

UNIVERSITI PUTRA MALAYSIA

ELECTRICAL AND MICROSTRUCTURAL PROPERTIES OF ND₂O₃, GD₂O₃ DOPED ZNO-V₂O₅-MNO₂-NB₂O₅ BASED VARISTOR CERAMICS

NOR HASANAH BINTI ISA

FS 2018 97

ELECTRICAL AND MICROSTRUCTURAL PROPERTIES OF Nd₂O₃, Gd₂O₃ DOPED ZnO-V₂O₅-MnO₂-Nb₂O₅ BASED VARISTOR CERAMICS

By

NOR HASANAH BINTI ISA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2018

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

ELECTRICAL AND MICROSTRUCTURAL PROPERTIES OF Nd₂O₃, Gd₂O₃ DOPED ZnO-V₂O₅-MnO₂-Nb₂O₅ BASED VARISTOR CERAMICS

By

NOR HASANAH BINTI ISA

June 2018

Chair: Raba'ah Syahidah Azis, PhD Faculty: Science

The need for fabricating a reliable protection againts high voltage transients material have gained considerable attention in varistor ceramics field. Therefore, in this research, ZnO: Nd³⁺, Gd³⁺ at different doping concentration were prepared using solid state method. This research are focuses on the fabrication and electrical characterization of rare earth oxides (REOs) of neodymium (III) oxide (Nd₂O₃) and gadolinium (III) oxide (Gd₂O₃) based ZnO ceramics. The aim of this studies are: (i) to study the effects of concentration of Nd, Gd doped in ZnO ceramics on the electrical and microstructural properties, (ii) to investigate the effect of sintering time on the electrical and microstructural properties of Nd, Gd doped in ZnO ceramics, and (iii) to study the effect of temperature degradation on the electrical properties of ceramics. The ceramics were designed according to (97.40-x)ZnO(0.5)V₂O₅(2) MnO₂ (0.1)Nb₂O₅ (x)REOs where x =0.01 to 0.05 mol%. The mixed powder was ball milled, pre-sintered at 800 °C and pressed by a 3 tonne pressure to form a 15 mm diameter disc with 1 mm thick. The disc were sintered at 900 °C for 120 minutes and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), densitometer, and current density (J) – electrical field (E) tool. The optimum doped ceramics were subjected to various sintering time from 120 to 210 minutes. The electrical degradation test were conducted on the ceramics that possessed optimum nonlinear α value with state of 0.85 $E_{1\text{mA}}$ for 12 hours at various temperature from 80 to 110 °C. Cui et al. (2014) and Nahm (2013) reported that the REOs is a donor dopant promote the formation of cation vacancy and create defect which form the barrier. On the first objective, the fabrication of Nd, Gd doped ZnO based varistor ceramics increasing concentration to 0.03 mol% improve the microstructure properties that decreases the lattice parameter c to 5.2060 (Gd), 5.1982 (Nd) Å, increases density to 5.02 (Nd), 5.22 (Gd) g/cm³, and increases the average grain size (D) to $3.54 \,\mu\text{m}$ (Nd) and decreases D to $3.56 \,\mu m$ (Gd), improve the electrical properties that increases the barrier height Φ_B to 0.886 (Nd), 0.849 (Gd) eV, as a consequence increases the nonlinear α value to 9.91 (Nd), 9.94 (Gd), with increases the breakdown voltage (E_{1mA}) value to 88.90 (Nd), 76.07 (Gd) V/mm, but decreases the leakage current density (J_L) to 0.45 (Nd), 0.33 (Gd) mA/cm², which is a potential material for medium voltage application. The further doping to 0.05 mol% deteriorate the electrical properties which decreases Φ_B to 0.720 (Nd), 0.641 (Gd) eV, as a consequence decreases the nonlinear α value to 7.10 (Nd), 5.86 (Gd), with decreases E_{1mA} to 70.07 (Nd), 73.40 (Gd) V/mm,

but increases J_1 to 0.45 (Nd), 0.59 (Gd) mA/cm². The prolonged sintering time causes the decreases of nonlinear α and $E_{1\text{mA}}$ with increasing J_{L} (Nahm and Shin, 2003). On the second objective, the prolonged sintering time from 120 to 210 minutes increases the lattice parameter c to 5.2156 (Nd), 5.2128 (Gd) Å but decreases the density to 4.74 (Nd), 4.62 (Gd) g/cm³ and decreases D to 2.67 (Nd), 3.19 (Gd) μ m except at 180 minutes (Gd) for lattice parameter c, 210 minutes for density (Nd,Gd) and D (Nd). The Φ_B is decreases to 0.633 (Nd), 0.563 (Gd) eV as a consequence the nonlinear α value is decreases to 5.74 (Nd), 5.10 (Gd) with decreases of E_{1mA} to 64.03 (Nd), 52.10 (Gd) V/mm with increases of $J_{\rm L}$ to 0.54 (Nd), 0.53 (Gd) mA/cm² with increasing time except at 180 minutes (Nd) for Φ_B and nonlinear α value, 210 minutes (Nd) for J_L value and 210 minutes (Gd) for all electrical parameter. Degradation causes the drastic increment in the $J_{\rm L}$ and reduction of nonlinear α and $E_{\rm 1mA}$ (Abdullah et al., 2016). On the third objective, the degraded ZnO based varistor ceramics doped with Nd₂O₃ possessed the Negative Creep Leakage Current and increases the nonlinear α value to 6.30 with decreases $J_{\rm L}$ to 0.41 mA/cm² with increasing temperature from 95 to 110 °C, is better than that doped with Gd which possessed the Positive Creep Leakage Current and decreases the nonlinear α value to 3.71 with increases $J_{\rm L}$ to 0.64 mA/cm² at 110 °C. The minimum and maximum value of nonlinear α value are 5.10 and 9.94, $E_{1\text{mA}}$ are 52.10 and 88.90 V/mm, $J_{\rm L}$ are 0.33 and 0.54 mA/cm², and D are 2.54 and 3.85 μ m show the potential of this material limit. An investigation of the J-E characteristics for doped samples exhibited a nonohmicity depending on the REOs inclusions in the ZnO base matrix. The different proportions of the dopant constituents gave rise to different nonlinear α , E_{1mA} , dan J_L . The significance of Nd and Gd doping sintered at 120 minutes raised the $E_{1\text{mA}}$ and the nonlinear α but lowered J_{L} .

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIFAT- SIFAT ELEKTRIKAL DAN MIKROSTRUKTUR DARI Gd₂O₃, Nd₂O₃ DIDOP SERAMIK VARISTOR BERASASKAN ZnO-V₂O₅-MnO₂-Nb₂O₅

Oleh

NOR HASANAH BINTI ISA

Jun 2018

Pengerusi: Raba'ah Syahidah Azis, PhD Fakulti: Sains

Keperluan untuk fabrikasi bahan perlindung yang boleh dipercayai untuk melawan transien bervoltan tinggi telah mendapat perhatian penting dalam bidang seramik varistor. Oleh itu, dalam kajian ini, ZnO: Nd³⁺,Gd³⁺ pada kepekatan dop yang berbeza telah disediakan menggunakan kaedah keadaan pepejal. Kajian ini memfokuskan pada fabrikasi dan pencirian elektrikal terhadap oksida nadir bumi (ONB) terhadap oksida (III) neodimium (Nd₂O₃) dan oksida (III) gadolinium (Gd₂O₃) berasaskan seramik ZnO. Tujuan kajian ini ialah (i) untuk mengkaji kesan kepekatan Nd,Gd didopkan dalam seramik ZnO terhadap ciri-ciri elektrik dan mikrostruktur, (ii) untuk menyiasat kesan masa sinter terhadap ciri-ciri elektrik dan mikrostruktur Nd, Gd telah didop dalam seramik ZnO, dan (iii) untuk mengkaji kesan suhu degradasi terhadap ciri-ciri elektrik seramik. Seramik telah direkabentuk menurut (97.40-x)ZnO(0.5)V₂O₅ (2)MnO₂(0.1)Nb₂O₅ (x)ONB dimana x = 0.01 ke 0.05 mol%. Serbuk dicampur telah dikisar bebola, dipra-sinter pada 800 °C, dan ditekankan pada tekanan 3 ton untuk membentuk 15 mm diameter disk dengan ketebalan 1 mm. Disk disinter pada 900 °C selama 120 minit dan dicirikan menggunakan peralatan pembelauan sinar-X (XRD), pengimbas electron mikroskop (SEM) dengan tenaga serakan sinar-X (EDX), meter ketumpatan, dan ketumpatan arus (J) - medan elektrik (E). Seramik didopkan yang optimum telah tertakluk pada masa sinter yang pelbagai dari 120 sehingga 210 minit. Ujian degradasi elektrik telah dilakukan terhadap seramik yang mempunyai nilai α taklinear yang optimum dengan keadaan 0.85 E_{1mA} selama 12 jam pada suhu yang pelbagai dari 80 sehingga 110 °C. Cui et al., (2014) dan Nahm (2013) telah melaporkan bahawa ONB merupakan dopan penderma yang menggalakkan pembentukan kekosongan kation dan mewujudkan kecacatan yang membentuk halangan. Pada fabrikasi Nd,Gd didopkan ZnO berasaskan varistor seramik objektif pertama, menaikkan kepekatan kepada 0.03 mol% meningkatkan sifat mikrostruktur yang menurunkan pemalar kekisi c kepada 5.2060 (Gd), 5.1982 (Nd) Å, menaikkan ketumpatan kepada 5.02 (Nd), 5.22 (Gd) g/cm³, menaikkan saiz bijian purata (D) kepada 3.54 µm (Nd) dan menurunkan D kepada 3.56 µm (Gd), meningkatkan ciri-ciri elektrikal yang menaikkan ketinggian halangan Φ_B kepada 0.886 (Nd), 0.849 (Gd) eV, sebagai akibatnya menaikkan nilai tidak linear α kepada 9.91 (Nd), 9.94 (Gd), dengan kenaikan nilai voltan pecah tebat (E_{1mA}) kepada 88.90 (Nd), 76.07 (Gd) V/mm, tetapi menurunkan ketumpatan arus bocor (J_L) kepada 0.45 (Nd), 0.59 (Gd) mA/cm², yang merupakan bahan berpotensi untuk aplikasi voltan sederhana. Doping lanjut sehingga 0.05 mol% merosakkan sifat elektrikal yang menurunkan Φ_B kepada 0.720 (Nd), 0.641

eV (Gd), sebagai akibatnya menurunkan nilai tidak linear α kepada 7.10 (Nd), 5.86 (Gd), dengan penurunan E_{1mA} kepada 70.07 (Nd), 73.40 (Gd) V/mm, tetapi menaikkan J_L kepada 0.45 (Nd), 0.59 (Gd) mA/cm². Masa pensinteran berpanjangan menyebabkan penurunan tidak linear α dan $E_{1\text{mA}}$ dengan kenaikan J_{L} (Nahm dan Shin, 2003). Pada objektif kedua, masa pensinteran berpanjangan daripada minit 120 sehingga 210 menaikkan pemalar kekisi c sehingga 5.2156 (Nd), 5.2128 (Gd) Å tetapi menurunkan ketumpatan kepada 4.74 (Nd), 4.62 (Gd) g/cm³ dan menurunkan D kepada 2.67 (Nd), 3.19 (Gd) um kecuali pada 180 minit (Gd) untuk pemalar kekisi c, 210 minit untuk ketumpatan (Nd,Gd) dan D (Nd). Φ_B menurun kepada 0.633 (Nd), 0.563 (Gd) eV sebagai akibatnya nilai tidak linear α menurun kepada 5.74 (Nd), 5.10 (Gd) dengan penurunan $E_{1\text{mA}}$ kepada 64.03 (Nd), 52.10 (Gd) V/mm dengan kenaikan J_{L} kepada 0.54 (Nd), 0.53 (Gd) mA/cm² kecuali pada 180 minit (Nd) untuk Φ_B dan tidak linear α , 210 minit (Nd) untuk nilai J_L dan 210 minit (Gd) untuk semua parameter elektrikal. Degradasi menyebabkan kenaikan mendadak dalam $J_{\rm L}$ dan pengurangan tidak linear α dan E_{1mA} (Abdullah et al., 2016). Pada objektif ketiga, terdegradasi ZnO berasaskan varistor yang telah didopkan dengan Nd mempunyai mempunyai rayapan arus bocor negatif dan peningkatan nilai tidak linear α kepada 6.30 dengan penurunan $J_{\rm L}$ kepada 0.41 mA/cm² dengan suhu yang semakin meningkat daripada 95 kepada 110 °C, adalah lebih baik daripada yang didopkan dengan Gd yang mempunyai rayapan arus bocor positif dan penurunan nilai tidak linear α kepada 3.71 dengan kenaikan $J_{\rm L}$ kepada 0.64 mA/cm² pada 110 °C. Nilai minima dan maksima bagi nilai tidak linear α ialah 5.10 dan 9.94, E_{1mA} ialah 52.10 dan 88.90 V/mm, J_L ialah 0.33 dan 0.54 mA/cm², dan D ialah 2.54 dan 3.85 µm menunjukkan potensi had seramik ini. Penyiasatan pencirian J-E untuk sampel yang didopkan mempunyai tidak ohmisiti bergantung kepada inklusi ONB dalam matrik tapak ZnO. Perbezaan perkadaran dopan konstituen memberi kenaikan kepada berbeza tidak linear α , E_{1mA} , dan J_L . Signifikasi dop Nd dan Gd telah meningkatkan E_{1mA} and tidak linear α tetapi menurunkan J_{L} .

ACKNOWLDEGEMENTS

In the name of Allah, the most Merciful and Beneficent

Alhamdulillah, all praises to Allah Almighty for the strengths, guidance and blessing in completing this thesis. Special gratitude to my supervisor Dr. Raba'ah Syahidah Azis for her contact support and supervision in research, academic paper, seminar, and thesis. Special appreciate to my co-supervisor Dr. Nor Kamilah Sa'at for her support and cooperative in research, academic paper and thesis. Special thanks to Prof. Dr. Azmi Zakaria for his supervision in this research. He was always generous in sharing any useful tips about research fields Extends gratitude to Ms. AnidaZura Zulkiffli from Microscopy Unit of Institute of Bioscience, Universiti Putra Malaysia and Dr. Kok Kuan Ying from X-ray Diffraction Laboratory of Malaysia Nuclear Agency. Sincere thanks to my friends in the Photoacoustic Laboratory of Physics Department such as Rosno Kinsu, Dahiru Umaru, Raheleh Muhammadi and Zura for helping me in realizing the research. Extends thanks to my friends, Fazny, Ami, Hasni, and Ety for sharing valuable information including scholarship, academic writing, seminar and thesis. Last but not least, I would like to appreciate my beloved parents Isa Ramlan and Jamilah Kaspan, my sisters Nor Syuhaida, Sofia Noraina, Raghidatul Aizah and Saidatul Syazwani and my brother Mohamad Syafiq for give me strength and supportive to complete the study. Lastly, I would like to thank Malaysia of Higher Education through MyMaster scholarship for fees, School of Graduate studies through Grant Research Scholarship for allowance and Research Management Centre through Geran Putra -Inisiatif Putra Siswazah for research which enable me to complete my study.

I certify that a Thesis Examination Committee has met on 11 June 2018 to conduct the final examination of Nor Hasanah binti Isa on her thesis entitled "Electrical and Microstructural Properties of Nd_2O_3 , Gd_2O_3 Doped ZnO- V_2O_5 -MnO₂- Nb_2O_5 Based Varistor Ceramics" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Halimah bt Mohamed Kamari, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Chen Soo Kien, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Shahrom bin Mahmud, PhD Associate Professor Universiti Sains Malaysia Malaysia (External Examiner)

RUSLI HAJI ABDULLAH, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 November 2018

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Raba'ah Syahidah Azis, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Nor Kamilah Sa'at, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

> **ROBIAH BINTI YUNUS, PhD** Professor and Dean

School of Graduate Studies Universiti Putra Malaysia

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:

Date: ____

Name and Matric No.: NOR HASANAH BINTI ISA (GS44192)

Declaration by Members of Supervisory Committee

This is to confirm that:

G

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory	
Committee:	
Signature:	
Name of Member of	
Supervisory	
Committee:	
Signature: Name of Member of Supervisory Committee:	
Signature: Name of Member of Supervisory Committee:	

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	xix

CHAPTER

INT	RODUCTION	1
1.1	Varistor	1
1.2	ZnO	3
1.3	Problem Statement	4
1.4	Objective	4
1.5	Hypotheses	5
1.6	Scope of studies	5
LIT	ERATURE REVIEW	6
2.1	Introduction	6
2.2	Classification of dopants	6
2.3	Development of ZnO-V ₂ O ₅ -MnO ₂ -Nb ₂ O ₅	7
	ceramics	
	2.3.1 Vanadium	7
	2.3.2 Manganese	7
	2.3.3 Niobium	8
2.4	Rare Earth Oxides	9
TH	EORY	12
3.1	Introduction	12
3.2	Electrical Characteristics	12
3.3	Nonlinear behaviour origin	13
3.4	Double Schotkky Barrier Model	13
3.5	Atomic Defect Model	14
3.6	Degradation Mechanisms	15
	2.3.1 Degradation Process	15
	2.3.2 Recovery Process	16
3.7	Solid State Sintering	16
ME'	THODOLOGY	18
4.1	Introduction	18
4.2	Specification of composition	18
4.3	PVA Solution Preparation	18
4.4	Base Pellet Preparation	18
	-	

4.5 Sample Pellet Preparation

G)

		4.5.1	Weighing	18
		4.5.2	Milling and Drying	19
		4.5.3	Sieving and Pre-sintering	19
		4.5.4	Granulating and Palletizing	19
		4.5.5	Sintering	20
	4.6	Chara	acterization	20
		4.6.1	Density	20
		4.6.2	X-ray Diffraction	20
		4.6.3	Scanning Electron Microscope	20
		4.6.4	Electrical Test	21
		4.6.5	DC Degradation Test	22
		4.6.6	Uncertainty	23
			2	
5	RE	SULTS	AND DISCUSSION	24
	5.1	Introdu	action	24
	5.2	Nd ₂ O ₃	Concentration	24
		5.2.1	Structural Analysis	24
		5.2.2	Microstructural Analysis	27
		5.2.3	Electrical Analysis	30
	5.3	Gd_2O_3	Concentration	34
		5.3.1	Structural Analysis	34
		5.3.2	Microstructural Analysis	38
		5.3.3	Electrical Analysis	41
	5.4	Nd ₂ O ₃	Sintering Time	45
		5.4.1	Structural Analysis	45
		5.4.2	Microstructural Analysis	47
		5.4.3	Electrical Analysis	52
	5.5	Gd_2O_3	Sintering time	55
		5.5.1	Structural Analysis	55
		5.5.2	Microstructural Analysis	58
		5.5.3	Electrical Analysis	62
	5.6	Nd ₂ O ₃	Degradation	65
	5.7	Gd ₂ O ₃	Degradation	70
	5.8	Summa	ry of results	75
6	SUI	MMAR	Y, CONCLUSION AND	78
	RE	COMM	ENDATIONS FOR FUTURE	
	RE	SEARC	H	
	6.1	Conclu	sion	78
	6.2	Recom	mendation for future	79
REFERENC	CES			80
APPENDIC	ES			85
BIODATA	OF S	TUDEN	T	86
LIST OF PU	UBLI	CATIO	NS	87

 \bigcirc

xi

LIST OF TABLES

Table		Page
1.1	Series of Littelfuse Varistors Device based on MOV technology and its parameters such as steady state applied voltage range, breakdown voltage range at 1 mA, operating ambient temperature	3
2.1	Ceramics systems, grain size, resistivity, leakage current density, breakdown voltage, nonlinear coefficient α , sintering condition of ceramics and references	9
2.2	Ceramics systems, nonlinear coefficient α , breakdown field, grain size, leakage current density and sintering condition of Rare earth oxide doped ZnO based varistor ceramics	11
5.1	Position 2 θ , <i>d</i> -spacing, lattice parameter <i>b</i> and <i>c</i> , and FWHM of ZnO-based varistor ceramics doped with Nd ₂ O ₃ at (011) plane	27
5.2	Density (ρ), relative density (ρ_{rel}), and average grain size (D) of ZnO-based variator ceramics doped with Nd ₂ O ₃	30
5.3	Resistivity (ρ), Leakage Current Density (J_L), Breakdown voltage (E_{ImA}), Barrier Height (Φ_B), and Nonlinear Coefficient (α) of ZnO based varistor ceramics doped with Nd ₂ O ₃	34
5.4	Position 20, <i>d</i> -spacing, lattice parameter <i>b</i> and <i>c</i> , and Full Width Half Maximum (FWHM) of ZnO- based varistor ceramics doped with Gd_2O_3 at (011) plane	38
5.5	Density (ρ), relative density (ρ_{rel}), and average grain size (D) of ZnO-based varistor ceramics doped with Nd ₂ O ₃	41
5.6	Resistivity (ρ), Leakage Current Density (J_L), Breakdown voltage (E_{1mA}), Barrier Height (Φ_B), and Nonlin-ear Coefficient (α) of ZnO based varistor ceramics doped with Gd ₂ O ₃	45
5.7	Position 20, <i>d</i> -spacing, lattice parameter b and c, and Full Width Half Maximum (FWHM) of Nd_2O_3 doped ZnO based varistor at (011) plane	47
5.8	Density (ρ), relative density (ρ_{rel}), and average grain size (D) of Nd ₂ O ₃ doped ZnO based varistor	51
5.9	Resistivity (ρ), Leakage Current Density (J_L), Breakdown voltage (E_{1mA}), Barrier Height (Φ_B), and Nonlinear Coefficient (α) of Nd ₂ O ₃ doped ZnO based varistor	55

- 5.10 Position 2θ, *d*-spacing, lattice parameter b and c, and Full Width Half Maximum (FWHM) of Gd₂O₃ doped ZnO based varistor at (011) plane
- 5.11 Density (ρ), relative density (ρ_{rel}), and average grain size (D) of Gd₂O₃ doped ZnO based varistor
- 5.12 Resistivity (ρ), Leakage Current Density (J_L), Breakdown voltage (E_{1mA}), Barrier Height (Φ_B), and Nonlinear Coefficient (α) of Gd₂O₃ doped ZnO based varistor
- 5.13 Degradation Rate Coefficient (K_T), Resistivity (ρ), Percentage Variation of Resistivity ($\%\Delta\rho$), Leakage Current Density (J_L), Percentage Variation of Leakage Current Density ($\%\Delta J_L$), Breakdown Voltage (E_{1mA}), Percentage Variation of Breakdown Voltage ($\%\Delta E_{1mA}$), Barrier Height ($\%\Delta\Phi_B$), Percentage Variation of Barrier Height ($\%\Delta\Phi_B$), Nonlinear Coefficient (α) and Percentage Variation of Nonlinear Coefficient ($\%\Delta\alpha$) of Nd₂O₃ doped ZnO based varistor.
- 5.14 Degradation Rate Coefficient $(K_{\rm T})$, Resistivity (ρ) , Percentage Variation of Resistivity $(\%\Delta\rho)$, Leakage Current Density $(J_{\rm L})$, Percentage Variation of Leakage Current Density $(\%\Delta J_{\rm L})$, Breakdown Voltage $(E_{\rm ImA})$, Percentage Variation of Breakdown Voltage $(\%\Delta E_{\rm ImA})$, Barrier Height $(\varPhi_{\rm B})$, Percentage Variation of Barrier Height $(\%\Delta \Phi_{\rm B})$, Nonlinear Coefficient (α) and Percentage Variation of Nonlinear Coefficient $(\%\Delta\alpha)$ of Gd₂O₃ doped ZnO based varistor.
- 5.15

5.16

 Gd_2O_3

Position 2 θ of (011) plane, *d*-spacing, lattice parameter b and c, and Full Width Half Maximum (FWHM) of (011) plane, Density (ρ), relative density (ρ_{rel}), and average grain size (*D*) of Nd₂O₃ and Gd₂O₃ doped ZnO-based varistor ceramics

Position 2 θ of (011) plane, *d*-spacing, lattice parameter b and c, and Full Width Half Maximum (FWHM) of (011) plane, Density (ρ), relative density (ρ_{rel}), and average grain size (*D*) of ZnObased varistor ceramics doped with Nd₂O₃ and

- 5.17 Resistivity (ρ), Leakage Current Density (J_L), Breakdown voltage (E_{1mA}), Barrier Height (Φ_B), and Nonlinear Coefficient (α) of ZnO-based varistor ceramics doped with Nd₂O₃ and Gd₂O₃ 5.18 Resistivity (ρ), Leakage Current Density (J_L),
- 5.18 Resistivity (ρ), Leakage Current Density (J_L), Breakdown voltage (E_{1mA}), Barrier Height (Φ_B),

62

57

70

65

74

75

76

76

and Nonlinear Coefficient (α) of Nd₂O₃ and Gd₂O₃ doped ZnO-based varistor ceramics

5.19 Degradation Rate Coefficient (K_T), Nonlinear Coefficient (α) and its Percentage Variation ($\%\Delta \alpha$), Barrier Height (Φ_B) and its Percentage Variation ($\%\Delta \Phi_B$), Breakdown Voltage (E_{1mA}) and its Percentage Variation ($\%\Delta E_{1mA}$), Leakage Current Density (J_L) and its Percentage Variation ($\%\Delta J_L$), Resistivity (ρ) and its Percentage Variation ($\%\Delta \rho$) of Nd₂O₃ and Gd₂O₃ doped ZnO based varistor ceramics

LIST OF FIGURES

Table		Page
1.1	A symbol of varistor	1
1.2	Varistor Protection circuit	1
1.3	CH Varistor Series (Littelfuse, 2015)	2
1.4	LV UltraMOVTM Metal Oxide Varistor Series (Littelfuse.2015)	2
1.5	A Schematic diagram of a radial leaded MOV (Vishay 2013)	2
1.6	The structure of ZnO (Rodnyi and Khodyuk, 2011)	3
3.1	Typical Varistor <i>J-E</i> curve plotted on log-log	12
3.2	Example of ZnO-based Varistor block model	13
3.3	The schematic model of Double Schotkky barrier	14
3.4	The schematic model of the atomic defect (Gupta and Carlson, 1985)	14
3.5	Defect diffusion and chemical interaction during degradation (Gupta and Carlson, 1985)	16
3.6	Defect diffusion and chemical interaction during recovery (Gupta and Carlson, 1985)	16
3.7	Schematic diagram of stages in solid-state sintering (Tanaka et <i>al.</i> , 2012)	17
4.1	The flowchart of sample pellet preparation	19
4.2	The method of linear intercept for average grain size determination	21
4.3	Schematic diagram of electrical test setup	22
4.4	Schematic diagram of DC degradation test setup	23
5.1	XRD patterns of ZnO-based varistors doped with Nd2O3	25
5.2	Position 2θ of (011) plane and <i>d</i> -spacing dependent on Nd ₂ O ₂ concentration	26
5.3	lattice parameter b and c dependent on Nd ₂ O ₃ concen-	26
5.4	FWHM of (011) plane dependent on Nd ₂ O ₃	27
5.5	SEM image of ZnO-based varistor ceramics	27
5.6	SEM attached with EDX of ZnO-based varistor ceramics doped with Nd ₂ O ₂	28
5.7	Density and average grain size dependent on Nd_2O_3 concentration	30
5.8	J-E curve of ZnO-based variator ceramics doped with Nd ₂ O ₃	31

5.9	Resistivity and leakage current density dependent on $Nd_2\Omega_2$ concentration	32
5.10	Average grain size and breakdown voltage	32
5.11	Nonlinear α and barrier height dependent on concentration of Nd ₂ O ₂	34
5.12	XRD patterns of ZnO-based varistors doped with	35
5.13	Position 2θ of (011) plane and <i>d</i> -spacing dependent on Gd ₂ O ₂ concentration	36
5.14	lattice parameter b and c dependent on Gd_2O_3 concentration	36
5.15	FWHM of (011) plane dependent on Nd_2O_3	37
5.16	concentration SEM image of ZnO-based varistor ceramics doped with Gd ₂ O ₃	38
5.17	SEM attached with EDX of ZnO-based varistor	39
5.18	Density and average grain size dependent on	40
5.19	<i>J-E</i> curve of ZnO-based varistor ceramics doped	41
5.20	With Gd_2O_3 Resistivity and leakage current density dependent on	42
5.21	Gd_2O_3 concentration Average grain size and breakdown voltage	43
5.22	dependent on Gd_2O_3 concentration Nonlinear α and barrier height dependent on Gd_2O_3	44
5.23	concentration XRD patterns of Nd ₂ O ₃ doped ZnO-based varistor	46
5.24	Position 2θ and d-spacing of (011) plane	46
5.25	lattice parameter b and c dependent on sintering	47
5.26	FWHM of (011) plane dependent on sintering	47
5.27	SEM images of Nd ₂ O ₃ doped ZnO based varistor	48
5.28	SEM attached with EDX of Nd ₂ O ₃ doped ZnO-	49
5.29	EDX elemental map of Nd ₂ O ₃ doped ZnO based	50
5.30	Density and average grain size dependent on	51
5.31	J-E curve of Nd ₂ O ₃ doped ZnO based variator	52
5.32	Resistivity and leakage current density dependent on time	53

5.33	Average grain size and breakdown voltage	54
5.34	Nonlinear α and barrier height dependent on	55
5.35	Sintering time XRD patterns of Gd ₂ O ₃ doped ZnO-based varistor	56
5.36	Position 2θ and d-spacing of (011) plane dependent on sintering time	56
5.37	lattice parameter b and c dependent on sintering time	57
5.38	FWHM of (011) plane dependent on sintering time	58
5.39	SEM images of Gd ₂ O ₃ doped ZnO based varistor	58
5.40	SEM attached with EDX of Gd ₂ O ₃ doped ZnO- based varistor	59
5.41	EDX elemental map of Nd_2O_3 doped ZnO based variator ceramics sintered at 120 and 210 minutes	60
5.42	Density and average grain size dependent on	61
5.43	<i>J-E</i> curve of Gd_2O_3 doped ZnO based varistor ceramics	62
5.44	Resistivity and leakage current density dependent	63
5.45	Average grain size and breakdown voltage dependent on sintering time	64
5.46	Nonlinear α and barrier height dependent on sintering time	65
5.47	Current density dependent on time	66
5.48	<i>J</i> - <i>E</i> curve of Nd ₂ O ₃ doped ZnO based varistor ceramics	67
5.49	Resistivity and leakage current density dependent	68
5.50	Breakdown voltage dependent on temperature	68
5.51	Nonlinear α and barrier height dependent on	69
5 52		71
5.52	L F surges of Cd Q donad ZnQ based surgister	71
5.55	<i>J-E</i> curve of Gu ₂ O ₃ doped ZnO based variator ceramics	12
5.54	Resistivity and leakage current density dependent on temperature	72
5.55	Breakdown voltage dependent on temperature	73
5.56	Nonlinear α and barrier height dependent on temperature	73

LIST OF ABBREVIATIONS

Ag	silver
AC	alternate current
В	boron
Ba	Barium
Bi	Bismuth
Со	Cobalt
DC	Direct current
DyVO ₄	dysprosium vanadate
DLTS	deep level transient spectroscopy
EDX	energy dispersive X-ray
Er_2O_3	erbium oxide
ErVO ₄	Erbium Vanadate
Gd	Gadolinium
Gd ₂ O ₃	gadolinium (III) oxide
GdVO ₄	Gadolinium vanadate
IBS	Institute Bioscience
J- E	current density - electric field
LED	Light Emission Diode
Mn	Manganese
MOV	metal oxide varistor
Nb	Niobium
NCLC	negative creep of leakage current
Nd	Neodymium
Nd ₂ O ₃	neodymium (III) oxide
PCLC	positive creep of leakage current
Pr	praseodymium
Pr_6O_{11}	praseodymium oxide
PVA	polyvinyl alcohols
rpm	rotation per minute
REOs	rare earth oxides
Sb	antimony
Sc ₂ O ₃	scandium oxide
SiC	silicon carbide
SD	standard deviation
SEM	scanning electron microscope
SM	surface mount
Sr	strontium
Tb_4O_7	terbium oxide
V	vanadium
V DC	Volt Direct Current
XRD	X-ray diffraction
Y ₂ O ₃	vttrium oxide
ZnO	zinc oxide
-	

6

xviii

LIST OF SYMBOLS

А	cross sectional area of pellet
А	Ampere
mA	milliAmpere
kA	kiloAmpere
Α	Richardson's Constant
С	constant depend on J and E
D	Average Grain Size
D_{Zn}^{\bullet}	donor ions
E	Electric Field
$E_{1 \mathrm{ma}}$	Breakdown Voltage
e'	electron
eV	electronvolt
G	average grain size at time t
Gd [•] _{7n}	Gd in Zn site
J	Current Density
$J_{ m L}$	Leakage Current Density
$J_{\rm LO}$	current density at $t = 0$
J- E	Current Density - Electric Field
Ko	preexponential constant of the material
Kt	Degradation Rate Coefficient
k_B	Boltzmann Constant
L	length of pellet
L	Random Line Length On The Micrograph
M	Magnification Of The Micrograph
n	kinetic grain growth exponent
Ν	Number of the Grain Boundaries Intercepted By Lines
Nd_{Zn}^{\bullet}	Nd in Zn site
0 ₀	oxygen in its oxygen site
Q	apparent activation energy
R	resistance
R	universal gas constant
r	grains per unit length
T	absolute temperature
T	absolute temperature (K),
t	time
<i>t</i> ^{1/2}	stressing time
Vo	single positive charged oxygen vacancies
VO	double positive charged oxygen vacancies
VŽn	neutral zinc vacancy
V _{Zn}	single negative charge zinc vacancy
V _{Zn}	double negative charge zinc vacancy
W_{air}	weight of sample in air
Wwater 7 - X	weight of sample in water
$\Delta \Pi_{i}^{-}$	neural zinc interstitial
Δn _i 7 ••	single positive charged zinc interstitials
۷n _i	double positive charged zinc interstitials
u A	Nommear Coemcient
$arphi_{ m B}$	Barrier Height

G

xix

ρ	density
ρ	resistivity
$ ho_{ m water}$	density of water
$ ho_{ m average}$	average density
$\rho_{\rm rel}$	relative density
ΔG	free energy of segregation
ΔH	segregation enthalpy
ΔS	segregation entropy
$\Delta \alpha$	Percentage Variation of Nonlinear Coefficient
$\Delta J_{\rm L}$	Percentage Variation of Leakage Current Density
ΔE_{1mA}	Percentage Variation of Breakdown Voltage
$\%\Delta\rho$	Percentage Variation of Resistivity
$\%\Delta \Phi_{ m B}$	Percentage Variation of Barrier Height
°C	Degree Celcius
μm	Micrometre
ω	barrier width

 \bigcirc

CHAPTER 1

INTRODUCTION

1.1 Varistor

The varistor is a variable resistor that protecting direct current (DC) voltage applications from transient overvoltage by diverting it to the ground. The transients overvoltage are resulted from a sudden energy released which either previously stored or induced by heavy inductive loads or lightning strikes (Kanai et al., 1985; Barrado et al., 2004, Littelfuse, 2013). Varistors is also recognized as portmanteau of various resistor that exhibit an non-ohmic electrical characteristic that is similar to that of a diode (Levinson and Philipp, 1986). Figure 1.1 and 1.2 shows symbol of varistor and its application in a circuit. Littelfuse, Kemet, and Vishav are famous brands in manufacturing medium voltage varistor. The commercial varistors in markets nowadays are based on zinc oxide (ZnO) that exhibit excellent nonlinear properties compared with varistor based on silicon carbide (SiC). The SiC-based variators have very low in nonlinear coefficient α which is between 3 to 7 while ZnO-based varistors can be in between 20 to 50 (Hozer and Holland, 1994). There are variety of varistor based on ZnO available in market such as surface mount and radial leaded. Littelfuse Inc. manufactures a few series of MOVs surface mount such as CH Series as shown in Figure 1.3 for medium voltage DC to off-line board-level protection applications. This series has a wide applied voltage range from 18 V to 369 V DC and breakdown voltage range from 22 V to 430 V DC at 1 mA (Littelfuse, 2015). Its operating temperature range is from -55 °C to +125 °C with high surge rated up to 400 A. Besides, SM7 Series is another series of Littelfuse surface mount which is designed for alternate current (AC) power meter application. The applied voltage range of SM7 series is from 50 V to 150 V AC while its breakdown voltage range is from 73 V to 735 V DC test current at 1 mA. The operating ambient temperature range is from -40 °C to 85 °C with peak pulse current of 1200 A.

Figure 1.1: A symbol of varistor (Vishay, 2013)

Figure 1.2: Varistor Protection circuit (Vishay, 2013)

The Littelfuse 20mm SMD Series is another surface mount MOVs device for Automotive applications with applied voltage range from 26 V to 420 V DC and breakdown voltage range from 32 V to 462 V DC at 1 mA. The operating ambient temperature range is similar to SM7 Series with peak pulse current of 6500A. In addition, the medium voltage LV UltraMOVTM Series as shown in Figure 1.4 is a Littelfuse radial leaded varistor. The series are designed for DC application such as LED lights, cordless phones, audio and video devices, mobile phone chargers, security systems, fire alarm systems, automation control systems, industrial control, contact relays, surge protection device, telecom power systems, and wireless base stations. The steady state voltage range is from 14 to 125 V DC and the breakdown voltage range is from 18 V to 68 V DC at 1 mA. The operating temperature range is from -40 °C to +125 °C and the maximum peak surge current rating can reach up to 10kA. The ZA Series of transient voltage surge suppressors are another radial leaded varistors series. It designed for use in the protection of low and medium-voltage circuits and systems such as automotive systems, motor control, solenoid, and telecom as well as power supply circuits. Its features are including wide DC voltage range from 5.5 V to 615V, breakdown voltage from 11 V to 51.7 V DC at 1 mA, and operating temperature range from -55 to +85 °C, with 50 to 6500 A. Figure 1.5 shows the schematic diagram of radial varistor where the leads and electrodes deposited on both faces of ceramics (Vishay, 2013). Table 1.1 shows the series of Littelfuse varistors device and its parameters such as steady state applied voltage range, breakdown voltage range at 1 mA, operating ambient temperature range, and transient current surge.

Figure 1.3: CH Varistors Series (Littelfuse, 2015)

Figure 1.4: LV UltraMOVTM Metal Oxide Varistor Series (Littelfuse, 2015)

Figure 1.5: A schematic diagram of a radial leaded MOV (Vishay, 2013)

Table 1.1: Series of Littelfuse Varistors Device based on MOV technology and its parameters such as steady state applied voltage range, breakdown voltage range at 1 mA, operating ambient temperature range, and transient current surge.

	0		0 /		0
Series	Type	Steady state applied	Breakdown	Operating Am-	Transient
Name		voltage range	voltage range	bient Tempera-	Current surge
		(V DC)	at 1 mA	ture Range	(A)
			(V DC)	(°C)	
CH	surface	18 to 369	22 to 430	-55 to +125	100 to 400
	mount				
SM7	surface	50 to 150	73 to 735	-40 to +85	1200
	mount				
Littelfuse	surface	26 to 420	32 to 462	-40 to +85	6500
20mm SMD	mount				
LV Ultra-	radial	12 to 125	18 to 68	-40 to +125	500 to 10000
MOVTM	leaded				
ZA Series	radial	5.5 to 615	11 to 51.7	-55 to +85	50 to 6500
	leaded				

1.2 ZnO

ZnO is a wide band gap semiconductor of II-IV semiconducting group and it almost always n-type semiconductor due to presence of oxygen vacancy and zinc interstitials (Kim et al., 2012). Zinc interstitial are shallow donor but high formation energy in ntype ZnO and are fast diffuser (Anderson and Chris, 2007). While the Zinc vacancy is deep acceptor and act as compensating centers in n-type ZnO. Oxygen interstitials have high formation energies and occurs as deep acceptors at octahedral interstitial sites in ntype ZnO (Anderson and Chris, 2007). Meanwhile the Oxygen vacancy is deep donors and unlikely to form because it have high formation energies in n-type ZnO. As in most II-VI materials, the hexagonal wurtzite structure is more preferred in ZnO rather than zinc blende structure (Elcombe and Kisi, 1989). This is because the structure is most common and stable at ambient conditions. ZnO is a largely ionic bond as the corresponding radii of 0.74 Å for Zn²⁺ and 1.40 Å for O²⁻. ZnO is a polar bond since the zinc and oxygen planes are electrically charged (Elcombe and Kisi, 1989; Nirmala and Anukaliani, 2011). The insulator ZnO require high sintering temperature above 1000 °C to reveal a good electrical properties (Pandey et al., 2016). The space group of ZnO is P6₃mc and the lattice parameters are a is 3.25 Å and c is 5.2 Å since the structure is hexagonal. Figure 1.6 shows the hexagonal prism of the wurtzite structure of ZnO where the black and white denote Zn and O (Rodnyi and Khodyuk, 2011).

Figure 1.6: The structure of ZnO (Rodnyi and Khodyuk, 2011)

1.3 Problem statement

The semiconductor devices are very susceptible to and vulnerable to transient overvoltage. Transient overvoltage can originate from internal sources such as electrostatic discharge, switching of electrical loads, magnetic and inductive coupling, and external sources such as direct and indirect lightning (Nahm, 2013). The best way to protect DC devices is applying the ZnO based varistor into devices (Abdullah *et al.*, 2016). The rare earth oxides (REOs) doped Zn-V-Mn-Nb-O ceramics is studied recently because the ceramics exhibited the nonlinearity at low sintering temperature of 900 °C for medium voltage application (Roy et al., 2018). The REOs doped Zn-V-Mn-Nb-O ceramics are very actively being studied in many aspects such as basic microstructures, nonlinear properties, dielectric characteristics, stability against DC-accelerated aging stress, and high-energy pulse current (Nahm, 2013; Roy et al., 2017). The high leakage current density in medium voltage of ZnO based varistor ceramics may causes the varistor itself to easily burn. The rare earth oxides is a donor dopant in ZnO involves in the formation of cationic vacancy which defined as missing of cation from its lattice site to maintain electrical neutrality, that produce an electron deficiency and are therefore able to trap the extra electrons released by high valence dopants (Cui et al., 2014, Mirzayi and Hekmatshoar, 2013). Nahm (2013) reported that REOs with number of valence of 3 act as donor dopant in ZnO that segregate at the grain boundary create defect that form the potential barrier which increases the nonlinear α value from 49.9 to 66.1 and the breakdown voltage from 480 to 536.5 V/mm but decreasing the leakage current density from 0.094 to 0.077 mA/cm² with increasing Gd₂O₃ concentration from 0 to 0.05 mol%. Therefore, the fabrication of varistor to having the low leakage current density with optimum nonlinear α value and highest breakdown voltage is necessary and worth to be investigated by using REOs with concentration below 0.05 mol%. Neodymium and Gadolinium are rare earth oxides have similar number of valence of 3 with different of ionic radii and atomic mass. The REOs doped Zn-V-Mn-Nb-O ceramics exhibited the optimum nonlinear α value at 900 °C compared to other temperatures (Nahm, 2015a; 2016). The prolonged sintering time from 0.5 to 8 hours through Zn-V-Mn-Nb-O ceramics doped with Er₂O₃ sintered at 1100 °C improve the electrical properties which increases the breakdown voltage from 197.6 to 388.0 V/mm and the nonlinear α value from 17 to 27 (Roy et al., 2018). In contrast, the prolonged sintering from 1 to 3 hours for Y_2O_3 doped ZnO ceramics decreases the breakdown voltage from 194.5 to 117.4 V/mm and decreases the nonlinear α value from 51.2 to 23.8 (Nahm and Shin, 2003). Therefore, it is worth to study the effect of sintering time on the microstructures and electrical properties of varistor. Electrical degradation is another main issue in the development of varistor materials because the electrical devices operated in harsh condition at temperature range from -40 to +125 °C (Littelfuse, 2015). The prolonged or repetitive application of stresses and extreme operating condition causes the drastic increment in the leakage current density and reduction of nonlinear α and breakdown voltage (Abdullah et al., 2016). Therefore, it is necessary to study the effect of electrical degradation on the electrical properties of REOs doped ZnO-based varistor ceramics.

1.4 Objective

There are three main objectives in this research work. They are;

 to study effects of low concentrations of x mol% Nd₂O₃ and Gd₂O₃ on electrical and the microstructural properties of ZnO-based varistor ceramics fabricated by the solid-state method at 900 °C for 120 minutes. x is 0.01,0.02,0.03,0.04, and 0.05 mol%.

- 2) to study effects of sintering time on the electrical and the microstructural properties of Nd₂O₃ and Gd₂O₃ doped ZnO-based varistor ceramics fabricated by the solid-state method at 900 °C for 120, 150, 180 and 210 minutes.
- 3) to study effects of temperature from 80 to 110 °C during direct current (DC) degradation for 12 hours on the electrical properties of the optimum of Nd₂O₃ and Gd₂O₃ doped ZnO-based varistor ceramics.

1.5 Hypotheses

There are three hypotheses in this research work.

- 1) The increases of Nd₂O₃ and Gd₂O₃ concentrations in the ZnO-based varistor ceramics would improve structure, microstructure and nonlinear properties of varistors. Rare earth oxide will increase the nonlinear coefficient α and breakdown voltage value but reduce the leakage current by controlling the ZnO grain growth.
- 2) The prolonged sintering time on Nd₂O₃ and Gd₂O₃ doped ZnO-based varistor ceramics would diminish structure, microstructure and nonlinear properties of varistors. The prolonged sintering time will reduce the nonlinear coefficient α and breakdown voltage value but increase the leakage current by controlling the ZnO grain growth.
- 3) The increment of ambient temperature during DC and temperature stresses would deteriorate the nonlinear properties of ZnO-based varistor ceramics. The high ambient temperature will increase the carrier generation due to Joule heating. It will causes the increase in the leakage current but the reduction in the nonlinear coefficient α and breakdown voltage value.

1.6 Scope of studies

The study is focused on the effect of Nd₂O₃ and Gd₂O₃ and sintering time on the nonlinear electrical properties such as the nonlinear coefficient α , breakdown voltage, leakage current density, resistivity, and barrier height determined from the current density-electrical field curve. For microstructure properties, the study is concerned the effect of Nd₂O₃ and Gd₂O₃ doping and sintering time on diffraction angle, *d*-spacing, lattice parameter, Full Widths Half Maximum, density, and grain size. The degradation study is limited to the leakage current creep, degradation rate coefficient K_T and percentage change of electrical parameter before and after stress based on the current density-electrical field (*J-E*) curve. The study is limited to the varistor ceramics prepared through conventional solid-state method and the medium voltage application.

REFERENCES

- Aisah, N., Gustiono, D., Fauzia, V., Sugihartono, I., and Nuryadi, R., (2017). Synthesis and Enhanced Photocatalytic Activity of Ce-Doped Zinc Oxide Nanorods by Hydrothermal Method, IOP Conf. Ser. Mater. Sci. Eng., 172, 1-8
- Abdullah, W.R.W., Zakaria, A., Hashim, M., Rahman, M.M., and Ghazali, M.S.M., (2016). Stability of ZnO-Pr₆O₁₁-Cr₂O₃ Varistor Ceramics against Electrical Degradation, Mater. Sci. Forum, 846, 115-125
- Anderson, J., and Chris, V.D.W., (2007). Native point defect in ZnO, Phys. Rev. B., 76 (16), 165202, 1-22
- Barrado, C.M., Leite, E.R., Bueno, P.R., Longoa, E., and Varela, J.A., (2004). Thermal conductivity features of ZnO-based varistors using the laser-pulse method, Mater. Sci. Eng. A, 371, 377-381
- Chen, C.S., (2003). Effect of Dopant Valence State of Mn-Ions on the Microstructures and Nonlinear Properties of Microwave Sinteredcoble ZnO-V₂O₅ Varistors, J. Mater. Sci., 38, 1033-1038
- Christen, T., Donzel, L., and Greuter, F., (2010). Nonlinear Resistive Electric Field Grading Part 1: Theory and Simulation, IEEE, 26(6), 47-59
- Cui, Y., Shao, X. Prada, S., Giordano, L., Pacchioni, G., Freund, H.J., and Nilius, N., (2014). Surface Defects and their impact on the electronic structure of Mo-doped Cao films: an STM and DFT study, Phys. Chem., 16, 12764-12772
- Durazzo and Riella (2008). Studies on the sintering behaviour of UO₂-Gd₂O₃ Nuclear Fuel, Proc. IYNC, 114.1-114.17
- Eda, K., (1978). Conduction mechanism of non-ohmic zinc oxide ceramics, J. Appl. Phys., 49 (5), 2964-2972
- Eda, K., Iga, A., and Matsuoka, M., (1980), Degradation mechanism in non-ohmic zinc oxide ceramics, J. Appl. Phys. 51, 2678-2684.
- Elcombe, M.M., and Kisi, E.H. (1989). U Parameters for the Wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Cryst. C, 45(2), 1841-2030
- Emtage, P.R., (1977). The physics of zinc oxide varistors, J. Apply. Phys., 48 (10), 4372-4384
- EPCOS (2012). Varistors catalog, TDK Corporation, 1-2
- Ezhilvalavan, S., and Kutty, T.R.N., (1996). Dependence of non-linearity coefficients on transition metal oxide concentration in simplified compositions of ZnO + Bi₂O₃ + MO varistor ceramics (M=Co or Mn), J. Mater. Sci. Mater. Electron, 7, 137-148.
- Fan, J., and Freer, R., (1994). Deep level transient spectroscopy of zinc oxide varistors doped with aluminium oxide and/or silver oxide, J. Am. Ceram. Soc., 77, 2663-2668.
- Furtadoa, J.G.D.M., Saléha, L.A., Serrab, E.T., Oliveiraa, G.S.G.D., and Nóbregac, M.C.D.S., 2005. Microstructural Evaluation of Rare-Earth-Zinc Oxide-Based Varistor Ceramics, Mater. Res., 8 (4), 425-429
- Ghazali, M.S.M., (2013). Characterization of zinc oxide-based varistor ceramics prepared using solid state route and co-precipitation processing. Ph.D. Thesis, Department of Physics, Universiti Putra Malaysia, Serdang, Malaysia
- Ghosh, M., Karmakar, D., Basu, S., Jha, S.N., Bhattacharyya, D., Gadkari, S.C., and Gupta, S.K., (2014). Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures, J. Phys. Chem. Solids, 75(4), 543-549

- Gupta, T.K., and Carlson, W.G., (1982). Barrier Voltage and its effect on Stability of ZnO Varistor. J. Appl. Phys. 53 (11), 7401-7409.
- Gupta, T.K., and Carlson, W.G., (1985). A grain boundary defect model for instability/stability of a ZnO varistor. J. Mater. Sci., 20, 3487-3500
- Gupta, T.K., Carlson, W.G., and Hower, P.L., (1981). Current Instability Phenomena in ZnO varistor under a continuous AC stress, J. Appl. Phys., 52(6), 4104-4111
- Heiland, G., and Mollwo, E., in "Solid State Physics", edited by F. Seitz and D. Turnbull (Academic Press, New York, 1959) 8, 191-192
- Hower, P.L., and Gupta, T.K., (1979). A barrier model for ZnO varistors, J. Apply. Phys., 50(7), 4847-4855
- Hozer, L., and Holland, D., (1994). Semiconductor ceramics: Grain boundary effects. The University of Michigan. Ellis Horwood, 4-106
- Hng, H.H., and Chan, P.L., (2004). Microstructure and current–voltage characteristics of ZnO–V₂O₅–MnO₂ varistor system, Ceram. Int., 30, 1647–1653
- Hng, H.H., and Halim, L., (2003). Grain growth in sintered ZnO–1 mol% V₂O₅ ceramics. Mater. Lett., 57, 1411–1416
- Hng, H.H., and Knowles, K.M., (2000). Microstructure and Current–Voltage Characteristics Multicomponent Vanadium-Doped Zinc Oxide Varistors, J. Am. Ceram. Soc., 83 (10), 2455–2462
- Hng, H.H., and Tse, K.Y., (2008). Effects of MgO doping in ZnO-0.5 mol% V₂O₅ varistors, Ceram. Int., 34, 1153-1157
- Kanai, H., Imai, M., and Takahashi, T., (1985). A high-resolution transmission electron microscope study of a zinc oxide varistor. J. Mater. Sci., 20, 3957-3966
- Kazakey, M., Vlasova, M., Aquilar, P.A.M., Coeto, S., Tapia, R.G., and Sobolev, N.A., (2012). Reaction process in a ZnO + 1% Gd₂O₃ powder mixture during mechanical and laser processing, Mater. Sci. Eng. B, 177(16), 1417-1422
- Khafagy, A.M.H., El-rabaie, S.M., Dawoud, M.T., and Attia, M.T., (2014). Microhardness, microstructure and electrical properties of ZVM ceramics, J. Adv. Ceram., 3(4), 287–296
- Kim, E.D., Kim, C.H., and Oh, M.Y., (1985). Role and effect of Co₂O₃ additive on the upturn characteristics of ZnO varistors, J. Appl. Phys., 58, 3231-3235
- Kim, D.H., Lee, G.W., and Kim, Y.C., (2012). Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping, Solid State Commun., 152 (18), 1711-1714
- Kim, B.N., Li, J.G., Suzuki, T.S., (2017). Evaluation of densification and grain-growth behaviour during sintering of zirconia, J. Ceram. Soc. Jpn., 125 (4), 357-363
- Lagrange, A. (1991)., Electronic Ceramics, ed. Steele, B.C.H., Elsevier App. Sci. London and New York, 17
- Lehovec, K. (1953). Space-Charge Layer and Distribution of Lattice Defects at the surfaces of Ionic Crystals. J. Chem. Phys., 21 (7), 1123-1128
- Levinson, L.M., and Philipp, H.R., (1986). Zinc oxide varistor a review, J. Am. Ceram. Soc. Bull., 65, 639–646
- Lin, Y.H., Cai, J., Li, M., Nan, C.W., and He, J., (2008). Grain boundary behavior in varistor-capacitor TiO₂-rich CaCu₃Ti₄O₁₂ ceramics, J. Appl. Phys., 103, 1-5
- Littelfuse (2013). LV UltraMOVTM Low Voltage, High Surge Current Varistor Design Guide (Preliminary Version) Littelfuse Inc. 1-27

Littelfuse (2015). Metal-oxide Varistors (MOVs) catalog, Littelfuse Inc.1-237

Liu, M., Kershhofer, L., Mosenfelder, J.L., and Rubie, D.C., (1998). The effect of strain energy on growth rate during the olivine-spinel transformation and implication

for olivine metastability in subducting slabs, J. Geophys. Res., B10(103), 23897-23909

- Mantas, P.Q., and Baptista, J.L., (1995). The Barrier Height Formation in ZnO Varistors, J. Europ. Ceram. Soc., 15, 605-615
- Matsuoka, M. (1971). Nonohmic Properties of Zinc Oxide Ceramics, Jpn. J. Appl. Phys., 10(6), 736-746.
- Matsuoka, M., Masuyama, T., and Lida, Y., (1969). Voltage non-linearity of zinc oxide ceramics doped with alkali earth metal oxide, Jpn. J. Appl. Phys., 8, 1275-1280.
- Mirzayi, M., and Hekmatshoar, M.H., (2013). Effect of V₂O₅ on electrical and microstructural properties of ZnO ceramics, Phys. B, 414, 50–55
- Masteghin, M.G., and Orlandi, M.O., (2016). Grain-boundary Resistance and Nonlinear Coefficient Correlation for SnO2-Based Varistors, Mat. Res., 19(6), 1286-1291
- Mukae, K., Tsuda, K., and Nagasawa, I., (1977). Non-Ohmic Properties of ZnO- Rare Earth Metal Oxide-CO₃O₄ Ceramics, Jpn. J. Appl. Phys., 16(8), 1361-1368
- Nahm, C.W. (2007). Microstructure and varistor properties of ZnO–V₂O₅–MnO₂-based ceramics, J. Mater. Sci., 42, 8370-8373
- Nahm, C.W. (2009a). Effect of MnO₂ addition on microstructure and electrical properties of ZnO-V₂O₅-based varistor ceramics, Ceram. Int., 35, 541–546
- Nahm, C.W. (2009b). Clamping voltage characteristics and accelerated aging behaviour of CoCrTb-doped Zn/Pr-based varistors with sintering temperature, Trans. Electr. Electr. Mater., 10 (4), 125-130
- Nahm, C.W (2010). Microstructure and electrical properties of ZnO- V₂O₅- MnO₂- Co₃O₄-Dy₂O₃- Nb₂O₅-based varistors, J. Alloys Compd., 490, L52-L54
- Nahm, C.W. (2011). Effect of Mn doping on electrical properties and accelerated ageing behaviours of ternary ZVM varistors, Bull. Mater. Sci., 34(7), 1385–1391.
- Nahm, C.W. (2012a). Effect of sintering process on electrical properties and ageing behavior of ZnO–V₂O₅–MnO₂–Nb₂O₅ variator ceramics, J. Mater. Sci. Mater. Electron, 23, 457-463
- Nahm, C.W. (2012b). Nb₂O₅ doping effect on electrical properties of ZnO–V₂O₅–Mn₃O₄ varistor ceramics, Ceram. Int., 38, 5281-5285
- Nahm, C.W. (2013). Effect of gadolinia addition on varistor characteristics of vanadium oxide–doped zinc oxide ceramics, J. Mater. Sci. Mater. Electron, 24, 4839-4846
- Nahm, C.W. (2015a). Effect of small changes in sintering temperature on varistor properties and degradation behaviour of V-Mn-Nb-Gd co-doped zinc oxide ceramics. Trans. Nonferrous Met. Soc. China, 23, 58-62
- Nahm, C.W. (2015b). Nonohmic properties of V/Mn/Nb/Gd co-doped zinc oxide semiconducting varistors with low-temperature sintering process, Mater. Sci. Semicond. Process., 23, 58-62
- Nahm, C.W. (2016). Sintering temperature dependence on microstructure and nonohmic properties of ZVMND ceramic semiconductors, J. Mater. Sci. Mater. Electron, 27, 9520-9525
- Nahm, C.W., and Park, C.H., (2000). Microstructure, electrical properties, and degradation behavior of praseodymium oxides-based zinc oxide varistors doped with Y₂O₃. J. Mater. Sci. Lett., 35, 3037 – 3042
- Nahm, C.W. and Shin, B.C., (2003). Highly stable nonlinear properties of ZnO–Pr₆O₁₁– CoO–Cr₂O₃–Y₂O₃-based varistor ceramics. Mater. Lett., 57, 1322–1326
- Nahm, C.W., and Shin, B.C., (2004). Effect of sintering time on electrical properties and stability against DC accelerated aging of Y₂O₃-doped ZnO-Pr₆O₁₁-based varistor ceramics, Ceram. Int. 30, 9–15

- Nahm, C.W., Park, C.H., and Yoon, H.S., (2000). Microstructure and varistor properties of ZnO-Pr₆O₁₁-CoO-Nd₂O₃ based ceramics, J. Mater. Sci. Letters, 19, 271–274
- Nirmala, M., and Anukaliani, A., (2011). Characterization of undoped and Co-doped ZnO nanoparticles synthesized by DC thermal plasma method. Physica B, 406, 911–915
- Orman, J.A.V., and Crispin, K.L., (2010). Diffusion in Oxides, Rev. Mineral. Geochem., 72, 757-825
- Pandey, S., Kumar, D., and Parkash, O., (2016a). Investigation of the electrical properties of liquid-phase sintered ZnO–V₂O₅ based varistor ceramics using impedance and dielectric spectroscopy, J. Mater. Sci: Mater Electron., 27, 3748-3758
- Pandey, S., Kumar, D., and Parkash, O., (2016b). Electrical impedance spectroscopy and structural characterization of liquid-phase sintered ZnO–V₂O₅–Nb₂O₅ varistor ceramics doped with MnO, Ceram. Int., 42(8), 9686–9696
- Park, J.H., and Nahm, C.W., (2015). Sintering effect on electrical properties and aging behaviour of quaternary ZnO-V₂O₅-Mn₃O₄-Nb₂O₅ ceramics, J. Mater. Sci. Mater. Electron, 26, 168–175
- Pillai, S.C., Kelly, J.M., Ramesh, R., and McCormack, D.E., (2013). Advances in the synthesis of ZnO nanomaterials for varistor devices. J. Mater. Chem., 1, 3268-3281
- Ray, A., Behera, B., Basu, T., Vajandar, S., Sapathy, S.K., and Nayak, P., (2018). Modification of structural and dielectric properties of polycrystalline Gd-doped BFO-PZO, J. Adv. Dielect., 8(4), 1-21
- Rodnyi, P.A., and Khodyuk, I.V., (2011). Optical and Luminescence Properties of Zinc Oxide. Opt. Spectros., 111 (5), 776-785
- Roy, S., Das, D., and Roy, T.K., (2017). Processing, characterization and properties of Er₂O₃ added ZnO based varistor ceramics, J. Mater. Sci. Mater. Electron, 28, 14906-14918
- Roy, S., Roy, T.K., and Das, D., (2018). Microstructure and Current-Voltage Characteristics of Erbium Oxide Doped Multicomponent Zinc Oxide Varistor, IOP Conf. Ser. Mater. Sci. Eng., 338, 012046
- Sukkar, M.H., and Tuller, H.L., in "Grain Boundaries and Interfaces in Ceramics", Adv. Ceram., Vol. 7, edited by M. F. Yan and A.H. Heuer, (American Ceramic Society, Columbus, Ohio, 1983) 71-90.
- Tanaka, H., Yamamoto, A., Shimoyama, J., Ogino, H., and Kishio, K., (2012). Strongly connected ex situ MgB₂ polycrystalline bulks fabricated by solid-state self-sintering, Supercond. Sci. Technol. 25, 115022-115028
- Thomas, D.G., (1957). Interstitial Zinc in Zinc Oxide, J. Phys. Chem. Solids, 3, 229-237
- Thümmler, F., and Thomma, W., (1967). The sintering process. Metall. Rev., 115, 69-108
- Tsai, J.K., and Wu, T.B., (1996). Microstructure and nonohmic properties of binary ZnO-V₂O₅ ceramics sintered at 900 °C, Mater. Lett., 26, 199-203
- Uric, P.A., and Notis, M.R. (1973). Final Stage Densification During Pressure-Sintering of CoO, J. Am. Ceram. Soc., 56(11), 570-574
- Vishay (2013). Varistors Introduction, Technical Note, Vishay BCComponents, 1-12
- Vijayaprasath G., Murugan, R., Hayakawa, Y., and Ravi, G., (2016). Optical and magnetic studies on Gd doped ZnO nanoparticles systemesized by co-precipitation method, J. Lumin., 178, 375-383
- Wang, C.M., Zang, G., and Wang, C., (2005). Nonlinear Electrical Characteristics of SnO2-CuO Ceramics with Different Donors, J. App. Phy., 97, 126103, 1-3

- Wang, M.H., Hu, K.A., Zhao, B.Y. and Zhang, N.F. (2007). Degradation phenomena due to humidity in low voltage ZnO varistors, Ceram. Int., 33, 151-54.
- Wang, M.H., Tang, Q.H., and Yao, C., (2010). Electrical properties and AC degradation characteristics of low voltage ZnO varistors doped with Nd₂O₃, Ceram. Int., 36, 1095–1099
- Wong, J., (1975). Microstructure and Phase Transformation in a Highly Non-ohmic Metal Oxide Varistor Ceramic, J. Appl. Phys., 46, 1653-1659
- Wurst, J.C., and Nelson, J.A., (1972). Linear Intercept Technique for Measuring Grain Size in Two-phase Polycrystalline Ceramics. J. Am. Ceram. Soc., 55(2), 109
- Yan, J.K., Kang, K.Y., Du, J.H., and Yi, J.H., (2016). Grain boundary segregation and secondary-phase transition of (La,Nb)-codoped TiO₂ ceramics, Ceram. Int., 42(10), 11584-11592
- Zahid, R., Azmi, Z., and Sabri, M.G.M., (2011). Photopyroelectric Spectroscopic Studies of ZnO-MnO₂–Co₃O₄–V₂O₅ Ceramics, Int. J. Mol. Sci., 12(3), 1625-1632
- Zhoa, Y., Song, S., Si, H., and Wang, K. (2017). Effect of Grain Size on Grain Boundary Segregation Thermodynamics of Philosophyin Interstitial-Free and 2.25Cr-1Mo Steels, Metals, 470(7),1-16
- Zhou, D., Zhang, C., and Gong, S., (2003). Degradation phenomena due to dc bias in low-voltage ZnO varistors, Mater. Sci. Engin., B99, 412-415

BIODATA OF STUDENT

Nor Hasanah binti Isa was born on 1st June 1992. She is currently residing at Melaka. She previsely was a student of Universiti Putra Malaysia and obtained Bachelor of Science with honours major Physics. She is at present a Master Student of Universiti Putra Malaysia in Advanced Material.

LIST OF PUBLICATIONS

- Isa, N.H.*, Zakaria, A., Azis, R.S., and Abdullah, W.R.W., (2017). Microstructure and Nonlinear Properties of Zn-V-Mn-Nb-O Varistor Ceramics with Nd₂O₃ Substitution, Digest Journal of Nanomaterials and Biostructures, 12 (3), 821-827
- Isa, N.H.*, Zakaria, A., Azis, R.S., and Rizwan, Z., (2017). Microstructural and Nonlinear Properties of Zn-V-Mn-Nb-O Varistor Ceramics with Gd₂O₃ Substitution for Low Voltage Application, Solid State Phenomena, 268, 181-185
- Isa, N.H.*, Azis, R.S., and Sa'at, N.K., (2018). The effect of sintering time on the microstructural and nonlinear electrical properties of Zn-V-Mn-Nb-Nd-O low-voltage varistor ceramics, J. Phys.: Conf. Ser., 1083 (012009), 1-6
- Isa, N.H.*, Azis, R.S., Sa'at, N.K., Zakaria, A., Mohammadi, R., and Kinsu, R.,(2018). The effect of sintering time on the microstructural and nonlinear electrical properties of Zn-V-Mn-Nb-Gd-O low-voltage varistor ceramics. Emerging Themes In Fundamental and Applied Sciences-Physics, Serdang, Selangor: UPM Press. Retrieved from http://www.science.upm.edu.my/ebook-3213, 74-81
- Kinsu, R., Zakaria, A., Sa'at, N.K., Azis, R.S., and Isa, N.H.* (2017). Effect of optical properties of graphene oxide reduction with difference source exposed light of uv light and laser radiation. (submitted)
- Isa, N.H.*, Azis, R.S., Sa'at, N.K., and Mohammadi, R. Temperature stresses effect on the optimum nonlinear properties of ZnO-V₂O₅-MnO₂-Nb₂O₅-Gd₂O₃ Low-Voltage Varistor Ceramics, Malaysian Science and Technology Congress (MSTC2017) 2017 (Submitted)

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION:

TITLE OF THESIS / PROJECT REPORT:

ELECTRICAL AND MICROSTRUCTURAL PROPERTIES OF Nd2O3, Gd2O3 DOPED ZnO-V2O5-MnO2-Nb2O5 BASED VARISTOR CERAMICS

NAME OF STUDENT:

NOR HASANAH BINTI ISA

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

- 1. This thesis/project report is the property of Universiti Putra Malaysia.
- 2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
- 3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

This thesis is submitted for:

C

PATENT	Embargo from (date)	until (date)
		Approved by:
(Signature of Student) New IC No/ Passport No.: 9206	01-06-5152	(Signature of Chairman of Supervisory Committee)
Date :		Name: Date :

[Note : If the thesis is CONFIDENTIAL or **RESTRICTED**, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]