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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

MODIFIED HOMOTOPY PERTURBATION METHOD FOR
INTEGRO-DIFFERENTIAL AND HYPERSINGULAR INTEGRAL

EQUATIONS

By

FATIMAH SAMIHAH BINTI ZULKARNAIN

April 2018

Chairman : Assoc. Prof. Nik Mohd Asri Nik Long, PhD
Faculty : Science

Homotopy perturbation method (HPM) is implemented to solve the mathematical
problems. The solution is obtained by taking the summation of infinite series. This
thesis present a modification of HPM by equating the second series as zero. Conver-
gence and error estimation of HPM and modified HPM (MHPM) are obtained in the
class of C[a,b] for Fredholm-Volterra integral equation (FVIE) problem and Ck(D)
where D is a closed subspace of R2 for higher order FVIDE problem.

Many researchers solved singular integral equation with kernel equal to one. This
study describes the implementation of HPM and MHPM on HSIE of the first kind
with kernel is a constant on a diagonal. Convergence and error estimation are ob-
tained in the class of Lρ [−1,1]. MHPM is also used to solve HSIE of the second
kind.

For all cases, numerical examples are provided to exhibit the efficiency of the meth-
ods. The results obtained are more accurate than the previous works.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENGUBAHSUAIAN KAEDAH PERUSIKAN HOMOTOPI PADA
PERSAMAAN KAMIRAN-PEMBEZAAN FREDHOLM-VOLTERRA

DAN PERSAMAAN KAMIRAN HIPERSINGULAR

Oleh

FATIMAH SAMIHAH BINTI ZULKARNAIN

April 2018

Pengerusi : Prof. Madya Nik Mohd Asri Nik Long, PhD
Fakulti : Sains

Kaedah perusikan homotopi (KPH) digunakan untuk menyelesaikan masalah
matematik. Penyelesaian diperolehi dengan mengambil penjumlahan siri tak ter-
hingga. Tesis ini membentangkan pegubahusaian KPH dengan menyamakan siri
kedua dengan kosong. Penumpuan dan anggaran ralat bagi KPH dan pengubahsua-
ian KPH (PKPH) diperolehi dalam kelas C[a,b] untuk masalah persamaan kamiran
Fredholm-Volterra dan kelas Ck(D) dengan D ialah subruang tertutup dalam R2 un-
tuk masalah persamaan kamiran-pembezaan Fredholm-Volterra.

Ramai penyelidik telah menyelesaikan masalah persamaan kamiran singular dengan
kernel bersamaan dengan satu. Kajian ini menerangkan penggunaan KPH dan PKPH
pada persamaan kamiran hipersingular jenis pertama dengan kernel adalah pemalar
pada pepenjuru. Penumpuan dan anggaran ralat diperolehi dalam kelas L2 [−1,1].
PKPH digunakan untuk menyelesaikan HSIE jenis kedua.

Bagi semua kes, contoh berangka disediakan untuk mempamerkan keberkesanan
kaedah-kaedah tersebut. Keputusan yang diperoleh adalah lebih tepat berbanding
kajian terdahulu.
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CHAPTER 1

INTRODUCTION

1.1 Integral Equations

Integral equations appear in many different areas of mathematics, mainly on differ-
ential equations and operator theory. Numerous problems in ordinary and partial
differential equations are recasted as integral equations. Problems of mathematical
physics are the examples of application and important role of integral equations.
Subject of integral equations are view as extension of linear algebra and a precursor
of modern functional analysis. Particularly, the fundamental of linear vector spaces,
eigenvalues and eigenfunctions play a significant role in dealing with linear integral
equations (Hochstadt, 1989).

The integral equation are classified by various characteristics which are listed as
follows:

1. Fredholm integral: In this type of integral, the limits of integration are known.
Moreover, the unknown function may appear only inside the integral equation.
The following equation are most frequently studied:

f (x) =
∫ b

a
K (x, t) u(t)dt, (1.1)

u(x) = f (x)+λ

∫ b

a
K (x, t) u(t)dt, (1.2)

s(x)u(x) = f (x)+λ

∫ b

a
K (x, t) u(t)dt. (1.3)

Eqs. (1.1)-(1.3) are known as Fredholm integral equations of the first, second
and third kind, respectively. Functions f (x) and s(x) are known, K(x, t) is a
kernel, λ is the given parameter, u(x) is the unknown function and the interval
(a,b) are finite. If s(x) = 1, Eq. (1.3) reduces to Eq. (1.2) and if s(x) = 0, Eq.
(1.3) reduces into Eq. (1.1).

2. Volterra integral: Volterra (Tricomi, 1985) investigated the solutions of Eq.
(1.1)-(1.3) which the kernel satisfies the condition

K(x, t)≡ 0 if t > x. (1.4)

1
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The later equation reduce to the corresponding Volterra integral equations of
the form

f (x) =
∫ x

a
K (x, t) u(t)dt, (1.5)

u(x) = f (x)+λ

∫ x

a
K (x, t) u(t)dt, (1.6)

s(x)u(x) = f (x)+λ

∫ x

a
K (x, t) u(t)dt. (1.7)

Volterra equations have many interesting properties that do not emerge from
the general theory of Fredholm equations, therefore a separate study is war-
ranted.

1.2 Linear integro-differential equations

General linear integro-differential with its corresponding initial conditions take the
forms:

m

∑
k=0

sk(x)u(k)(x) = f (x)+λ

∫
β (x)

α(x)

n

∑
j=0

K j(x, t)u( j)(t)dt, (1.8)

u(k)(a) = dk, 0≤ k ≤ m−1, 0≤ j ≤ n−1, (1.9)

where K(x, t) is called the kernel of integral, f (x) and s(x) are the given functions,
α(x)≤ β (x) are limits of the integration, λ is a parameter, m and n are the order of
differentation such that n ≤ m, u(x) is the unknown function need to be determined
and dk are initial values for IDEs. Our goal is to determine u(x) satisfies Eqs. (1.8)
and (1.9) and this may be achieved by some methods. The initial conditions are given
for IDEs to obtain the particular solutions.

Fredohlm integro-differential (FIDE) equation occured when limits of integration are
fixed of the form

m

∑
k=0

sk(x)u(k)(x) = f (x)+λ

∫ b

a

n

∑
j=0

K j(x, t)u( j)(t)dt, (1.10)

u(k)(a) = dk, 0≤ k ≤ m−1, 0≤ j ≤ n−1,

where a and b are fixed numbers. Volterra integro-differential equation (VIDE) oc-
cured when one of the limits of integration is a variable of the form

m

∑
k=0

sk(x)u(k)(x) = f (x)+λ

∫ x

a

n

∑
j=0

K j(x, t)u( j)(t)dt, (1.11)

u(k)(a) = dk, 0≤ k ≤ m−1, 0≤ j ≤ n−1.

2
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Combination of FIDE and VIDE is called Fredholm-Volterra integro-differential
equation (FVIDE) and can be written as

m

∑
k=0

sk(x)u(k)(x) = f (x)+λ1

∫ b

a

n1
∑

j1=0
K1 j1(x, t)u( j1)(t)dt,

+λ2

∫ x

a

n2
∑

j2=0
K2 j2(x, t)u( j2)(t)dt, (1.12)

u(k)(a) = dk, 0≤ k ≤ m−1, 0≤ j1 ≤ n1−1, 0≤ j2 ≤ n2−1, (1.13)

where K1 j1(x, t) and K2 j2(x, t) are kernels, λ1, λ2 are parameters and n1 and n2 are
less than or equal to m. Nonlinear integro-differential equations of order m take the
form

m

∑
k=0

sk(x)u(k)(x) = f (x)+λ

∫
β (x)

α(x)

n

∑
j=0

K j (x, t) F
(

u( j)(t)
)

dt, (1.14)

u(k)(a) = dk, 0≤ k ≤ m−1, 0≤ j ≤ n−1, (1.15)

where F is a nonlinear function. However, solution for nonlinear equation may not
be unique.

Solution of integral and integro-differential equations (IDEs) play a prime role in
science and engineering studies. A physical system is modeled under a differential
equation, an integral equation or an IDE. The IDEs contain both integral and differ-
ential operators. The derivatives of the unknown functions may appear to any order
(Wazwaz, 2009).

1.3 Singular and Hypersingular Integral Equation

Singular integral equation is an improper integral occured if either the limits of inte-
gration become infinite or the kernel has singularities within the range of integration.
Singular integral equation frequently arises in mathematical physics. For one dimen-
sional equations, basic integral is of the form (Martin and Rizzo, 1996)

In(x) =
∫ B

A

F(t)
(t− x)n , n = 1, 2, (1.16)

where A < x < B and F(t) is called density function. When n = 1, Eq. (1.16) is
called Cauchy singular integral and when n = 2, Eq. (1.16) is called hypersingular
integral. In(x) exist when F(t) have certain smoothness or continuity properties that
are usually expressed in terms of Hölder continuity and function spaces Cm,α (Evans,
1994).

Functions with varies smoothness properties are listed in the following. A particu-

3
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larly useful example is the simple discontinuous function

f (t) =

{
fL, t < 0,
fR, t > 0.

(1.17)

Another useful example is f (t) = |t|. Assume that f is a given bounded function,
defined on an interval a < t < b,

1. f is picewise. Such functions are continuous except for finite discontinuities.
Hence, for a discontinuity at t = x, the left hand limit, f (x−) and the right
hand limit, f (x+) both exist with f (x−) 6= f (x+). For example, Eq. (1.17) has
f
(
0−
)
= fL and f

(
0+
)
= fR and f is not defined at t = 0.

2. f is continuous, f ∈ C. Since continuous functions are defined for all t with
a < t < b; thus particularly we have f (x−) = f (x+) = f (x).

3. f is Hölder continuous, f ∈C0,α . Therefore, positive contants A and α can be
obtained so that

| f (t1)− f (t2)|< A|t1− t2|α with 0 < α 6 1,

for all t1 and t2 in a < t < b. In particular case, when f is Hölder continuous
at t = 0, then we have

| f (t)− f (0)|< A|t|α with 0 < α 6 1,

for all t in some inverval containing t = 0. In general, functions in C0,α are
smoother than continuous functions but not differentiable.

4. f is Hölder-continuous first derivative, f ′ ∈ C0,α or f ∈ C1,α . In general,
functions in C1,α are smoother than differentiable functions but not continuous
differentiable at second derivative.

Thus, it is well known that (Martin and Rizzo, 1989)

if F ∈Cn−1,α then In exists. (1.18)

This condition is local; if it holds in a neighbourhood of x, then In(x) exists. The
integral in Eq. (1.16) is not a proper integral. Thus it is regularalized by Cauchy
Principal Value integrals (Kanwal, 1997; Martin and Rizzo, 1989)

−
∫ B

A

F(t)
t− x

dt = lim
ε→0+

{∫ x−ε

A

F(t)
t− x

dt +
∫ B

x+ε

F(t)
t− x

dt
}
. (1.19)

In general discussion, Ang (2013) assume that F(t) represented by Taylor series

4
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about t = x for a < x < b, that is F(t) may written as

F(t) = F(x)+
∞

∑
m=1

F(m)(x)
m!

(t− x)m , (1.20)

where F(m) is the derivative of F(x). Both Eq. (1.20) and definition for Cauchy
principal integrals in Eq. (1.19) are shown to be equivalent. Consider the divergent
integral

∫ B

A

F(t)

(t− x)2 dt = lim
ε→0+

{∫ x−ε

A

F(t)

(t− x)2 dt +
∫ B

x+ε

F(t)

(t− x)2 dt

}
(1.21)

where A < x < B. From Eqs. (1.19) and (1.20), the limit in Eq. (1.21) may written
as

lim
ε→0+

{∫ x−ε

A

F(t)

(t− x)2 dt +
∫ B

x+ε

F(t)

(t− x)2 dt

}

= lim
ε→0+

F(x)
2ε

+F(x)
{

1
A− x

− 1
B− x

}
+F ′(x){ln |B− x|− ln |A− x|}

+
∞

∑
m=1

F(m+1)(x)
(m+1)!m

{(B− x)m− (A− x)m} . (1.22)

The bounded terms on the right hand side of Eq. (1.22) are the "finite part" of the
divergent integral in Eq. (1.21). There exists a close relations between hypersingular
boundary integral equations and finite part integrals in the sense of Hadamard finite
part. Therefore, Ang (2013) define Hadamard finite-part integral of the form

=
∫ B

A

F(t)

(t− x)2 dt = lim
ε→0+

{∫ x−ε

A

F(t)
t− x

dt +
∫ B

x+ε

F(t)
t− x

dt− 2 f (x)
ε

}
, A < x < B.

It also can be written as

d
dx

[
−
∫ B

A

F(t)
t− x

dt
]
= =
∫ B

A

F(t)

(t− x)2 dt,

= =
∫ B

A

∂

∂x

[
F(t)

(t− x)2 dt

]
, (1.23)

whereas the right hand side of Eq. (1.23) is hypersingular integral equation.

Hypersingular integral equation (HSIE) is reviewed as an important tool to solve
a large class of mixed boundary value problems in mathematical physics. Many
problems of fluid mechanics, elasticity, and wave dynamics (acoustics) with mixed
boundary conditions can be reduced to hypersingular integral equations (Iovane
et al., 2003). Davydov et al. (2003) stated that hypersingular integrals are integrals
with strong singularities. A general hypersingular integral equation of the first kind

5
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(Mandal and Bera, 2006), over a finite interval, can be represented of the form

1
π

=
∫ 1

−1

K(x, t)
(t− x)2 ϕ(t)dt +

1
π

∫ 1

−1
L(x, t)ϕ(t)dt = f (x), (1.24)

where K(x, t) and L(x, t) are the square integrable kernels on D = {(x, t) ∈ R2|−1≤

x, t ≤ 1}. Let K(x, t) = 1, the hypersingular integral denoted by =
∫ 1

−1

ϕ(t)
(t− x)2 dt is

defined as

1
π

=
∫ 1

−1

ϕ(t)
(t− x)2 dt = lim

ε→0+

[
1
π

∫ x−ε

−1

ϕ(t)
(t− x)2 dt

+
1
π

∫ 1

x+ε

ϕ(t)
(t− x)2 dt− ϕ(x+ ε)+ϕ(x− ε)

ε

]
, (1.25)

and understood as Hadamard finite part with interval −1 ≤ x ≤ 1. Eq. (1.24)
appear in mathematical physics problems such as water wave scattering (Kanoria
and Mandal, 2002) and radiation problems involving thin submerged plates (Mandal
et al., 1995; Parsons and Martin, 1994), and fracture mechanics (Chan et al., 2003;
Nik Long and Eshkuvatov, 2009).

1.4 Homotopy Perturbation Method and Its Modification

Homotopy perturbation method (HPM) was proposed by He (1999). In this method,
the solution is considered as the summation of an infinite series, which usually con-
verges rapidly to the exact solution. HPM has been used for a wide range of prob-
lems; to find the exact and approximate solutions of the Volterra-Fredholm integral
equations (Ghasemi et al., 2007), nonlinear ordinary differential equations(ODEs)
(Ramos, 2008), the integro-differential equations (Golbaba and Javidi, 2007; De-
hghan and Shakeri, 2008), linear and nonlinear integral equations (Jafari et al., 2010)
and one-phase inverse Stefan problem (Słota, 2010).

HPM is the combination of two methods: the homotopy and the perturbation meth-
ods. The homotopy technique also knowns as the continuous mapping technique,
embeds a parameter p that ranges from zero to one. When the embedding parameter
is zero, the equation is one of a linear system, when it is one, the equation is the
same as the original one. Then, the embedded parameter p ∈ [0,1] is considered as a
small parameter. To illustrate the basic ideas of the method, He (1999) consider the
following operator of the form

Lu+Nu = f , (1.26)

where L is linear differential operator and N is nonlinear integral operator. Homotopy
function v(r, p) : Ω× [0,1]→ R is constructed to satisfies

H (v, p) = (1− p)(L(v)−L(u0))+ p(L(v)+N(v)− f ) = 0, p ∈ [0,1], (1.27)
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where p is embedding parameter and u0 is an initial approximation of Eq. (1.26). It
is easy to see that

H (v,0) = L(v)−L(u0) = 0, (1.28)
H (v,1) = L(v)+N(v)− f = 0. (1.29)

Deformation occurs in the changing process of p from zero to unity, H (v, p) from
H (v,0) to H (v,1). Meanwhile, L(v)−L(u0) and L(v)+N(v)− f are called homo-
topic. Applying perturbation technique, the solution of Eq. (1.27) can be expressed
as series in p of the form

v =
∞

∑
j=0

p jv j(x). (1.30)

Substituting (1.30) into (1.27) and equate the terms with identical powers of p yields

L(v0) = L(u0),

L(v1) =−L(u0)−N(v0)− f , (1.31)
L(v j) =−N(v j−1), j = 2,3, . . . .

Approximate solution of (1.26) can be readily obtained by

u(x) = lim
p→∞

v(x) = v0(x)+ v1(x)+ v2(x)...=
∞

∑
j=0

v j(x). (1.32)

Eq. (1.32) should be converge under a few conditions.

Turkyilmazoglu (2011) showed that HPM converges under certain circumstances
without knowing a prior knowledge of the exact solution. He also obtained the error
estimate for the aproximate solution and provided information on interval of conver-
gence of homotopy series. He considered the nonlinear boundary value problem

N (u(r)) = 0; r ∈Ω, B
(

u(r),
du
dn

)
= 0; r ∈ Γ, (1.33)

where u(r) is the function to be solved under the boundary constraints in B. Other
analysis of convergences of HPM and some related theorems were developed by
Ayati and Biazar (2015) and Jafari et al. (2010).

Recently, HPM has been modified in different approach. For example, Javidi and
Golbabai (2009) added an accelerating parameter for solving nonlinear Fredholm
integral equation. Ghorbani and Saberi-Nadjafi (2008) adding a series of parameter
and selective functions so-called improved homotopy perturbation method to find
solutions of nonlinear Fredholm and Volterra equations. On the other hand, homo-
topy function was developed by using De Casteljau algorithms (Mohamad Nor et al.,
2013). We focused on the improved HPM by Ghorbani and Saberi-Nadjafi (2008).
In this method, the exactness is improved, and it is possible to find all possible exact
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and approximate solutions. HPM in Eq. (1.27) of Eq. (1.26) is reconstructed as

H (v,α, p) = (1− p)

(
L(v)−

N

∑
r=0

αr gr(x)

)
+ p(L(v)+N(v)− f ) = 0, p ∈ [0,1],

(1.34)
where α = [αr], r = 0,1,2...,N are called the accelarating parameters, and g(x) =
[gr(x)], r = 0,1,2...,N are the selective functions. Applying series (1.30) into Eq.
(1.34), thus the solution of (1.26) is obtained in the form

L

(
∞

∑
j=0

p jv j

)
=

N

∑
r=0

αr gr(x)+ p

(
−N

(
∞

∑
j=0

p jv j

)
−

N

∑
r=0

αr gr(x)+ f

)
, p ∈ [0,1].

(1.35)
Comparing the similar power of parameter p, leads to the following iterations

L(v0) =
N

∑
r=0

αr gr(x),

L(v1) =−
N

∑
r=0

αr gr(x)−N(v0)+ f (1.36)

L(vk) =−N(v j−1), k = 2,3, . . .

Most of the cases in the modified HPM (MHPM), the unknown coefficients αr of v0
in Eq. (1.36) are obtained by equating v1 = 0 leads to v j = 0, j ≥ 2 which implies
two step method. So, the iteration method can be use to find the approximate solution
by choosing selective functions gr and unknown coefficients αr.

1.5 Research Scopes and Objectives

1.5.1 Objectives

Objectives of thesis are:

1. To find the approximate solution and analyze convergence of linear FVIDE
when m = 0, m = 1 and m≤ 1 in Eq. (1.12) by using HPM and MHPM.

2. Solving HSIE of the first kind in Eq. (1.24) with K(x, t) = 1 and K(x, t) 6= 1.
Analyzing the convergence of the approximate solution.

3. Solving HSIE of the second kind by using MHPM.

4. Find approximate solution for nonlinear Volterra Fredholm integral equation

8
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by using MDM

1.5.2 Motivation

Improvement of HPM (Ghorbani and Saberi-Nadjafi, 2008) has been implemented
to solve nonlinear integral equation of the form Eq. (1.14). Therefore, we applied
MHPM (Ghorbani and Saberi-Nadjafi, 2008) to solve combination of Fredholm and
Volterra of the form in Eq. (1.12).

Previous research focus on solving singular integral equation in Eq. (1.24) with
K(x, t) = 1. In our studies, we consider K(x, t) as a diagonal in a square region.

1.5.3 Scopes

Scope of the study is to find the error of approximate solution and the convergence
of methods use. This study has been carried out within following scope:

1. Types of methods use and problems solve accordingly:

(a) Use HPM to solve linear FVIDE when m = 0 and m = 1 and linear HSIE
of the first kind when K(x, t) = 1 and K(x, t) 6= 1.

(b) Use MHPM for FVIDE when m ≥ 1, HSIE of the first kind when
K(x, t) = 1 and K(x, t) 6= 1 and HSIE of the second kind.

(c) Use MDM for NVFIE.

2. Convergence and error estimation are analyzed under following class:

(a) FVIDE when m = 0 and m = 1 in clas C [a,b]

(b) FVIDE when m≥ 1 in class Ck(D),

(c) linear HSIE of the first kind when K(x, t) = 1 and K(x, t) 6= 1 in class
Lρ [−1,1]

9
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1.6 Thesis Outline

The thesis is structured as follows: Chapter 1 provides the basic information on
integro-differential and hypersingular integral equations. In addition, we describe
a brief introduction on HPM and the improvement of HPM by the previous re-
searchers. Chapter 2 presents all the related literature reviews. Application of HPM
and modified HPM for solving Fredholm Volterra integro-differential equation in
general case are discussed in Chapter 3. Convergence and error estimation are ob-
tained and numerical examples are provided to prove the efficiency and accuracy of
the method. In Chapter 4, HPM and modified HPM are used to solve HSIE with two
conditions of kernels, K(x, t) = 1 and K(x, t) 6= 1. Convergence and error estimation
are established along with numerical examples with comparison with past methods.
Chapter 5 explains the used of modified HPM to solve HSIE of the second kind to-
gether with numerical examples. Modified decomposition method is implemented
to obtain an approximate solutions of nonlinear Fredholm-Volterra equation of the
second kind in Chapter 6 with providing some numerical results. Chapter 7 gives
conclusion and suggestion for future works.

10
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