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The need for fabricating a reliable protection againts high voltage transients material 

have gained considerable attention in varistor ceramics field. Therefore, in this research, 

ZnO: Nd3+, Gd3+ at different doping concentration were prepared using solid state 

method. This research are focuses on the fabrication and electrical characterization of 

rare earth oxides (REOs) of neodymium (III)  oxide (Nd2O3) and gadolinium (III) oxide 

(Gd2O3) based ZnO ceramics.  The aim of this studies are: (i) to study the effects of 

concentration of Nd, Gd doped in ZnO ceramics on the electrical and microstructural 

properties, (ii) to investigate the effect of sintering time on the electrical and 

microstructural properties of  Nd, Gd doped in ZnO ceramics, and (iii)  to study the effect 

of temperature degradation on the electrical properties of ceramics. The ceramics were 

designed according to (97.40−x)ZnO(0.5)V2O5(2) MnO2 (0.1)Nb2O5 (x)REOs where x = 

0.01 to 0.05 mol%.  The mixed powder was ball milled, pre-sintered at 800 C and 

pressed by a 3 tonne pressure to form a 15 mm diameter disc with 1 mm thick.  The disc 

were sintered at 900 C for 120 minutes and characterized using X-ray diffraction 

(XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), 

densitometer, and current density (J) – electrical field (E) tool.  The optimum doped 

ceramics were subjected to various sintering time from 120 to 210 minutes.   The 

electrical degradation test were conducted on the ceramics that possessed optimum 

nonlinear  α  value with state of 0.85  E1mA for 12 hours at various temperature from 80 

to 110 C.   Cui et al. (2014) and Nahm (2013) reported that the REOs is a donor dopant 

promote the formation of cation vacancy  and create defect which form the barrier.  On 

the first objective, the fabrication of  Nd, Gd doped ZnO based varistor ceramics 

increasing concentration to 0.03 mol% improve the microstructure properties that 

decreases the  lattice parameter c  to 5.2060 (Gd), 5.1982 (Nd) Å, increases density to 

5.02 (Nd), 5.22 (Gd) g/cm3,  and increases  the  average  grain  size  (D)  to  3.54 μm 

(Nd)  and  decreases  D  to 3.56 μm (Gd),  improve the electrical properties that increases 

the barrier height  ФB  to  0.886 (Nd), 0.849 (Gd) eV, as a consequence increases  the 

nonlinear α value  to  9.91 (Nd), 9.94 (Gd), with  increases the breakdown voltage (E1mA) 

value  to 88.90 (Nd), 76.07 (Gd) V/mm, but decreases the leakage current density (JL) to 

0.45 (Nd), 0.33 (Gd) mA/cm2, which is a  potential material for medium voltage 

application. The further doping to 0.05 mol% deteriorate the electrical properties which 

decreases ФB to 0.720 (Nd), 0.641 (Gd) eV, as a consequence decreases the nonlinear α 

value to 7.10 (Nd), 5.86 (Gd), with decreases  E1mA  to  70.07 (Nd), 73.40 (Gd) V/mm, 
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but increases JL to 0.45 (Nd), 0.59 (Gd) mA/cm2. The prolonged sintering time causes 

the decreases of nonlinear α and E1mA with increasing  JL (Nahm and Shin, 2003).  On 

the second objective, the prolonged sintering time from 120 to 210 minutes increases the 

lattice parameter c to 5.2156 (Nd), 5.2128 (Gd)  Å but decreases the density to 4.74 (Nd), 

4.62 (Gd) g/cm3 and  decreases D  to  2.67 (Nd), 3.19 (Gd) μm except at 180 minutes 

(Gd) for lattice parameter c, 210 minutes for density (Nd,Gd) and D (Nd). The  ФB  is  

decreases  to  0.633 (Nd), 0.563 (Gd)  eV as a  consequence the  nonlinear α  value is 

decreases to  5.74  (Nd), 5.10 (Gd) with decreases of E1mA to 64.03 (Nd), 52.10 (Gd) 

V/mm with increases of  JL  to  0.54 (Nd), 0.53 (Gd)  mA/cm2 with increasing time except 

at 180 minutes (Nd) for ФB and nonlinear α  value, 210 minutes (Nd) for  JL value and 

210 minutes (Gd) for all electrical parameter. Degradation causes the drastic increment 

in the JL and reduction  of  nonlinear α and E1mA (Abdullah et al., 2016). On the third 

objective, the degraded ZnO based varistor ceramics doped with Nd2O3 possessed the 

Negative Creep Leakage Current  and increases the nonlinear α  value to 6.30 with 

decreases  JL  to 0.41 mA/cm2 with increasing temperature from 95  to  110 °C, is better 

than that doped with Gd which possessed the Positive Creep Leakage Current  and 

decreases the nonlinear α  value  to 3.71 with increases  JL  to 0.64 mA/cm2 at 110 °C.  

The minimum and maximum value of  nonlinear  α value are 5.10 and 9.94,  E1mA  are 

52.10  and  88.90 V/mm,  JL  are 0.33  and 0.54 mA/cm2,  and D are 2.54 and 3.85 μm 

show the potential of this material limit.  An investigation of the J-E characteristics for 

doped samples exhibited a nonohmicity depending on the REOs inclusions in the ZnO 

base matrix. The different proportions of the dopant constituents gave rise to different 

nonlinear α, E1mA, dan  JL. The significance of  Nd and Gd doping sintered at 120 minutes 

raised the E1mA and the nonlinear  α  but lowered  JL.  
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Jun 2018 
 

Pengerusi: Raba’ah Syahidah Azis, PhD 

Fakulti: Sains 

 

Keperluan untuk fabrikasi bahan perlindung yang boleh dipercayai untuk melawan 

transien bervoltan tinggi telah mendapat perhatian penting dalam bidang seramik 

varistor. Oleh itu, dalam kajian ini, ZnO: Nd3+,Gd3+ pada kepekatan dop yang berbeza 

telah disediakan menggunakan kaedah keadaan pepejal. Kajian ini memfokuskan pada 

fabrikasi dan pencirian elektrikal terhadap oksida nadir bumi (ONB) terhadap oksida 

(III) neodimium (Nd2O3)  dan oksida (III) gadolinium (Gd2O3) berasaskan seramik ZnO.  

Tujuan kajian ini ialah (i) untuk mengkaji kesan kepekatan Nd,Gd didopkan dalam 

seramik ZnO terhadap ciri-ciri elektrik dan mikrostruktur, (ii) untuk menyiasat kesan 

masa sinter terhadap ciri-ciri elektrik dan mikrostruktur Nd, Gd telah didop dalam 

seramik ZnO, dan (iii) untuk mengkaji kesan suhu degradasi terhadap ciri-ciri elektrik 

seramik. Seramik telah direkabentuk menurut (97.40-x)ZnO(0.5)V2O5 

(2)MnO2(0.1)Nb2O5 (x)ONB dimana x = 0.01 ke 0.05 mol%. Serbuk dicampur telah 

dikisar bebola, dipra-sinter pada 800 C, dan ditekankan pada tekanan 3 ton untuk 

membentuk 15 mm diameter disk dengan ketebalan 1 mm.  Disk disinter pada 900 C 

selama 120 minit dan dicirikan menggunakan peralatan pembelauan sinar-X (XRD), 

pengimbas electron mikroskop (SEM) dengan tenaga serakan sinar-X (EDX), meter 

ketumpatan, dan ketumpatan arus (J) - medan elektrik (E). Seramik didopkan yang 

optimum telah tertakluk pada masa sinter yang pelbagai dari 120 sehingga 210 minit. 

Ujian degradasi elektrik telah dilakukan terhadap seramik yang mempunyai nilai α 

taklinear yang optimum dengan keadaan 0.85 E1mA selama 12 jam pada suhu yang 

pelbagai dari  80 sehingga 110 C.  Cui et al., (2014) dan Nahm (2013) telah melaporkan 

bahawa ONB merupakan dopan penderma yang menggalakkan pembentukan 

kekosongan kation dan mewujudkan kecacatan yang membentuk halangan.  Pada 

objektif pertama,  fabrikasi Nd,Gd didopkan ZnO berasaskan varistor seramik 

menaikkan kepekatan kepada 0.03 mol% meningkatkan sifat mikrostruktur  yang 

menurunkan pemalar kekisi c  kepada 5.2060 (Gd), 5.1982 (Nd) Å, menaikkan 

ketumpatan kepada 5.02 (Nd), 5.22 (Gd) g/cm3, menaikkan saiz bijian purata (D) kepada 

3.54 μm (Nd) dan  menurunkan D  kepada 3.56 μm (Gd), meningkatkan ciri-ciri 

elektrikal yang menaikkan ketinggian halangan ФB kepada 0.886 (Nd), 0.849 (Gd) eV,  

sebagai akibatnya menaikkan nilai tidak linear α kepada 9.91 (Nd), 9.94 (Gd), dengan 

kenaikan nilai voltan pecah tebat (E1mA)  kepada 88.90 (Nd), 76.07 (Gd) V/mm, tetapi 

menurunkan ketumpatan arus bocor (JL)  kepada 0.45 (Nd), 0.59 (Gd) mA/cm2,  yang 

merupakan bahan berpotensi untuk aplikasi voltan sederhana. Doping lanjut sehingga 

0.05 mol% merosakkan sifat elektrikal yang menurunkan ФB kepada 0.720 (Nd), 0.641 
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eV (Gd), sebagai akibatnya menurunkan nilai tidak linear α kepada 7.10 (Nd), 5.86 (Gd), 

dengan penurunan E1mA kepada 70.07 (Nd), 73.40 (Gd) V/mm, tetapi menaikkan JL 

kepada 0.45 (Nd), 0.59 (Gd) mA/cm2.  Masa  pensinteran berpanjangan menyebabkan 

penurunan tidak linear α dan E1mA dengan kenaikan  JL  (Nahm dan Shin, 2003).  Pada 

objektif kedua, masa pensinteran berpanjangan daripada minit 120 sehingga 210 

menaikkan pemalar kekisi c sehingga 5.2156 (Nd), 5.2128 (Gd)  Å tetapi menurunkan 

ketumpatan kepada  4.74 (Nd), 4.62 (Gd) g/cm3 dan menurunkan  D  kepada 2.67 (Nd), 

3.19 (Gd) μm kecuali pada 180 minit (Gd) untuk pemalar kekisi c, 210 minit untuk 

ketumpatan (Nd,Gd) dan D (Nd). ФB menurun kepada 0.633 (Nd), 0.563 (Gd)  eV 

sebagai akibatnya nilai  tidak linear α menurun kepada  5.74  (Nd), 5.10 (Gd)  dengan 

penurunan  E1mA kepada 64.03 (Nd), 52.10 (Gd) V/mm dengan kenaikan  JL  kepada 0.54 

(Nd), 0.53 (Gd)  mA/cm2 kecuali pada 180 minit (Nd) untuk ФB  dan tidak linear α, 210 

minit (Nd) untuk nilai JL dan 210 minit (Gd) untuk semua parameter elektrikal. 

Degradasi menyebabkan kenaikan mendadak dalam JL dan pengurangan tidak linear α 

dan E1mA (Abdullah et al., 2016).  Pada objektif ketiga, terdegradasi ZnO berasaskan  

varistor yang telah didopkan dengan Nd  mempunyai mempunyai rayapan arus bocor 

negatif  dan peningkatan nilai tidak linear α kepada  6.30 dengan penurunan  JL  kepada 

0.41 mA/cm2 dengan suhu yang semakin meningkat daripada  95 kepada  110 °C, adalah 

lebih baik daripada yang didopkan dengan Gd yang mempunyai rayapan arus bocor 

positif dan penurunan  nilai tidak linear α  kepada 3.71 dengan kenaikan  JL kepada 0.64 

mA/cm2 pada 110 °C.  Nilai minima dan maksima bagi nilai tidak linear α ialah 5.10 dan 

9.94,  E1mA  ialah 52.10 dan 88.90 V/mm, JL  ialah 0.33  dan 0.54 mA/cm2, dan  D ialah 

2.54 dan 3.85 μm menunjukkan potensi had seramik ini. Penyiasatan pencirian J-E untuk 

sampel yang didopkan  mempunyai tidak ohmisiti bergantung kepada inklusi ONB 

dalam matrik tapak ZnO. Perbezaan perkadaran dopan konstituen memberi kenaikan 

kepada berbeza tidak linear α,  E1mA, dan JL.  Signifikasi dop Nd dan Gd  telah 

meningkatkan E1mA and tidak linear α tetapi menurunkan JL.  
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CHAPTER 1 

INTRODUCTION 

1.1      Varistor 

The varistor is a variable resistor  that protecting  direct current (DC) voltage applications 

from transient overvoltage by diverting it to the ground.  The transients overvoltage are 

resulted from a sudden energy released which either previously stored or induced by 

heavy inductive loads or lightning strikes  (Kanai et al., 1985; Barrado et al., 2004, Lit-

telfuse, 2013).  Varistors is also recognized as portmanteau of various resistor that ex-

hibit an non-ohmic electrical characteristic that is similar to that of a diode (Levinson 

and Philipp, 1986). Figure 1.1 and 1.2 shows symbol of varistor and its application in a 

circuit. Littelfuse, Kemet, and Vishay are famous brands in manufacturing medium volt-

age varistor. The commercial varistors in markets nowadays are based on zinc oxide 

(ZnO) that exhibit excellent nonlinear properties compared with varistor based on silicon 

carbide (SiC).  The SiC-based varistors have very low in nonlinear coefficient α which 

is between 3 to 7 while ZnO-based varistors can be in between 20 to 50  (Hozer and 

Holland, 1994).  There are variety of varistor based on ZnO available in market such as 

surface mount and radial leaded. Littelfuse Inc. manufactures  a  few series  of  MOVs  

surface mount  such  as  CH Series  as  shown in  Figure 1.3 for  medium voltage DC to 

off-line board-level protection applications.   This series has a wide applied voltage range 

from 18 V to 369 V DC and breakdown voltage range from 22 V to 430 V DC at 1 mA 

(Littelfuse, 2015).  Its operating temperature range is from -55 °C  to  +125 °C with high 

surge rated up to 400 A. Besides, SM7 Series is another series of Littelfuse surface mount 

which is designed for alternate current (AC) power meter application.  The applied volt-

age range  of  SM7 series is from 50 V to 150 V AC while its breakdown voltage range 

is from 73 V to 735 V DC test current at 1 mA.  The  operating ambient temperature 

range is from -40 °C to 85 °C with peak pulse current of 1200 A.  

 
Figure 1.1: A symbol of varistor (Vishay, 2013) 

 

 
Figure 1.2: Varistor Protection circuit (Vishay, 2013) 

 

The Littelfuse 20mm SMD Series is another surface mount MOVs device for Automo-

tive applications with applied voltage range from 26 V to 420 V DC and breakdown 

voltage range from 32 V to 462 V DC at 1 mA.  The  operating ambient temperature 
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range is similar to SM7 Series with peak pulse current of 6500A.  In addition, the me-

dium voltage LV UltraMOV™ Series as shown in Figure 1.4 is a Littelfuse radial leaded 

varistor.  The series are designed for DC application such as LED lights, cordless phones, 

audio and video devices, mobile phone chargers, security systems, fire alarm systems, 

automation control systems, industrial control, contact relays, surge protection device, 

telecom power systems, and wireless base stations.  The steady state voltage range is 

from 14 to 125 V DC and the breakdown voltage range is from 18 V to 68 V DC at 1 

mA.  The operating temperature range is from -40 °C  to +125 °C and the maximum 

peak surge current rating can reach up to 10kA. The ZA Series of transient voltage surge 

suppressors are another radial leaded varistors series. It designed for use in the protection 

of low and medium-voltage circuits and systems such as automotive systems, motor con-

trol, solenoid, and telecom as well as power supply circuits. Its features are including  

wide DC voltage range from 5.5 V to 615V, breakdown voltage from 11 V to 51.7 V DC 

at 1 mA, and operating temperature range from -55 to +85 °C, with 50 to 6500 A. Figure 

1.5 shows the schematic diagram of radial varistor where the leads and electrodes de-

posited on both faces of ceramics (Vishay,2013). Table 1.1 shows  the  series  of  Littel-

fuse varistors device and its parameters such as steady state applied voltage range, break-

down voltage range at 1 mA, operating ambient temperature range, and transient current 

surge.   

 
Figure 1.3: CH Varistors Series (Littelfuse, 2015) 

 

  
Figure 1.4: LV UltraMOV™ Metal Oxide Varistor Series (Littelfuse, 2015) 

 

 
Figure 1.5: A schematic diagram of a radial leaded MOV (Vishay, 2013) 

 



© C
OPYRIG

HT U
PM

 

 

3 

 

Table 1.1: Series of Littelfuse Varistors Device based on MOV technology and its 

parameters such as steady state applied voltage range, breakdown voltage range at 

1 mA, operating ambient temperature range, and transient current surge. 
Series 

Name 

Type Steady state applied  

voltage range 
(V DC) 

Breakdown 

voltage range 
at 1 mA 

(V DC) 

Operating Am-

bient Tempera-
ture Range 

(°C) 

Transient 

Current surge 
(A) 

CH surface 

mount 

18 to 369 22 to 430 -55 to +125 100 to 400 

SM7 surface 

mount 

50 to 150 73 to 735 -40 to +85 1200 

Littelfuse 
20mm SMD 

surface 
mount 

26 to 420 32 to 462 -40 to +85 6500 

LV Ultra-

MOV™ 

radial 

leaded 

12 to 125 18 to 68 -40 to +125 500 to 10000 

ZA Series radial 
leaded 

5.5 to 615 11 to 51.7 -55 to +85 50 to 6500 

 

1.2      ZnO 

ZnO  is  a  wide  band  gap  semiconductor  of  II-IV semiconducting group and it almost 

always n-type semiconductor due to presence of oxygen vacancy  and zinc interstitials 

(Kim et al., 2012). Zinc interstitial are shallow donor but high formation energy in n-

type ZnO and are fast diffuser (Anderson and Chris, 2007).  While the Zinc vacancy  is  

deep acceptor and act as compensating centers in n-type ZnO. Oxygen interstitials have 

high formation energies and occurs as deep acceptors at octahedral interstitial sites in n-

type ZnO  (Anderson and Chris, 2007). Meanwhile the Oxygen vacancy  is  deep donors 

and unlikely to form because it have high formation energies in n-type ZnO. As in most 

II-VI materials, the hexagonal wurtzite structure is more preferred in  ZnO  rather than 

zinc blende structure  (Elcombe and Kisi, 1989).  This is because the structure is most 

common and stable at ambient conditions.  ZnO is a largely ionic bond as the corre-

sponding radii  of  0.74 Å  for  Zn2+ and 1.40 Å for O2-.  ZnO is a  polar bond since the 

zinc and oxygen planes are electrically charged (Elcombe and Kisi, 1989; Nirmala and 

Anukaliani, 2011).  The insulator  ZnO  require high sintering temperature above 

1000 °C to reveal a good electrical properties (Pandey et al., 2016).  The  space group  

of  ZnO is  P63mc  and the lattice parameters are a is 3.25 Å and c is 5.2 Å  since  the  

structure is hexagonal.  Figure 1.6 shows the hexagonal prism of the wurtzite structure 

of  ZnO where the black and white denote Zn and O (Rodnyi and Khodyuk, 2011). 

 

 
Figure 1.6: The structure of ZnO (Rodnyi and Khodyuk, 2011) 
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1.3       Problem statement 

The semiconductor devices are very susceptible to and vulnerable to transient 

overvoltage. Transient overvoltage can originate from internal sources such as 

electrostatic discharge, switching of electrical loads, magnetic and inductive coupling, 

and external sources such as direct and indirect lightning (Nahm, 2013).  The best way 

to protect DC devices is applying the ZnO based varistor into devices (Abdullah et al., 

2016).  The rare earth oxides (REOs) doped Zn-V-Mn-Nb-O ceramics is studied recently 

because the ceramics  exhibited  the nonlinearity at low sintering temperature of  900 °C  

for  medium voltage application (Roy et al., 2018).  The REOs doped Zn-V-Mn-Nb-O 

ceramics are very actively being studied in many aspects such as basic microstructures, 

nonlinear properties, dielectric characteristics, stability against DC–accelerated aging 

stress, and high–energy pulse current (Nahm, 2013; Roy et al., 2017). The  high  leakage  

current  density  in  medium voltage  of  ZnO based varistor ceramics may  causes  the  

varistor  itself  to  easily burn. The rare earth oxides is a donor dopant  in ZnO involves 

in the formation of cationic vacancy  which defined as missing of cation from its lattice 

site to maintain electrical neutrality, that produce an electron deficiency and are therefore 

able to trap the extra electrons released by high valence dopants (Cui et al., 2014, Mir-

zayi and Hekmatshoar, 2013). Nahm (2013) reported that REOs with number of valence 

of  3 act as donor dopant in ZnO that segregate at the grain boundary create defect that 

form the potential barrier which inreases the nonlinear α value from 49.9 to 66.1 and the 

breakdown voltage from 480 to 536.5 V/mm but decreasing the  leakage current density 

from 0.094  to  0.077 mA/cm2  with  increasing Gd2O3  concentration  from  0  to  0.05  

mol%.  Therefore,  the fabrication of varistor to having the  low leakage current density 

with optimum nonlinear α value and highest breakdown voltage is necessary and worth 

to be investigated by using REOs with concentration below 0.05 mol%.  Neodymium 

and Gadolinium are rare earth oxides have similar number of valence of 3 with different 

of ionic radii and atomic mass. The REOs doped Zn-V-Mn-Nb-O ceramics exhibited  

the optimum nonlinear  α value at 900 °C compared to other temperatures (Nahm, 2015a; 

2016). The prolonged sintering time from 0.5 to 8 hours through Zn-V-Mn-Nb-O 

ceramics doped with Er2O3 sintered  at 1100 °C  improve the electrical properties which 

increases the breakdown voltage  from 197.6 to 388.0 V/mm and the nonlinear  α value 

from 17 to 27 (Roy et al., 2018).  In contrast, the prolonged sintering from 1 to 3 hours 

for Y2O3 doped ZnO ceramics decreases the breakdown voltage from 194.5 to 117.4 

V/mm and decreases the nonlinear α value from 51.2 to 23.8 (Nahm and Shin, 2003).  

Therefore, it is worth to study the effect of sintering time  on the microstructures and 

electrical properties of varistor.  Electrical degradation is another main issue in the 

development of varistor materials because the electrical  devices operated in harsh 

condition at temperature range from -40 to +125 °C (Littelfuse, 2015).  The prolonged 

or repetitive application of stresses and extreme operating condition causes the drastic 

increment in the leakage current density and reduction  of  nonlinear α and breakdown 

voltage (Abdullah et al., 2016). Therefore, it is necessary to study the effect of electrical 

degradation on the electrical properties of REOs doped ZnO-based varistor ceramics.  

 
1.4       Objective 

There are three main objectives in this research work. They are; 

1) to study effects of  low concentrations of x mol% Nd2O3 and Gd2O3 on electrical 

and the microstructural properties of ZnO-based varistor ceramics fabricated 
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by the solid-state method at 900 C for 120 minutes.  x is 0.01,0.02,0.03,0.04, 

and 0.05 mol%. 

2) to study effects of sintering time on the electrical and the microstructural prop-

erties of  Nd2O3 and Gd2O3  doped ZnO-based varistor ceramics fabricated by 

the solid-state method at 900 C for 120, 150, 180 and 210 minutes. 

3) to study effects of temperature  from 80 to 110  C  during direct current (DC) 

degradation for 12 hours on the electrical properties of the optimum of Nd2O3 

and Gd2O3 doped ZnO-based varistor ceramics.   

 
1.5       Hypotheses 

There are three hypotheses in this research work. 

1) The increases of Nd2O3 and Gd2O3 concentrations in the ZnO-based varistor ce-

ramics would improve structure, microstructure and nonlinear properties of var-

istors.   Rare earth oxide will increase the nonlinear coefficient  and 

breakdown voltage value but reduce the leakage current by controlling the ZnO 

grain growth. 

2) The prolonged sintering time on Nd2O3 and Gd2O3 doped ZnO-based varistor 

ceramics would diminish structure, microstructure and nonlinear properties of 

varistors.   The prolonged sintering time will reduce the nonlinear coefficient  

and breakdown voltage value but increase the leakage current by controlling 

the ZnO grain growth.  

3) The increment of ambient temperature during DC and temperature stresses 

would deteriorate the nonlinear properties of ZnO-based varistor ceramics.  The 

high ambient temperature will increase the carrier generation due to Joule heat-

ing.   It will causes the increase in the leakage current but the reduction in the 

nonlinear coefficient  and breakdown voltage value.    

 

1.6       Scope of studies 

The study is focused on the effect of Nd2O3 and Gd2O3 and sintering time on the nonlinear 

electrical properties such as the nonlinear coefficient α, breakdown voltage, leakage cur-

rent density, resistivity, and barrier height determined from the current density-electrical 

field curve.  For microstructure properties, the study is concerned the effect of Nd2O3 

and Gd2O3 doping and sintering time on diffraction angle, d-spacing, lattice parameter, 

Full Widths Half Maximum, density, and grain size. The degradation study is limited to 

the leakage current creep, degradation rate coefficient KT and percentage change of elec-

trical parameter before and after stress based on the current density-electrical field (J-E) 

curve. The study is limited to the varistor ceramics prepared through conventional solid-

state method and the medium voltage application.   
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