

UNIVERSITI PUTRA MALAYSIA

MIDDLEWARE COMPONENT USING
ENTERPRISE JAVA BEAN (EJB)

KAVITHA A/P KANNAN

FSKTM 2003 17

MIDDLEWARE COMPONENT USING
ENTERPRISE JAVA BEAN (EJ8)

KA VITHA AlP KANNAN

MASTER OF SCIENCE UNIVERSITI
PUTRA MALAYSIA

MAY 2003

MIDDLEWARE COMPONENT USING
ENTERPRISE JAVA BEAN (EJB)

By

KA VITHA AlP KANNAN

Thesis Submitted to the School of Graduate Studies,
Universiti Putra Malaysia, in Fulfillment of the

Requirements for the Degree of Master of Science in the
Faculty of Computer Science and Information

Technology

May 2003

DEDICATION

ABSTRAK

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

APPROVAL

DECLARATION

LIST OF FIGURES

LIST GLOSSARY OF TERMS

CHAPTER

1 INTRODUCTION

1 . 1 Middleware Component

1.2 Problem Statement

1 .3 Objective of the Project

1 .4 Scope of research

1 .5 Time Frame

1 .6 Structure of thesis

1.7 Conclusion

2 LITERATURE REVIEW

2 . 1 Component Model

2.2 Enterprise Java Beans

2.3 J2EE Framework Overview

Page

11

111

v

V11

V111

IX

X

X111

1 -2

1-3

1 -4

1 -5

1 -5

1 -6

1 -7

2-1

2-2

2-3

2.4 Java Server Page (JSP) 2-5

2 .5 Java Naming Directory Interface(JNDI) Concept 2-5

2.6 CORBA and EJB 2-8

2.7 RMI-IIOP Protocol 2-9

2.8 Advantage of Enterprise Java Beans Architecture 2- 10

2 .8 . 1 Benefits to the Application Developer 2-11

2 .8 .1 .1 Simplicity 2- 11

2 .8 .1.2 Application portability 2-11

2 .8 .1 .3 Component reusability 2-12

2.8 .1.4 Ability to build complex applications 2-13

2.8.1.5 Separation of business logic from presentation logic 2-13

2 .8 .1.6 Deployment in many operating environments 2- 1 3

2 .8 .1 .7 Distributed deployment 2-14

2.8.1.8 Application interoperability 2- 1 5

2 .8 .1.9 Integration with non-Java systems 2-1 5

2 .8 .1 . 10 Educational resources and development tools 2- 1 5

2.8.2 Benefits to Customers 2- 1 5

2 .8 .2. 1 Choice of the server 2-16

2.8 .2 .2 Facilitation of application management 2-16

2 .8 .2.3 Integration with a customer's existing applications and data 2- 1 7

2.8 .2.4 Application security 2-17

2.9 Security in EJB 2-17

2.9. 1 Declarative Security 2-18

2.9.2 Role-based Access Control 2- 19

2.10 Conclusion

3 METHODOLOGY

3 .1 RUP Modeling Method

3 .2 Communication Methods

3.3 Conclusion

4 ANALYSIS AND DESIGN OF EJB COMPONENT

4.1 Steps to Begin

4.2 Shopping Scenario

4.3 Application Architecture

4.3 .1 Application Modules

4.3 .2 Application Design

4.3.3 Application Tiers

4.4 Client Application

4.4.1 Screen Design

4.5 Database schema design

4.6 Enterprise Java Bean Component Design

4.6.1 Customer EJB a value object

4.6.2 Catalog EJB a stateless session EJB

4.6.3 Order EJB an entity EJB

4.6.4 Confirm Order EJB a statefull session EJB

4.7 Graphical overview of EJB for the Bookstore

4.8 System Class Diagram

2-20

3-3

3-5

3-7

4-1

4-2

4-6

4-7

4-9

4-11

4-12

4-12

4-13

4-14

4-14

4-15

4-16

4-17

4-18

4-19

4.9 Conclusion 4-20

5 IMPLEMENTATION

5 . 1 Hardware & Operating systems requirements 5 -2

5 . 1 . 1 Operating Systems 5-2

5 . 1 .2 Software Requirement 5 -2

5 .2 Software Installation 5 -2

5 .3 Testing the J2EE Installation 5 -4

5 .3 . 1 Start J2EE 5 -4

5 .3 .2 Start Cloudscape 5 -5

5 .3 .3 Create Table 5 -5

5 . 3 . 3 . 1 Setting Up the Database for the JavaMine Bookstore 5 -5

5 .4 Load and Deploy JavaMine Application 5 -6

5 .4 . 1 Deploying the JavaMine Application 5-7

5 . 5 Running the Application 5 - 12

5 .6 Creating a new .ear File for JavaMine Bookstore Application 5 - 14

5 .6 . 1 Compiling the Source Files 5 - 16

5 .6.2 Packaging the Enterprise Bean 5- 16

5 .6.3 Compiling the Application Client 5 -20

5 .6.4 Packaging the J2EE Application Client 5 -20

5 .6 .5 Specifying the Application Client's Enterprise Bean Reference 5 -23

5 .6.6 Compiling the Web Client 5 -23

5 .6.7 Packaging the Web Client 5 -24

5.6.8 Specifying the Web Client's Enterprise Bean Reference

5 .6.9 Specifying the JNDI Names

5 .6 . 10 Deploying the J2EE Application

5 .7 Conclusion

6 RESULTS

7 CONCLUSION

7 . 1 Limitation

7.2 Future Work

7.3 Summary

REFERENCES

APPENDICES

Appendix A

Appendix B

Appendix C

Appendix D

5-27

5-28

5-30

5-35

6- 1

7-2

7-3

7-4

R-l

A-I

B-1

C-l

D-l

DEDICATION

To my loving late mother Adlechumit Gopal,

beloved sister Kalavathy Kannan ,

and dearest husband Thangga Thurai Ramiah

11

ABSTRAK

Abstrak disertasi yang diserahkan kepada Senat Universiti Putra Malaysia bagi
memenuhi keperluan untuk ijazah Master Sains

KOMPONEN MIDDLEW ARE DENGAN MENGGUNAKAN
ENTERPRISE JAVA BEAN (EJB)

Oleh

KA VITHA AlP KANNAN

OKTOBER 2003

Pengerusi: Puan Sazlinah bte Hasan

Fakulti: Sains Komputer and Technology Maklumat

Pembangunan perlSlan berasaskan komponen menjanjikan pengurangan

pembangunan perisian dan kos penyelengaraan. Ini juga dapat membantu

meningkatkan kemudahan pengunaan semula perisian. Komponen merupakan

sekumpulan perisian yang menyediakan kemudahan seperti pengesahan login,

transaksi pengguna dan formula pengiraan [3] . la adalah tersembunyi atau

transparen, di mana hanya boleh akses melalui interface apabila digabungkan

dengan sistem lain [3]. Kebanyakan kriteria ini diwarisi dari pembangunan

berasaskan objek(OO).

Oleh yang demikian, laporan ini menyentuh overview dan pembangunan perisian

berasaskan komponen menggunakan J2EE framework iaitu Enterprise Java Beans

(EJB). Objektif projek ini adalah untuk menampilkan penggunaan konsep

iii

middleware di mana struktur atau reka bentuk ini membolehkan komunikasi

antara lapisan antramuka dan bussines logic adalah tidak saling bersandaran.

Di samping itu, ia juga dapat membantu penggunaan semula komponen enterprise

bean dan membantu menentukan piawai reka bentuk dalam pambangunan perisian

dapat di capai [10] . Projek ini menggunakan dua pelanggan dihubungkan dengan

satu komponen atau lapisan middleware, yang berada di dalam kontena J2EE.

Proj ek ini menekankan reka bentuk dan pembangunan komponen middleware ini

berserta dengan pengujian komponen menggunakan peri sian kedai buku. Berserta

ini, projek ini juga melampirkan kelebihan menggunakan EJB berbanding

komponen model teragih dan keberkesanannya untuk digunakan atas platform dan

bahasa pengaturcaraan yang berlainan.

IV

ABSTRACT

Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in
Fulfilment of the requirement for the degree of Master of Science

MIDDLEWARE COMPONENT USING
ENTERPRISE JAVA BEAN (EJB)

By

KA VITHA DIO KANNAN

OCTOBER 2003

Chairman: Puan Sazlinah bte Hasan

Faculty: Computer Science and Information Technology

Component-based software development promIses to decrease software

development and maintenance costs and also providing sophisticated facilities for

software reuse. A component is a chunk of software that provides functionality

such as login validation, customer transaction and calculation [3] . It is

encapsulated which means, that it can only be accessed via its interface and can be

combined with other systems [3]. Most of these characteristics are derived from

object oriented development.

Therefore this paper presents an overview and development of component based

software using J2EE framework called Enterprise Java Bean (EJB). The aim of this

project is at capturing the middleware concept using EJB where this architecture

provides loose coupling of presentation layer and business logic. Moreover, leads

Having two different clients connecting to a single middleware component which

v

resides in the container of J2EE Server. The details about design and development

of this middleware component and testing this component on to a test bed called

bookstore application is the heart of this project. This paper will also introduce

about the advantage of EJB against distributed component model and the

interoperability of this middleware component across different platform and

programming languages.

VI

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere gratitude to my Project

Supervisor, Pn.Sazlinah Bte Hasan. It was an honor to have such a dedicated

person guide and supervise me through this entire project.

My sincere appreciation must also be expressed to Dr. Mohamad Othman and Dr.

Shamala for their worthy advice.

This project would not have been a success if not for the support and

encouragement given by my family and friends.

Finally, I am also grateful to all those who have directly or indirectly made this

thesis a success factor. I do appreciate the time and energy spent by all in helping

me out throughout this project.

Vll

KA VITHA KANNAN

OCTOBER 2003

LIST OF FIGURES

Title

Figure 2 . 1 : J2EE Server and Container model

Figure 2.2 : Illustrates the role of JNDI in locating and activating

the bean.

Figure 2.3 : EJB Role Architecture

Figure 3 . 1 : The Software Development Life Cycle

Figure 3 .2 : Client and bean invocation method

Figure 3 .3 : Architecture of EJB distributed three tier application

model

Figure 4. 1 : Use case diagram for the Bookstore

Figure 4.2 : Activity diagram for the Bookstore

Figure 4.3 : Database schema for Bookstore application

Figure 4.4 : Customer Enterprise Bean class design

Figure 4.5 : Catalog Session Bean

Figure 4.6 : Order Entity Bean

Figure 4.7 : Confirm Order Bean

Figure 4.8 : Graphical illustration EJB Components of the

Bookstore

Figure 4.9 : UML Notation

Figure 5 .0: Open an Application to deploy

x

Page

2-3

2-8

2-20

3-5

3-5

3-6

4-5

4-6

4- 1 3

4- 1 5

4- 1 5

4- 1 6

4- 17

4- 1 8

4-20

5-7

Figure 5 . 1 : Verify JNDI references

Figure 5 .2 : Dialog shows the deployment steps

Figure 5 .3 : Dialog displays Deployment step to check for JNDI

Figure 5 .4 : Dialog displays Deployment step to check for Web

Application context

Figure 5 . 5 : Deployment Progress dialog box

Figure 5 .6 : Login Dialog Box of Desktop Application

Figure 5 .7 : Login web page of JSP Web Client Application

Figure 5 . 8 : Creating a new EJB application

Figure 5 .9: Selection of bean classes.

Figure 5 . 10: General Dialog Box

Figure 5 . 1 1 : Database connection definition

Figure 5 . 12 : Selection of GUI classes

Figure 5 . 1 3 : Adding the Application Client

Figure 5 . 1 4 : Adding jsp files for WEB application deployment

Figure 5 . 1 5 : Choosing component type

Figure 5 . 1 6: Component General Properties

Figure 5 .17 : Component General Properties

Figure 5 . 1 8 : JavaBooks JNDI Names

Figure 5. 19 : Deployment step 1

Figure 5 .20 : The Introduction dialog box

Figure 5 .2 1 : JNDI Names Dialog

Figure 5 .22 : Web Context Root Dialog

Figure 6. 1 : Desktop Bookstore Client Application Screen with user

details.

xi

5-8

5-9

5-10

5-1 1

5-12

5-13

5-14

5- 1 5

5 - 17

5- 1 8

5 - 19

5-2 1

5-22

5-24

5-26

5-27

5-28

5-30

5-3 1

5-32

5-33

5-34

6-2

Figure 6.2: JSP web client displaying the same customer details.

Figure 6 .3 : Order Confirmation screen.

Figure 6.4: Code snippet for Customer bean component

xii

6-2

6-3

6-4

LIST GLOSSARY OF TERMS

Application server

A server program that allows the installation of application specific software

components, in a manner so that they can be remotely invoked, usually by some

form of remote object method call .

Bean-managed persistence

When an Enterprise JavaBean performs its own long-term state management.

Bytecode

In the context of Java, bytecode is the platform-independent executable program

code.

Component standard

A definition of how software components cooperate, and in particular the roles and

interfaces of each. In the context of Java middleware, component standards usually

include specifications of the middleware interfaces exposed to the components, and

the component interfaces required by the middleware.

Container managed persistence

When an Enterprise JavaBean server manages a bean's long-term state.

CORBA

Standard maintained by the Object Management Group (OMG), called the

Common Object Request Broker Architecture.

xiii

COS Naming

CORBA standard for object directories.

Data source

This is the tenn used by the JTA and IDBe specifications to refer to persistent

repository of data. It usually represents a database. It also may refer to an object

that makes database connections available (i.e. a driver).

DCOM

Microsoft's Distributed Component Object Model .

Enterprise JavaBeans (EJB)

A server component standard developed by Sun Microsystems.

Entity bean

An Enterprise J avaBean that maintains state across sessions, and may be looked up

in an object directory by its key value.

IDL

interface description language, CORBA's syntax for defining object remote

interfaces.

nop

Internet Inter-ORB Protocol, CORBA's WIre protocol for transmitting remote

object method invocations.

xiv

Java Naming and Directory Interface (JNDI)

The Java standard API for accessing directory services, such as LDAP, COS

Naming, and others.

JVM

Java virtual machine.

Middleware

Software that runs on a server, and acts as either an application processing gateway

or a routing bridge between remote clients and data sources or other servers, or any

combination of these.

OMG

Object Management Group, an organization that defines and promotes object

oriented programming standards.

ORB

object request broker, the primary message routing component III a CORBA

product.

Persistence

Maintaining state over a long time, especially across sessions.

RMI

Remote Method Invocation, the Java standard technology for building distributed

objects whose methods can be invoked remotely across a network.

xv

RMI over HOP

Using the CORBA nap wire protocol from an RMI API.

Servlet

An application extension to a Java Web server.

Session bean

An Enterprise JavaBean that does not maintain its state from one session to the

next. Appears to the client as if the bean was created just for that client.

Skeleton

A server-side software component that serves to relay remote calls from a client to

the methods of a servant running in a server. Usually a skeleton is automatically

generated by a special compiler.

Stub

A client-side software component that serves to forward remote calls to a remote

server, and receive the subsequent responses. Usually automatically generated by a

special compiler.

Three-tier

An architecture in which a remote client accesses remote data sources via an

intervening server.

xvi

CHAPTER!

INTRODUCTION

To support rapid software development, applications are currently constructed from

reusable components. Using this approach, the architecture of an application can be

considered as a collection of interconnected components, usually in a distributed

environment. The Sun Microsystem's Enterprise Java Beans (EJB) version 2.0 is

one of the currently used, component based platforms for development of

distributed object-oriented applications.

Today there many sufficient software companies that are trying to compete in

developing middleware component. The design and development of this

component is not as easy as it projects. Information sharing with high security and

authentication need to be imposed on this component in order to avoid miss use of

information, which are confidential to certain organization. This can be seen in

authentication process where user proves his or her identity to a system by giving

the user login and password to access the system. While another process is called

authorization where the J2EE server grants or denies permission to access a

resource such as the enterprise bean components which is highly confidential to the

organization [1] . Other then that authorized application must be able to access this

information across network (either local or remote) and must be accurate at any

point of time.

Reuse of component will lead to sharing of information pertaining to a business.

Any software written must be able to run on network where the functionality

component is distributed in a remote machine. Platform independency is on the

leading issue in Java based component development; they support multiple

inheritances and are platform independent, as long as a Java Virtual Machine (VM)

exists. This increases the cohesion within the components and decreases coupling

between them.

1 . 1 Middleware Component

The motivation for middleware component models partly originates from

deficiencies present in available Object Oriented middleware technologies. Designs

and implementations of applications using middleware invariably have a large

focus on middleware, which can cause a distraction from the main business

problem at hand. Moreover experience has shown that integrating existing

middleware technologies is cumbersome and often a source of additional

complexity [7].

Distributed component technologies combine the characteristics of components

with the functionality of middleware systems to provide inter-process

communication between components [7]. That is to say components that can

communicate across machine boundaries. EJB components model is a server-side

component model used for developing distributed business objects also addressed

as middleware component. These are used on the middle tier application servers

that manage the components at runtime and make them available to remote clients.

The EJB components or middleware operate by providing components with a

container in which they can execute. Each component provides an interface used

for life-cycle operations such as creation, migration and destruction, as well as the

remote interface it supports. Containers themselves run on application servers,

1 - 2

