studied topology on the set of vertices of directed graphs 

and simple undirected graphs while some others studied it on the union of 

vertices and edges (Amiri et al., 2013; Baby Girija and Pilakkat, 2013; Shokry 

and Aly, 2013; Marijuan, 2010; Bretto, 2007; Vella, 2005; Nogly and Schladt, 

1996; Neumann-Lara and Wilson, 1995; Préa, 1992; Lieberman, 1972; Bhargava 

and Ahlborn, 1968; Evans et al., 1967). So far, however, there has been little 

discussion about  topology on the edge set of a given graph. 

Plenty of important applications had been found for the topology on graphs. 

Lieberman (1972) defined topologies on the set of vertices of directed graphs 

and studied the relationships between graph theoretical concepts and 

standard topological properties. He also presented applications involving 

contractions and strong maps. Bretto (2007) studied compatible topologies on 

graphs, described particular properties of these topological spaces and 

developed some applications to digital geometry. James and Klette (2008) 

introduced the topology of incidence pseudographs in a comprehensive 

overview. They indicated that this topology has numerous applications, such 

as in digital picture analysis of two or three dimensions. Shokry and Aly (2013) 

introduced a new method of taking neighborhood to generate a topology on 

a graph. The new way of taking neighborhood builds on the distance between 

two vertices. They linked the new concepts on the graph to the technique of 

nerve repair as an application in the field of peripheral nervous system. 

It is expected that topology on graphs could provide more flexible solutions 

for the fundamental problems of graphs, such as the enumeration of all paths, 

finding the Hamilton cycles and spanning trees. 

The issue of enumerating paths in a graph was described as NP-hard, non-

deterministic problem by computation (Borgwardt and Kriegel, 2005; 

Sedgewick, 2003). Many applications such as networks signaling paths, 

stationary, topological features, reliability and fault tolerance are desired to be 

extracted or investigated for design or development (Yang et al., 2015).  
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The Hamilton cycle (HC) name belong to the Irish mathematician William 

Rowan Hamilton in 1856 when he represented the icosahedral group by 

generators and relations (Gould, 2003). The Hamilton cycle issue is closely 

related to a series of problems, applications, and puzzles such as traveling 

salesman problem, choice of travel routes, time scheduling, Icosian game and 

network topology. Therefore, the resolution of the HC problem is a significant 

issue in graph theory and computational methods in mathematics and 

computer science as well. A Hamiltonian path in an undirected graph is a path 

that visits each vertex only once, and, a Hamiltonian cycle is a closed path of 

once-visited vertices. Hence, a Hamilton graph is the graph that consists of a 

Hamilton cycle. For a general and some particular graphs, a decision whether 

a graph is Hamiltonian is NP-complete.  Although this problem was 

extensively studied and investigated using different algorithms, appropriate 

solutions has not been reached yet (Nishiyama et al., 2018; Alhalabi et al., 2016; 

Ibarra, 2009). 

So many systems that have flow/connection between elements can be 

represented by undirected graphs with flows/connections between nodes. 

These systems such as computer network, computer-aided design, circuit 

analysis, telecommunication systems, image segmentation, particular 

chemical isomers and cluster analysis, have problems that can be solved by 

determining (enumerating or counting) the spanning trees in the graph. This 

problem is NP-hard, so that the determination can be based on different 

criteria, approximation or optimization depending on the problem considered 

and the chosen bounds and constraints (Jothi et al., 2018; Nikolopoulos et al., 

2014; Galbiati et al., 1997; Mai and Evans, 1984). When the problem is to 

minimize the cost in the system, the problem concerns with searching and 

finding the minimal spanning trees in a weighted graph within a cost/power 

consumption function. However different algorithms have been presented 

and developed to change the problem of spanning tree to a solvable problem 

using the heuristic, backtrack, intelligent and hybrid algorithms (Consoli et 

al., 2015), all solutions were limited and cannot be generalized to undirected 

graphs. Furthermore, there is so far no evaluation showing the exact solution, 

especially for large size graphs. 
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1.2 Problem Statement  

The edges play an essential role in the structure of graphs since they give the 

links between vertices and in some applications in which the edges stand for 

distance, affinity, construction costs, or capacities relying upon the 

applications that were considered. However, far too little attention has been 

paid to topologies on the set of edges of a given graph. Such topology on edges 

could be more appropriate for the problems that are well described by edges 

because the topology is directly defined on the active variables of the problem. 

This debate was a motivation for studying a new approach in the investigation 

of topology on graphs by linking the set of edges of directed and undirected 

graphs with topology. In addition, the proposed approach is supposed to 

present appropriate topology to solve some particular graph problems.  

 Another issue is related to assuming a graph with vertices of finite degree. 

The graphic topology presented by Amiri et al. (2013) is associated with the 

set of vertices of locally finite simple graphs only. Hence this topology is not 

appropriate to be associated with simple graphs that have vertices of infinite 

degree. Thus, a generalisation of the topology on the set of vertices of any 

simple graph is desired. This can be achieved through presenting a new 

topology and comparing with the previous. Furthermore, the new topology 

and the graphic topology could cover bitopological space on the set of vertices 

of locally finite simple graphs, which was not studied before. 

1.3 Research Objectives  

The present study covers the following objectives: 

1. To associate a topology with the set of edges of every locally finite 

undirected graph and investigate the properties of this topology. 

2. To associate topologies with the set of edges of every directed graph and 

examine the attributes of these topologies. Further, introduce a relation 

between directed graphs and their corresponding topologies. 

3. To associate a topology with the set of vertices of simple graphs with 

vertices of (finite or infinite) degree and study bitopological space on the 

set of vertices of locally finite simple graphs. 
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4. To solve the graph problems (identifying all paths, finding the Hamilton 

cycles, and determining spanning trees) as applications in graphs through 

using the topology on the set of edges of locally finite undirected graphs. 

Additionally, represent the applications by MATLAB program. 

 

 

1.4 Outline of the Thesis  

This thesis is organized into seven chapters. 

The first chapter contains an introduction on the topic and problem statement. 

Also, the objectives of the work are listed. 

In chapter 2, we give basic notions of graph theory and topology. In addition, 

we provide a brief review of the previous works that had been done by other 

researchers. 

Chapter 3 deals with the topology on undirected graphs. We associate a 

topology with the set of edges of every locally finite undirected graph. 

Properties of this topology are investigated, and a relation between undirected 

graphs and their corresponding topologies is presented.  

In chapter 4, two topologies are associated with edge set of any given directed 

graph. Two subbases are introduced to generate these two topologies. Then, 

their characteristics are figured out. Notably, the connectivity and dense 

subsets in these topologies are studied. 

In chapter 5, we generalised the graphic topology presented by Amiri et al. 

(2013) on the set of vertices of locally finite simple graphs by presenting a new 

topology on the set of vertices of any simple graph. Properties of the new 

topology are investigated and a comparison between the two topologies is 

displayed. Furthermore, we studied bitopological space on the set of vertices 

of locally finite simple graphs, which was not studied before, by considering 

these two topologies (the new topology and the graphic topology). Then, 

properties of locally finite graphs are studied by their corresponding 

bitopological spaces. 
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Chapter 6 includes some applications of topology on the edge set of 

undirected graphs. This topology is used to solve graph problems. Steps of 

identifying all paths between any two distinct vertices, determining all 

spanning trees (or spanning paths), and finding all Hamilton cycles in simple 

graphs are presented. In addition, the previous applications are represented 

by a MATLAB program to be more convenient for large graphs.   

In chapter 7, our results are summarized and concluded by highlighting 

unsolved and open problems.      
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