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Abstract: Quantification of spatial variability is a vital prerequisite for precision agriculture. This study was
aimed at quantifying the spatial variability of selected chemical properties in a tropical peat cultivated with
pineapple. A 1-ha study plot was established in a commercial pineapple plantation in Simpang Rengam, Johor.
Georeferenced topsoil samples (n = 60) were obtained systematically from 8x18 m spacings in the x and y
direction, respectively. These samples were tested for total C, extractable P, K, Cu, Zn and B. Soil data were first
explored using univariate statistics, including normality check, non-spatial outlier detection and data
transformation. This was followed by variography and kriging analyses to quantify the spatial variability of
chemical properties. Results revealed a hugh degree of spatial variability in the majority of chemical properties,
which exhibited non-normal distributions with CVs ranging from 12 to 54%. All properties exhibited a definable
spatial structure, which were described by either spherical or exponential models. Carbon, P and B showed
strong spatial dependence. The majority of properties had a short effective range. Surface maps of chemical
properties clearly showed spatial clustering of test values. Excepting K, all other properties showed acceptable
accuracy of interpolated values. These combmed data suggest the need for a site-specific approach in

managing tropical peat cultivated with pineapple, particularly with regard to nutrient management.
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INTRODUCTION

Geostatistics are based on the concepts of
regionalized variables, random functions and stationarity
(Trangmar et al, 1985) and include two fundamental
components (Isaaks and Srivastava, 1989). (i) spatial
continuity analysis and (ii) interpolation. Spatial
continuity analysis is most commonly performed using
variography while mterpolation is often carried out using
kriging. Vartography uses semivariograms to characterize
and model the spatial variance of data, while kriging
uses the modeled variance to estimate values between
samples.

The semivartiogram, which basically measures the
reduction 1in vartance between sample points as
separation distance decreases, can be estimated by the
following formula (Burgess and Webster, 1980):

nh) 2

() = 0.5 (2, - 7., | ()

Where:
h = The separation distance between location
X, OF Xy
z or z,, = The measured values for the regionalized
varable at location X, or X,.,,
= The number of pairs at any separation
distance h

n(h)

In practice, the semivariogram i1s modeled using
several authorized models (Oliver, 1987; Isaaks and
Srivastava, 1989) such as Gaussian, spherical and
exponential. These models are then fitted to the
semivariogram data. Key features of a semivariogram
model are described by three parameters, namely nugget,
sill and range. Nugget is a measure of the amount of
variance imposed by errors in sampling, measurement
and other unexplained source(s) of variance. Sill refers
to the total vertical scale of the variogram whereby the
semivariance becomes constant as distance between
sample location increases. Range is the separation
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distance that reflects a cutoff between spatial dependence
and spatial independence. This implies that at separation
distances greater than the range, sampled points cease to
be spatially correlated (1.e., random).

A sequel to variography is interpolation, a technique
aimed at estimating regionalized variables at unsampled
locations using the properties of the
semivariogram and the initial data set (Trangmar et al.,
1985). Several studies have compared kriging and
alternative methods of interpolation such as inverse
distance weighting and cubic splines. Use of inverse
distance weighting is advocated for data exhibiting
short-range variability (Cooke et al., 1993) whereas spline-
based interpolation i1s recommended for data sets that
show an abrupt change in values across a short distance
(Voltz and Webster, 1990). Whelan et al. (1996) found that
inverse distance weighting is more effective than kriging

structural

when interpolating based on a small nmumber of
observations collected at moderate intensity.
Geostatistical  analyses  provide
information about spatial variability, which is a principal
requirement for Site Specific Crop Management (SSCM).
SSCM is a fundamental component of Precision
Agriculture (PA), which embodies a holistic farm
management strategy where farm operators can adjust
input use and cultivation methods, including seed,
fertilizer, pesticide and water application, variety selection,
planting, tillage and harvesting, to match varying soil,
crop and other field attributes (Robert, 1999). PA
contrasts with conventional agriculture that is based on
untform treatment(s) across a field.

quantitative

This study is part of an ongoing research program to
diagnose site-specific strategies suitable for pineapple
management on tropical peat. The objective of this study
was to quantify the spatial variability of selected chemical
properties in a tropical peat cultivated with pineapple.

MATERIALS AND METHODS

This study was conducted in a commercial pineapple
plantation located in Simpang Rengam, Johor. Pineapple
in this plantation is cultivated on a deep peat (classified
as Saprist), which had an average pH of 3.1 and electrical
conductivity of 454 uS ecm™ and its cultivation is based
on a 2-year cropping cycle that includes a 6-month fallow
period.

A 1-ha study plot was demarcated based on
crop variety (1.e., Gandul). The study plot comprised
95 planting beds with each bed measuring 0.6x100 m
and spaced at 0.9 m between one and the other.
The study plot had a plant spacing of 0.3 m and a net

stand density of 55,000 plants ha™. Topsoil samples
(0-25 cm depth) were obtained systematically from
60 georeferenced points. Sampling points were spaced
8 m in the x direction (inter-bed) and 18 m in the y
direction (intra-bed). Soil samples were tested for total C,
extractable P, K, Cu, Zn and B using standard laboratory
procedures.

Soil data were first subject to Exploratory Data
Analysis (EDA) involving univariate statistics, including
normality check and non-spatial outlier detection. Where
necessary, non-normal data were transformed using the
appropriate function. Following the EDA, soil data were
analyzed using variography and kriging techniques. An
isotropic semivariogram was constructed to determine the
spatial structure and quantify spatial attributes such as
nugget, sill and effective range. These attributes were
used to perform point kriging. Variography and kriging
were computed using GS+ Version 5.1.1 (Gamma Software
Design, Plainwell, MI). Measured and kriged values were
mapped using Surfer Version 7.0 (Golden Software Co,,
Golden, Co).

Kriged values were cross-validated based on the
criteria proposed by Delhomme (1978) and Dowd (1984).
Firstly, the interpolated Mean Error (ME) should be close
to zero. The ME is calculated as follows:

ME = 1/ni[£(xl )-2z(x,)] )
1=1
Where:
n = The number of sample points
z(x;) = The predicted value of the variable at point x,
z(x) = The measured value of the variable at point X,

Secondly, the Mean Squared Error (MSE) should be
less than the sample variance. The MSE is given by:

MSE = 1/n [2(x,)- o(x )] &

Thirdly, the ratio of theoretical and calculated
variance, called the Standardized Mean Squared Error
(SMSE), should be approximately close to one. The SMSE
is given by:

SMSE = 1/n- 1i[§(xl)- «©x) /a? (4

=1

Where:

o’ = The theoretical variance
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RESULTS AND DISCUSSION

Univariate statistics: The majority of chemical properties,
with the exception of P and Zn, exhibited non-normal
distributions as determined by the Shapiro-Wilk statistic
(Table 1). Among these properties, C and K were
significantly skewed (2xSES = 0.64) while B was
significantly kurtotic (2xSEK = 1.26). The ceoefficients of
skewness and kurtosis describe the shape of the sample
distribution. A positive skew mdicates asymmetry in the
distribution with the higher values tailing to the right and
a negative skew represents lower values tailing left.
Kurtosis describes the relative size of the distribution’s
tails. A positive kurtosis indicates that the distribution is
peaked and a negative kurtosis indicates a relatively flat
distribution. Both these coefficients depict the conformity
of the data to a normal distribution. Transformation using
log,, was only performed on Cu, which imitially showed a
significant positive skew. After being log-transformed, Cu
conformed to a normal distribution. The other non-
normally distributed properties did not respond favorably
to transformation, 1.e., they remamed non-normal after
transformation.

The Coefficient of Variation (CV), which is the ratio of
standard deviation to the mean, for the properties
measured ranged from 12% for C to 54% for B (Table 1),
indicating low to moderate variability in the data.

The skewed distribution of C is possibly due to the
uneven burning of plant biomass prior to replanting while
that of K can be attributed to leaching as a result of micro
topographical variation. The relief within the study plot
was <] m.

Spatial structure and attributes: Semivariograms of
the chemical properties are given mn Fig. 1. The
semivariograms were computed based on an active lag of
55 m and a lag class mterval of 6 m.

All properties exhibited a definable spatial structure.
Carbon, P and Cu were described by a spherical model,
while K, Zn and B subscribed to an exponential model.
The properties that exhibited strong spatial dependence
were C, P and B with a nugget to sill ratio of 0.04, 7.41 and
2.13%, respectively. This physically means that the
explainable proportion of the total variation in C, P and B
15 99.96, 9259 and 97.87%, respectively, while the
remaining variation 1s attributable to random sources. The
other properties showed a moderate spatial dependence.

The majority of properties had a short Effective
Range (ER) 1e., <70 m. Both K and Zn, however, had
moderate ER values. The practical significance of ER is
that sampling points separated at distances greater than
the ER will no longer exhibit spatial correlation. At this

Table 1: Univariate statistics for chemical properties
cv
Variables n' Mean Median (%)

Skewness’ Kurtosis? Normality®

C (%) 60 43.00 4550 1177 -0970 0069  0.879**
P(ugg™) 58 3315 3320 2734 0620 1026  0.945¢
K(ugg™") 5815991 139.05 4605 0735  -0079  0.937
Cu(ugg™) 58 136 1.00 7142 0918 -0362  0.960%
Zn(ugg ™) 60 3536 3430 3537 0358  -0.547 0976
B(gg!) 57 108  1.00 5421 -0.107  -1450 _ 0.915*

!: Counts < than 60 indicate that non-spatial outliers were removed from the
data set. Non-spatial outliers were detected using the extreme studentized
deviate (ESD) method, % Significant if the absolute value of skewness
or kurtosis is 22 times its standard error. The standard error of
skewness = (6n)°° while the standard error of kurtosis = (24/n)°%;
3 Estimated using the Shapiro-Wilk test. If the test statistic W is significant
(p<0.05) then the distribution is not normal. (For Cu, the W was computed
after data transformation using log;y); *: Significant at the 0.05 probability
level; **: Significant at the 0.01 probability level; ns: non-significant

Table 2: Cross validation statistics of kriged values for chemical properties

Sample
Variables variance ME MSE SMSE
C ©0) 10.82 0.001 9.76 0.92
Pugg™ 8210 -0.290 71.11 0.88
K(ugg!) 542197 -0.660 4878.00 0.92
Cu(ng g™ 0.95 0.010 0.77 0.83
Zn(ugg™) 15635 0.080 159.94 1.04
Buzg™h 0.18 0.004 0.15 0.86

juncture, it 1s worth noting that the semivariogram does
not provide any information for distances shorter than the
minimum spacing between samples. Sampling designs
aimed at delineating spatial structures usually employ
separation distances that are lesser than the ER. Flatman
and Yfantis (1984) recommended that samples be spaced
between 0.25 and 0.5 of the ER. Based on this, it 1s clear
that sample spacing for C, P, Cu and B should be closer
than that of K and Zn.

Spatial variability: The distribution and pattern of both
measured and kriged values for each chemical property
are represented as surface maps (Fig. 2).

Generally, all properties exhibited spatial clustering of
test values across the study plot. The surface maps
suggest a linear association between Cu and C, Cu and K
and Cu and Zn. Based on measured values, significant
correlations at the 5% probability level were registered
for Cuand C (r=0.49), Cuand K (r = -0.35) and Cuand Zn
(r =0.40). The nteraction of Cu and C is expected because
Cu 1s typically sorped onto C-rich organic surfaces
(Foth, 1991).

Cross-validation statistics showed that all properties,
with the exception of K, satisfied the interpolation
accuracy criteria (Table 2).
perspective, accurately

From a management
kriged values can provide a
cheap and fast means of estimating a particular
variable (in this chemical property), without
having to perform field sampling and laboratory analyses.

case,
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Interpreted based on Cambardella er af. (1994), where:

N Sill< 0.25 o

ugget: Sill< Strong spatial dependence
0.25<Nugget: Sill<0.75  Moderate spatial dependenco
Nugget: Sill< 0.75 Weak spatial dependence

Fig. 1: Spatial structure and attributes of chemical properties

However, this is only practical for variables that are
temporally stable, 1.e., test values that do not change
significantly over time.

discussion: This study demonstrated that
chemical properties of tropical peat were

General
selected

85

spatially variable. A previous investigation showed that
pineapple yields were also spatially variable across the
same study site (Balasundram ez al, 2005). As such, 1t
appears that uniform agronomic management based on
conventional strategies may not be suitable to optimize
crop production. Instead, a site-specific approach such as
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Fig 2: Spatial variability of chemical propetties (based on measured and kriged values)

Crop Managemernt Zoning (CMZ) may offer a better
outcome. CMZ refers to quantitative grouping of areas
with similar production potertial/limitation in order to
facilitate optitnum crop and soil management as a function
of local variability. Crop managem ent zones, if designed
accurately and efficiently, can potentially lead to
increased crop productivity and quality (Balasundram,
2003).

CONCLUSION

& high degree of spatial variability was observed in
selected chemical properties from a | ha cultivated tropical
peat. The myority of chemical properties exhibited nan-
normal distributions withCV sranging from 12 to 54%. All
chemical properties exhibited a definable spatial structure,

g6

which were described by either spherical or exponential
models Properties such as C, P and B showed strong
spatial dependence. The majority of properties had a short
effective range, which indicates the needto employ closer
sample spacing in crder to account for spatial correlation.
Sutface maps of the chemical properties, which comprised
measwed and kriged values clearly showed spatial
clustering of test values. Withthe exception of K, all other
properties showed acceptable accuracy of interpolated
values, which can be used to estimate elemerts
concertration in a cost effective andtime- saving marmer.
These combined data suggest the need for a site- specific
approach in managing tropical peat cultivated with
pineapple, particlatly with regard to  mutrient
managemernt.



J. Agron., 7 (1): 82-87, 2008

ACKNOWLEDGMENTS

The authors are grateful to Peninsular Plantations
Sdn Bhd for logistical support and technical collaboration.
Appreciation is also extended to Mr. Junaidi Jaafar for
assisting with field work and Ms. Sarimah Hashim for
helping with laboratory analyses.

REFERENCES

Balasundram, S.K., 2003. Strategies for precision oil
palm management in South Sumatera, Indonesia.
Ph.D Thesis, University of Minnesota, St. Paul,
Minnesota, USA., pp: 203.

Balasundram, S.K., M.H.A. Husni and O.H. Ahmed, 2005,
Precision Pineapple Management on Tropical Peat: L.
Spatial Variability of Yield. In: Proc. Soils 2005
Advances in Soil Science for Sustainable Food
Production, The, C.B.S et al. (Eds.). Sungai Petani,
Kedah. Malaysian Society of Soil Science (MSSS3),
pp: 90-93.

Burgess, TM. and R. Webster, 1980. Optimal
interpolation and isarithmic mapping of soil
properties. I. The semivariogram and punctual

kriging. J. Soil Sci., 31: 315-331.

Cambardella, C.A., T.B. Moorman, JM. Novak,
TB.  Parkin, DL. Karlen, RF. Turco and
AE. Konopka, 1994. Field-scale variability of soil
properties in central Iowa soils. Soil Sci. Soc. Am. T,
58:1501-1511.

Cooke, R.A., S. Mostaghimi and J.B. Campbell, 1993.
Assessment of methods for interpolating steady-
state infiltrability. Trans. ASAE., 36: 1333-1341.

87

Delhomme, J.P., 1978. Kriging in the hydrosciences.
Adv. Res,, 1: 251-266.

Dowd, P.A., 1984. Cited in. Paz, A., M.T. Taboada and
M.J. Gomez, 1996. Spatial variability in topsoil
micronutrient contents in a one-hectare cropland
plot. Commun. Soil Sci. Plant Anal., 27 (3-4): 479-503.

Flatman, G.T. and A.A. Yfantis, 1984. Geostatistical
strategy for soil sampling: The survey and the
census. Environ. Monit. Assess., 4: 335-349.

Foth, HD., 1991. Fundamentals of Soil Science. 8th Edn.
John Wiley and Sons, Inc., New York, pp: 360.
Isaaks, E.H. and R.M. Srivastava, 1989. An Introduction
to Applied Geostatistics. Oxford University Press,

New York, pp: 561.

Oliver, M. A, 1987. Geostatistics and its application to soil
science. Soil Use Manage., 7: 206-217.

Robert, P.C., 1999. Precision Agriculture: Research Needs
and Status in the USA. In: Society of Chemical
Industry, Stafford, J.V. (Ed.). Proceeding Precision
Agriculture, Vol. 1. (SCI), London, United Kingdom,
pp: 19-33.

Trangmar, B.B., R.S. Yost and G. Uehara, 1985.
Application of geostatistics to spatial studies of soil
properties. Adv. Agron., 38: 45-94.

Voltz, M. and R. Webster, 1990. A comparison of
kriging, cubic splines and classification for predicting
soil properties from sample information. J. Soil Sci,,
41: 473-490.

Whelan, B.M., A.B. McBratney and R.A.V. Rossel, 1996.
Spatial Prediction for Precision Agriculture. In:
Proceeding 3rd International Precision Agriculture
Conference, Minneapolis, Robert, M.N. et al. (Eds.).
ASA-CSSA-SSSA, Madison, WI, pp: 331-342.



