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ABSTRAK 

Abstrak disertasi yang diserahkan kepada Senat Universiti Putra Malaysia bagi 
memenuhi keperluan untuk ijazah Master Sains 

KOMPONEN MIDDLEW ARE DENGAN MENGGUNAKAN 
ENTERPRISE JAVA BEAN (EJB) 

Oleh 

KA VITHA AlP KANNAN 

OKTOBER 2003 

Pengerusi: Puan Sazlinah bte Hasan 

Fakulti: Sains Komputer and Technology Maklumat 

Pembangunan perlSlan berasaskan komponen menjanjikan pengurangan 

pembangunan perisian dan kos penyelengaraan. Ini juga dapat membantu 

meningkatkan kemudahan pengunaan semula perisian. Komponen merupakan 

sekumpulan perisian yang menyediakan kemudahan seperti pengesahan login, 

transaksi pengguna dan formula pengiraan [3] .  la adalah tersembunyi atau 

transparen, di mana hanya boleh akses melalui interface apabila digabungkan 

dengan sistem lain [3]. Kebanyakan kriteria ini diwarisi dari pembangunan 

berasaskan objek(OO). 

Oleh yang demikian, laporan ini menyentuh overview dan pembangunan perisian 

berasaskan komponen menggunakan J2EE framework iaitu Enterprise Java Beans 

(EJB). Objektif projek ini adalah untuk menampilkan penggunaan konsep 

iii 



middleware di mana struktur atau reka bentuk ini membolehkan komunikasi 

antara lapisan antramuka dan bussines logic adalah tidak saling bersandaran. 

Di samping itu, ia juga dapat membantu penggunaan semula komponen enterprise 

bean dan membantu menentukan piawai reka bentuk dalam pambangunan perisian 

dapat di capai [ 10] . Projek ini menggunakan dua pelanggan dihubungkan dengan 

satu komponen atau lapisan middleware, yang berada di dalam kontena J2EE. 

Proj ek ini menekankan reka bentuk dan pembangunan komponen middleware ini 

berserta dengan pengujian komponen menggunakan peri sian kedai buku. Berserta 

ini, projek ini juga melampirkan kelebihan menggunakan EJB berbanding 

komponen model teragih dan keberkesanannya untuk digunakan atas platform dan 

bahasa pengaturcaraan yang berlainan. 
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ABSTRACT 

Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in 
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By 
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OCTOBER 2003 

Chairman: Puan Sazlinah bte Hasan 

Faculty: Computer Science and Information Technology 

Component-based software development promIses to decrease software 

development and maintenance costs and also providing sophisticated facilities for 

software reuse. A component is a chunk of software that provides functionality 

such as login validation, customer transaction and calculation [3] . It is 

encapsulated which means, that it can only be accessed via its interface and can be 

combined with other systems [ 3]. Most of these characteristics are derived from 

object oriented development. 

Therefore this paper presents an overview and development of component based 

software using J2EE framework called Enterprise Java Bean (EJB). The aim of this 

project is at capturing the middleware concept using EJB where this architecture 

provides loose coupling of presentation layer and business logic. Moreover, leads 

Having two different clients connecting to a single middleware component which 

v 



resides in the container of J2EE Server. The details about design and development 

of this middleware component and testing this component on to a test bed called 

bookstore application is the heart of this project. This paper will also introduce 

about the advantage of EJB against distributed component model and the 

interoperability of this middleware component across different platform and 

programming languages. 
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CHAPTER! 

INTRODUCTION 

To support rapid software development, applications are currently constructed from 

reusable components. Using this approach, the architecture of an application can be 

considered as a collection of interconnected components, usually in a distributed 

environment. The Sun Microsystem's Enterprise Java Beans (EJB) version 2.0 is 

one of the currently used, component based platforms for development of 

distributed object-oriented applications. 

Today there many sufficient software companies that are trying to compete in 

developing middleware component. The design and development of this 

component is not as easy as it projects. Information sharing with high security and 

authentication need to be imposed on this component in order to avoid miss use of 

information, which are confidential to certain organization. This can be seen in 

authentication process where user proves his or her identity to a system by giving 

the user login and password to access the system. While another process is called 

authorization where the J2EE server grants or denies permission to access a 

resource such as the enterprise bean components which is highly confidential to the 

organization [ 1 ] .  Other then that authorized application must be able to access this 

information across network (either local or remote) and must be accurate at any 

point of time. 

Reuse of component will lead to sharing of information pertaining to a business. 

Any software written must be able to run on network where the functionality 

component is distributed in a remote machine. Platform independency is on the 



leading issue in Java based component development; they support multiple 

inheritances and are platform independent, as long as a Java Virtual Machine (VM) 

exists. This increases the cohesion within the components and decreases coupling 

between them. 

1 . 1  Middleware Component 

The motivation for middleware component models partly originates from 

deficiencies present in available Object Oriented middleware technologies. Designs 

and implementations of applications using middleware invariably have a large 

focus on middleware, which can cause a distraction from the main business 

problem at hand. Moreover experience has shown that integrating existing 

middleware technologies is cumbersome and often a source of additional 

complexity [7]. 

Distributed component technologies combine the characteristics of components 

with the functionality of middleware systems to provide inter-process 

communication between components [7]. That is to say components that can 

communicate across machine boundaries. EJB components model is a server-side 

component model used for developing distributed business objects also addressed 

as middleware component. These are used on the middle tier application servers 

that manage the components at runtime and make them available to remote clients. 

The EJB components or middleware operate by providing components with a 

container in which they can execute. Each component provides an interface used 

for life-cycle operations such as creation, migration and destruction, as well as the 

remote interface it supports. Containers themselves run on application servers, 

1 - 2 


