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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

STRESS INTENSITY FACTOR FOR CRACKS PROBLEMS IN AN
ELASTIC HALF PLANE USING SINGULAR INTEGRAL EQUATIONS

By

NAWARA RAJAB FATHULLAH ELFAKHAKHRE

October 2018

Chair: Associate Professor Nik Mohd Asri Bin Nik Long, PhD 
Faculty: 

Single and multiple cracks in two dimensional half plane isotropic elastic solid are con-
sidered. The cracks are subjected to uniaxial tension σ∞

x = p with free traction on the
boundary. These problems are formulated into a system of singular integral equations
(SIEs) with the distribution dislocation functions as unknown by using the modified
complex potential. In solving the obtained SIEs, the cracks configurations are mapped
into a straight line on a real axis by using the curved length coordinate method. By
applying the appropriate quadrature formulas with the appropriate collocation points
the SIEs are reduced to the system of algebraic linear equations with M unknown coef-
ficients. These M unknowns coefficients are solved using the Gauss-Jordan elimination
method. The obtained unknown coefficients will later be used in evaluating the stress
intensity factor. The stress intensity factor at the tips of single and multiple cracks are
obtained for various crack configurations and positions. Numerical results showed that
the stress intensity factor influenced by the distance between the cracks, the crack con-
figuration, and the distance between the cracks and the boundary of the half plane. For
the test problems, our results are in good agreements with the existence results.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

FAKTOR KEAMATAN REGANGAN UNTUK MASALAH RETAKAN DI
DALAM SATAH SEPARUH KENYAL MENGGUNAKAN PERSAMAAN

KAMIRAN SINGULAR

Oleh

NAWARA RAJAB FATHULLAH ELFAKHAKHRE

Oktober 2018

Pengerusi: Profesor Madya Nik Mohd Asri Bin Nik Long, PhD
Fakulti: Sains

Retakan tunggal dan berganda di dalam pepejal kenyal isotropic setengah satah dua
dimensi dipertimbangkan. Retakan tertakluk kepada regangan ekapaksi σ∞

x = p den-
gan terikan bebas pada sempadan. Masalah ini dirumuskan ke dalam sistem persamaan
kamiran singular (PKS) dengan fungsi alihan serakan sebagai anu menggunakan keu-
payaan kompleks terubah. Dalam menyelesaikan PKS, bentukan retakan dipetakan ke
atas garis lurus di atas satah nyata menggunakan kaedah koordinat panjang terlengkung.
Dengan menggunakan rumus kuadratur dengan titik kolokasi yang sesuai, PKS ditu-
runkan kepada sistem persamaan linear aljabar dengan M pekali anu. M pekali anu ini
diselesaikan menggunakan kaedah penghapusan Gauss-Jordan. Pekali anu yang diper-
olehi akan digunakan kemudiannya untuk menilai faktor kemaatan regangan. Faktor
kemaatan regangan pada hujung retakan tunggal dan berganda boleh diperolehi untuk
pelbagai bentukan dan kedudukan retakan. Keputusan berangka menunjukan bahawa
faktor keamatan regangan dipengaruhi oleh jarak antara retakan, bentukan retakan, dan
jarak antara retakan dan sempadan setengah satah. Bagi masalah percubaan, keputusan
berangka kami sangat menepati keputusan sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Fracture mechanics is a branch of solid mechanics that deals with the study of the
propagation of cracks in materials. Methods of analytical solid mechanics are used
to calculate the driving force on a crack and those of experimental solid mechanics to
characterize the material’s resistance to fracture.

Predicting the fatigue life of cracked components is one of the most important tasks in
engineering of fracture mechanics. Fracture mechanics is an important tool in modern
materials science which used to improve the performance of mechanical structures.
Based on theories of elasticity and plasticity, the stress and strain are applied to the
materials in order to predict the mechanical failure of the bodies. Fracture mechanics
can be classified into two main categories, Linear Elastic Fracture Mechanics (LEFM),
and Elastic Plastic Fracture Mechanics (EPFM).

LEFM work only when the material is an isotropic and linear elastic. The basic assump-
tion of LEFM is that the size of plastic zone is small as compared to the crack size. The
crack grow when the stresses near the crack tip exceed the material fracture toughness.
The stress field near the crack tip is calculated using the theory of elasticity. In contrast,
if large zones of plastic deformation developed before the crack grows then EPFM will
be used. Under EPFM, by assuming the material isotropic and elastic-plastic, the strain
energy fields or opening displacement near the crack tips can be calculated. The crack
will grow when the energy or opening exceeds the critical value.

The fracture mechanics theories are considered as the material contains a crack with
infinite stresses at its tips. The fracture mechanics understanding is developed based
on linear elasticity from the pioneer work by Inglis (1913), Griffith (1920), and West-
ergaard (1939). Inglis (1913) studied the unexpected failure of naval ships and con-
structed the solution of stress for an elliptical hole in a semi-infinite plate subject to
remote uniform tension . However, his solution posed mathematical difficulty where
the stresses approach infinity at the crack tip and only limited to a perfectly sharp crack.
Griffith (1920) extended Inglis’s solution to compute the stress concentrations around
the elliptical holes (Bowie (1973), Anderson (1991)).

Whereas, Westergaard (1939) assumed the complex stress functions to derive the
asymptotic solution for a stationary crack loaded dynamically. His method provides
a powerful technique for solving the infinite linear elastic plane containing a crack or

1
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array of cracks. Irwin (1957) developed the energy release rate based on Griffith’s work
into a more useful form for engineering problems. In addition, he used Westgaard’s
approach to describe the stresses and displacements near the crack tip by a single pa-
rameter. This parameter later become known as the stress intensity factor (Anderson
(1991)). Therefore, many researchers focused their attention on evaluating the stress
intensity factors, and computed data of the stress intensity factors have been mainly
used in evaluating the safety of structures. In relation to the stress intensity factors, a
set of rules can be obtained for predicting the fatigue life of the cracked structures.

1.2 Background of crack problems

The following definitions are useful for further understanding of the problems under
discussion.

1.2.1 Deformation

The movement of points in a solid body relative to each other. In other words, it is the
change in shape of objects due to the applied forces (Perez (2017)).

1.2.2 Displacement

The movement of a point in a vector quantity in a body subjected to loading mode. In
other word, the displacement of a particle P is a vector u acting the difference between
the final and initial position of P. This means it is the distance that P moves during the
deformation (Perez (2017)).

1.2.3 Strain

It is a geometric quantity, that depends on the relative movement of two or three points
in a body. Also, it can be considered as a measure of deformation of the material based
on a reference length ( Barber (2002)).

1.2.4 Body and surface forces

Consider a continuous medium, the points of that are referred to rectangular Cartesian
system of axes, and let a volume V of arbitrary shape which is bounded by the surface
S, and dV an element of volume V . The sum of the external forces that act on the
elements of volume dV or mass of the body is called the body forces such as gravity,
but that act on the surface of the volume elements dV is the surface forces pressure.

2
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Mathematically a body force acting on a volume element dV can be represented by a
vector ~ΦdV where ~Φ is some finite vector for any point (x,y,z). It applied to some
point of the element dV must be understood in the sense that the resultant force vector
~Ψ acting on any finite volume V . The resultant force may be represented by a triple
integral as (Muskhelishvili (1953), Sokolnikoff (1956))

~Ψ =
∫ ∫ ∫

v
~ΦdV =

∫ ∫ ∫
v
~Φdxdydz. (1.1)

(a) (b)

(c)

Figure 1.1: Homogeneous stress state. (a) Forces acting on side faces of volume
element. (b, c) Stress components given with different notation. [Source: Valberg
(2010)]

3
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1.2.5 Stress

Stress is defined as force per unit area across an internal surface in the body. Consider
dF is a force that is directed at an angle to surface dA at a particular place inside a
material. If the area is made smaller until it approaches to zero, the area will become a
point. The stress σ at this point will equal to dF/dA in the same direction of the force.
This stress can be analyzed into two components, a normal stress and a shear stress.
The stress will become homogeneous when the stress components and force at the
back and front face of the element are equal but have opposite signs. The components
of stress represented by symbol σ with appropriate suffices. The first and the second
suffix denoted to the direction of the outward normal to the surface upon that it acts and
the stress component, respectively.

Figure 1.1(b) illustrates the notation for the Cartesian coordinate system x,y,z where
the normal stresses have the same suffices (i. e. σxx,σyy,σzz,), and shear stresses have
different suffices (i. e. σxy,σyx,σyz,σzy,σzx,σxz). An alternative notation for stress
components is given in Figure 1.1(c) where the shear stress is represented by τ . A
positive normal stress is a tensile stress while a negative will be a compressive stress.
At equilibrium, it is required that the shear stresses be as follow (Barber (2010), Valberg
(2010))

τxy = τyx,τyz = τzy,τzx = τxz. (1.2)

1.2.6 Traction

The traction is defined as the force that the part lying on the positive side of a surface
element exerts on the part lying on the negative side. In other words, it is the force
acting between the parts of the continuous body adjacent to either side of the surface
element dS of the surface S which described by ~FdS, where the vector ~F is the traction
per unit area or the stress vector (Muskhelishvili (1953)).

1.2.7 Safety factor

It is a parameter utilized for designing structural components to assure structural in-
tegrity. It is can be described as follow

SF =
Strength

Stress
> 1, (1.3)

where the strength is denoted to a material’s property, such as yield strength σys, and
the stress σ is the variable to be applied to structure. The role of SF in this simple rela-
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tionship is to control the design stress so that σ < σys in designing applications, while
it is represent to have a prolong design life for assuring structural integrity. Usually, the
safety factor is in the order of two, however its magnitude depends on the designer’s
experience or on a design code (Perez (2017)).

1.3 Stress analysis of cracks

There are two approaches which are equivalent each to other in certain circumstances
that can be used to crack analysis: the energy criterion and the stress intensity approach.
The energy approach states that if the energy available for crack growth is enough to
overcome the resistance of the material will cause the crack extension. The material
resistance may include the surface energy, plastic work, or other types of energy dis-
sipation associated with a propagating crack. The first researcher who proposed the
energy criterion for fracture was Griffith (1920). Irwin (1956) is primarily responsible
for developing the present version of this approach. Assume that G and Gc are rep-
resented the rate of change in potential energy with the crack area for a linear elastic
material and the critical energy release rate, respectively. A measure of crack toughness
is at the moment of fracture G= Gc. For a crack in an infinite plate subject to a remote
tensile stress, G can be described by

G=
πσ2a

E
, (1.4)

where a is the half length of the crack, E is Young’s modulus, and σ is the remotely
applied stress. Since G=Gc then Equation (1.4) can be rewritten to describe the critical
combinations of stress and crack size for failure as

Gc =
πσ2

f ac

E
. (1.5)

The applied stress can be viewed as the driving force for plastic deformation, since
the yield strength is a measure of the material’s resistance to deformation. One of the
fundamental assumptions of fracture mechanics is that the crack toughness (Gc in this
case) does not depend of the size and geometry of the cracked body; a crack toughness
measurement on a laboratory specimen should be applicable to a structure. As long as
this assumption is valid, all configuration effects are taken into account by the driving
force G.

For an isotropic linear elastic material, the stress distribution, σi j near the crack tip in
polar coordinate system as shown in Figure 1.2 with origin at the crack tips is given by
(Anderson (1991))
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Figure 1.2: Stress field in the vicinity of crack tip for mode I crack using complex
coordinates. [Source: Kumar and Barai (2011)]

σi j = (
k√
r
) fi j(θ)+

∞

∑
m=0

Amr
m
2 g(m)

i j (θ), (1.6)

where σi j = stress tensor, r and θ are defined as in Figure 1.2 , k = constant, fi j =

dimensionless function of θ in the leading term, Am is the amplitude and g(m)
i j is a

dimensionless function of θ for the higher-order terms.

The higher-order terms depend on geometry, while the solution for any given configu-
ration contains a leading term which is proportional to 1/

√
r. If r→ 0 the leading term

approaches infinity, however the other terms remain finite or approach zero. There-
fore, stress near the crack tip varies with 1/

√
r, regardless of the configuration of the

cracked body. Equation (1.6) characterizes a stress singularity, since stress is asymp-
totic to r = 0.

There are three types of loading which a crack can experience, as shown in Figure 1.3.
A crack body can be described by one of these modes, or a combinations of more than
one. These basic fracture modes are called Mode I, Mode II, and Mode III.

Mode I is a normal or tensile mode where the crack surfaces move directly apart. Mode
II is slide or shearing mode where the crack surfaces slide over one another in a di-
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Figure 1.3: Three modes of fracture mechanics. [Source: Prawoto (2011)]

rection perpendicular to the leading edge of the crack. While the tearing mode (i. e.
mode III) acting where the crack surfaces move relative to one another and parallel to
the leading edge of the crack.

The loading produces for any of these modes is the 1/
√

r singularity at the crack tip,
however the proportionality constants k and fi j depend on the mode where k can be
replaced by the stress intensity factor K as

K = k
√

2π. (1.7)

1.4 Stress intensity factor

The stress intensity factor K is an important quantity in mechanics of solids and plays
an essential role to study the strength of the material. It can be defined as a measure of
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the singular stress field near the tip of the crack. Several methods have been developed
for determining stress intensity factors such as analytical, numerical, and experimen-
tal approaches. Consider KI,KII, and KIII that represent the stress intensity factors
corresponding to Modes I, II, and III, respectively, then for an isotropic linear elastic
material the stress fields ahead of a crack tip can be expressed as

lim
r→0

σ
(I, II, III)
i j =

KI, II, III√
2πr

f (I, II, III)
i j (θ). (1.8)

Thus the three factors can be defined by

KI = lim
r→0

√
2πrσyy(r,0),

KII = lim
r→0

√
2πrσxy(r,0),

KIII = lim
r→0

√
2πrσyz(r,0).

(1.9)

1.5 Basic equations of plane elasticity and Airy stress function

The basic equations of elasticity contain equilibrium equations of stresses and strain
displacement relations, and Hooke’s law regarding stresses and strain. Assume a system
of stress components are applied on a body together with the body force stresses Fx, Fy,
and Fz.

These stress components acting in the x-direction, y-direction, and z-direction are de-
scribed, respectively as (Helena (2017))

dσx

dx
+

dτyx

dy
+

dτzx

dz
+Fx = 0,

dσy

dy
+

dτxy

dx
+

dτzy

dz
+Fy = 0,

dσz

dz
+

dτxz

dx
+

dτyz

dy
+Fz = 0.

(1.10)

These equations are called the general stress equations in equilibrium. In two dimen-
sional problem where the body forces are absent the equilibrium equation will be rewrit-
ten as

dσx

dx
+

dτxy

dy
= 0,

dσy

dy
+

dτxy

dx
= 0.

(1.11)
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In this case the stress components can be expressed by means of one single auxiliary
function χ in the following manner (Muskhelishvili (1953))

σx =
d2χ

dy2 ; τxy =−
d2χ

dxdy
; σy =

d2χ

dx2 . (1.12)

This functions χ is known as Airy stress function. Also, this function can be satisfied
the compatibility condition which expressed in terms of stresses as (Sun and Jin (2012))

∇
2(σx +σy) = 0, (1.13)

when

∇
4(χ) = ∇

2
∇

2(χ) = 0, (1.14)

where the Laplace operator ∇2, and the biharmonic operator ∇4 are defined as

∇
2 =

d2

dx2 +
d2

dy2 ,

∇
4 = ∇

2
∇

2 =
d4

dx4 +2
d4

dx2 dy2 +
d4

dy4 .

(1.15)

Any function χ satisfying Equation (1.14) is defined a biharmonic function. If the
function g is harmonic i. e. ∇2g = 0 then g will be biharmonic but the converse is
not true. Thus if the Airy stress function is known then the stresses can be obtained
by Equation (1.12). Also, the strains and the displacements can be obtained by the
following equation

ex =
du
dx

; ey =
dv
dy

; exy =
1
2

(
du
dy

+
dv
dx

)
, (1.16)

where ex,ey, and exy are tensorial strain components, and u and v are displacements.

The stress-strain relations are given by

σx = λ
∗ (ex + ey

)
+2µex,

σy = λ
∗ (ex + ey

)
+2µey,

σxy = 2µexy,

(1.17)
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or inversely

ex =
1

2µ

[
σx−

λ ∗

2(λ ∗+µ)

(
σx +σy

)]
,

ey =
1

2µ

[
σy−

λ ∗

2(λ ∗+µ)

(
σx +σy

)]
,

exy =
1

2µ
σxy,

(1.18)

where µ is the shear modulus and

λ
∗ =

3−κ

κ−1
µ, (1.19)

while

κ =

{
3−4ν for plane strain
3−ν

1+ν
for plane stress

(1.20)

and ν denotes the Poisson’s ratio.

1.6 Analytic function and Cauchy-Riemann equations

The complex variable ζ and its conjugate ζ̄ in a Cartesian coordinate system (x,y) are
defined as

ζ = x+ iy; ζ̄ = x− iy, where i =
√
−1. (1.21)

While in polar coordinates (r,θ) are expressed as

ζ = r(cosθ + isinθ); ζ̄ = r(cosθ − isinθ), where i =
√
−1. (1.22)

Now, consider the complex function f (ζ ) then the derivative of f (ζ ) respect to ζ is

d f (ζ )
dζ

= lim
∆ζ→0

f (ζ +∆ζ )− f (ζ )
∆ζ

. (1.23)

If f (ζ ) has a derivative at point ζ0 and also at each point in some neighborhood of ζ0,
then f (ζ ) is said to be analytic at ζ0. The complex function can be described into this
form

f (ζ ) = u(x,y)+ iv(x,y), (1.24)
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where u and v are real functions. If f (ζ ) is analytic, we have

d
dx

f (ζ ) = f ′(ζ )
dζ

dx
= f ′(ζ ), (1.25)

and

d
dy

f (ζ ) = f ′(ζ )
dζ

dy
= i f ′(ζ ), (1.26)

where a prime stands for differentiation with respect to ζ . Therefore,

d
dx

f (ζ ) =−i
d
dy

f (ζ ), (1.27)

or

du
dx

+ i
dv
dx

=
dv
dy
− i

du
dy

. (1.28)

By this equation, the Cauchy-Riemann equations will be obtained as follow

du
dx

=
dv
dy

,
du
dy

=−dv
dx

. (1.29)

These equations can be shown to be sufficient for f (ζ ) to be analytic. By the Cauchy-
Riemann equations it is easy to derive the following

∇
2(u) = ∇

2(v) = 0, (1.30)

this means the real and imaginary parts of an analytic function are harmonic.

1.7 Integrals equations

A single crack problem and the multiple cracks problem either for an infinite or half
plane elasticity can be solvable by the boundary integral equations (BIE). In generally,
these integral equations may be expressed as∫

L
A(ω,ω0)g(ω)dω = p(ω0), (or p(ω0)+ c, ω0 ∈ L), (1.31)

where L is the crack configuration, and A(ω,ω0) is kernel specified by the choice of
the unknown function g(ω) and the known function p(ω0) (Chen (1994), Chen et al.
(2003)). Since the displacements are discontinuous along the line L, we have two pos-
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sibilities to choose the unknown function either be the displacement jump or the dis-
location distribution. Then, we can choose the traction or the resultant force function
along the crack as the right hand term.

Table 1.1 lists the possibilities to classification of the integral equations which depend
on the choice of the functions g(ω) and p(ω0). The kernel is weakly singular (WS)
if the unknown function g(ω) is chosen as dislocation distribution function and the
right hand term p(ω0) is the resultant force. This is named as weakly singular integral
equation because the kernel is a logarithmic function and the integration is in weaker
singularity.

Table 1.1: The classification of the integral equations in crack problem.

Type g(ω) p(ω0) property of A(ω,ω0)

WS Dislocations Resultant forces Weakly singular
S1 Dislocations Tractions Cauchy singular
S2 Displacement jump (COD) Resultant forces Cauchy singular
HS Displacement jump (COD) Tractions Hypersingular
F1A Dislocations – Fredholm/Regular
F1B Tractions Tractions Fredholm/Regular
F2 Displacement Jump – Fredholm/Regular

If g(ω) is the dislocation distribution function, and p(ω0) is traction then A(ω,ω0) is
a Cauchy singular kernel (S1). This integral called as S1 because the integral belongs
to Cauchy principle value integral. A second kind of Cauchy singular equation (S2) is
formulated where g(ω) is crack opening displacement (COD) and p(ω0) is resultant
force. Also, this type of integral is Cauchy principle value integral.

For hypersingular (HS) integral equation, we choose g(ω) as the crack opening dis-
placement (COD) and p(ω0) is traction. This type of integration allows the COD func-
tion be obtained directly from the solution. Regularization of the suggested singular
integral equations gives three types of the Fredholm integral equations (F1A, F1B, and
F2) for the relevant problem. By regularize the singular integral equation of type S1,
we can obtain the type F1A. This type of integration denotes the regular integral. For
the type F1B, the traction applied on the individual crack and the traction applied on
the actual problem are chosen as the unknown function and the right hand term re-
spectively. The advantage of this type is that we do not need to utilize a complicated
mathematical works to solve the multiple cracks problems. Also, this type is a regular
integral. Finally, by using the formulation of the type S2, we can obtain the type F2 of
the Fredholm integral equation.
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1.8 Research objectives

The main objectives of this research are:

1. To formulate the physical problem of the multiple cracks in an elastic half plane
into a system of singular integral equations (SIEs) by using complex potentials.

2. To reduce the obtained SIEs for the above mentioned problems for the unknown
coefficients (dislocation distribution functions) to the system of linear equations
by quadrature formula and curve length coordinate method.

3. To analysis the behavior of SIF at the crack tips as the cracks far/close to each
other or to the boundary.

4. To investigate the interaction between two and three cracks.

1.9 Motivation

The study of crack geometry becomes an increasingly important in engineering design
due to the presence of the cracks that affect the stability and safety of component sig-
nificantly. The safety of the components can be determined from the computed data of
stress intensity factor. In addition, the stress intensity factor can be used to predict the
fatigue life of cracked components. To this end, accurate and efficient technique are re-
quired for determining stress intensity factor for these problems. Thus, the focus of this
research is to investigate the interaction between the cracks in an elastic half plane. The
singular integral equation is used to formulate this problem and solved numerically.

1.10 Scope of the study

This research will be focused on the modeling of the multiple cracks subjected to uni-
axial tension σ∞

x = p in an isotropic elastic half plane with free traction boundary con-
dition. The problem is formulated into a system of singular integral equations and is
solved numerically for the different cracks configurations.

1.11 Structures of the thesis

The thesis contains six chapters which are organized as follows:
In Chapter 1, a brief overview and some basic definitions related to fracture mechanics
are presented. Also, the basic equations in plane elasticity are introduced. Chapter 2
focuses on the literature review on the different approaches used in solving the cracks
problems and the modified complex potential for elastic half plane. The formulation
of the multiple cracks problem in an isotropic half plane using the modified complex
potential is presented, also the methodology for solving the crack problem is included.
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Chapter 3 covers the details of the formulations for single crack problem into singular
integral equation with free traction boundary condition where the distribution disloca-
tion function is taken as unknown. The final solution is obtained with the help of the
curve coordinate method in conjugation with Gauss quadrature rules. Several numerical
examples are given.

Chapter 4 deals with the interaction between two cracks and to study the effect of
the cracks for each to other that including different configurations of the cracks. The
interaction between three cracks is discussed in Chapter 5. Finally, Chapter 6 presents
a summary of the study and the future recommendations.
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