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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Master of Science

EXTENDED TWO-POINT AND THREE-POINT BLOCK BACKWARD
DIFFERENTIATION FORMULAS FOR SOLVING FIRST ORDER STIFF

ORDINARY DIFFERENTIAL EQUATIONS

By

NURSYAZWANI BINTI MOHAMAD NOOR

December 2018

Chairman: Zarina Bibi Ibrahim, PhD
Faculty: Science

This thesis focuses on solving first order stiff Ordinary Differential Equations
(ODEs) using 2-point and 3-point block methods. The 2-point block method will
compute the solutions yn+1 and yn+2 at points xn+1 and xn+2 simultaneously in
a block at each step. Thus, the derivations of 2-point block methods of third and
fifth order are presented. Order and error constant of the methods are determined.
Newton’s Method is used to implement in the 2-point block methods. The numerical
results for each method are presented and compared with the existing methods.

Furthermore, the stability properties of all 2-point block methods are analysed
to ensure that the methods are A(α)-stable. Hence, its suitable for solving stiff
problems. Convergence characteristics of the methods are also investigated.

The 2-point block method with fifth order is then extended to 3-point block method
with same order. Advantage of the 3-point block method is the solutions will be
approximated at three points concurrently which are xn+1, xn+2 and xn+3. Thus,
the derivation of 3-point block method using Taylor’s series expansion is presented.
Order and error constant of the method are verified. Stability and convergence
properties of the method are investigated by determining the zero-stable, stability
region, A(α)-stable and consistency. The 3-point block method is implemented
by using Newton’s iteration to measure its efficiency. Numerical results of the
method are presented and performance of the method are compared with the existing
methods.
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An application problem of SIR model is solved by using the proposed methods. The
numerical results are presented in tables for s, i and r groups for each method. Based
on the analysis, the proposed methods can be an alternative solver for solving the
application problem.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Sarjana Sains

PERLANJUTAN DUA-TITIK DAN TIGA-TITIK BLOK RUMUS BEZA KE
BELAKANG BAGI MENYELESAIKAN PERSAMAAN PEMBEZAAN

BIASA KAKU PERINGKAT PERTAMA

Oleh

NURSYAZWANI BINTI MOHAMAD NOOR

Disember 2018

Pengerusi: Zarina Bibi Ibrahim, PhD
Fakulti: Sains

Tesis ini memfokuskan kepada penyelesaian Persamaan Pembezaan Biasa (ODEs)
kaku peringkat pertama dengan menggunakan kaedah 2-titik dan 3-titik blok.
Kaedah 2-titik blok akan menghitung penyelesaian yn+1 dan yn+2 pada titik xn+1
dan xn+2 secara serentak dalam satu blok pada setiap langkah. Oleh itu, penerbitan
kaedah 2-titik blok bagi peringkat ketiga dan kelima dibentangkan. Peringkat dan
ralat pemalar bagi setiap kaedah ditentukan. Kaedah Newton digunakan untuk
diimplementasikan kepada kaedah 2-titik blok. Keputusan berangka bagi setiap
kaedah dibentangkan dan dibandingkan dengan kaedah yang sedia ada.

Tambahan pula, sifat kestabilan untuk kesemua kaedah 2-titik blok dianalisis bagi
memastikan bahawa kaedah tersebut adalah kestabilan A(α). Oleh itu, ia sesuai
untuk menyelesaikan masalah kaku. Ciri-ciri penumpuan kaedah juga dikaji.

Kaedah 2-titik blok dengan peringkat kelima kemudiannya dilanjutkan kepada
kaedah 3-titik blok dengan peringkat yang sama. Kelebihan kaedah 3-titik blok ini
adalah penyelesaiannya diberikan serentak pada tiga titik iaitu xn+1, xn+2 dan xn+3.
Oleh itu, terbitan kaedah blok 3-titik menggunakan pengembangan siri Taylor diben-
tangkan. Peringkat dan ralat pemalar kaedah tersebut disahkan. Kestabilan dan sifat
penumpuan juga dikaji secara terperinci dengan menentukan kestabilan sifar, rantau
kestabilan, kestabilan A(α) dan konsitensi. Kaedah 3-titik blok diimplementasikan
dengan menggunakan Newton iterasi untuk mengukur kecekapannya. Keputusan
berangka kaedah tersebut dibentangkan dan prestasi kaedah dibandingkan dengan
kaedah-kaedah yang sedia ada.

iii
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Masalah aplikasi model SIR diselesaikan dengan menggunakan kaedah yang di-
cadangkan. Keputusan berangka dibentangkan dalam jadual bagi kumpulan s, i dan r
untuk setiap kaedah. Berdasarkan analisis, kaedah yang dicadangkan boleh menjadi
penyelesaian alternatif untuk menyelesaikan masalah aplikasi tersebut.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Ordinary differential equation (ODEs) are an equation containing the function, its
derivative, the independent and dependent variables. The general formula of n-th
order ODEs are defined as follows.

F
(

x,y,
dy
dx

, · · · , dny
dxn

)
= 0 (1.1)

where F is the function, x is the independent variable and y is the dependent
variable. In real life, there are various application problems often leads to an ODEs.
For example in physical sciences, the physicians used an ODEs in the Newton’s
second law which states that the mass of an object times its acceleration same as the
total force acting on it and this problem are applied to the free falling object. Other
than physical sciences, the ODEs also arise in the fields of economics, medicine,
psychology, operations research and etc. Usually the function in an applications
represents the physical quantities, the derivatives represent their rates of change,
and the equation define as a relationship between the function and the rate of change.

Equation (1.1) can be solved using various of numerical method likes the Euler,
Runge-Kutta, Adams-Bashforth, Adams-Moulton, Backward Differentiation For-
mula (BDF) methods and many more. Among the mentioned numerical methods,
there are two types of methods that can be distinguished which are single-step
method and multistep method. The single-step method is used to approximate the
solution using a previous point. Meanwhile, the multistep method is used to evaluate
the solution using more than one previous points. Not all the numerical methods
works well to solve equation (1.1) because the ODEs comprised of the non-stiff and
stiff ODEs. The non-stiff ODEs are normally solved using the explicit methods while
the stiff ODEs are usually solved using the implicit methods.

1.2 Stiff System of Ordinary Differential Equations

There is no precise definition of stiffness, thus Brugnano et al. (2011) compiled the
following various definitions which studied by other researchers.

1. Stiff equations are equations where certain implicit methods perform bet-
ter, usually tremendously better than explicit ones (Curtiss and Hirschfelder,
1952).

2. They represent coupled physical systems having components varying with
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very different times scale: that is they are systems having some components
varying much more rapidly than the others (Liniger, 1972).

3. Systems containing very fast components as well as very slow components
(Dahlquist, 1973).

4. A stiff system is one for which λmax is enormous so that either the stability
or the error bound or both can only be assured by unreasonable restriction on
step size, h... Enormous means enormous relative to the scale which here is x̄
(the integration interval)... (Miranker, 1975).

5. If a numerical method with a finite region of absolute stability, applied to a
system with any initial condition, is forced to use a certain interval of inte-
gration a step length which is excessively small in relation to the smoothness
of the exact solution in that interval, then the system is said to be stiff in that
interval (Lambert, 1991).

6. The stiff problems are characterized by the fact that the numerical solution of
slow smooth movements is considerably perturbed by nearby rapid solutions
(Ernst and Gerhard, 1999).

In this research, the system of first order ODEs is considered in the form of

ỹ′ = f̃ (x, ỹ) = Aỹ+ φ̃(x), ỹ(a) = η̃ , a≤ x≤ b (1.2)

where ỹT = (y1,y2, · · · ,ym), η̃T = (η1,η2, · · · ,ηm) and A is a m×m matrix with the
eigenvalues λt , t = 1,2, · · · ,m. To verify the system (1.2) is stiff, we preferred the
definition of stiffness which is widely used among the researchers given by Lambert
(1973) as follows.

Definition 1.1 The linear system (1.2) is said to be stiff if

1. Re(λt)< 0, t = 1,2, · · · ,m, and

2. maxt=1,2,··· ,m |Re(λt)|>>mint=1,2,··· ,m |Re(λt)|, where λt , t = 1,2, · · · ,m, are
the eigenvalues of A. The ratio[

max
t=1,2,··· ,m

|Re(λt)|
]

:
[

min
t=1,2,··· ,m

|Re(λt)|
]

is called stiffness ratio.

In the following section, a brief review about the linear multistep method (LMM)
will be given and some basic definitions related to the study are provided.

2
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1.3 Linear Multistep Method

General linear of k-step method which are given by Lambert (1973) is written as

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j fn+ j (1.3)

where α j and β j are constants by assuming that αk 6= 0 and both of α0 and β0 are not
zero. Method (1.3) is explicit if the value of βk = 0 and implicit when βk 6= 0. The
LMM (1.3) can be derived using interpolating polynomial, generating function and
Taylor’s series expansion. In this research, we are going to use Taylor’s series expan-
sion to obtain the coefficient values of proposed method. Therefore, the following
definitions that will be considered in the construction of method are provided.

Definition 1.2 The Taylor’s series expansion of y(xn +h) about xn is defined by

y(xn +h) = y(xn)+hy′ (xn)+
h2

2!
y′′ (xn)+ · · ·+

hq

q!
y(q) (xn) (1.4)

where q = 3,4, · · · .

Definition 1.3 The linear difference operator, L associated with LMM (1.3) is de-
fined as

L [y(xn) ;h] =
k

∑
j=0

[
α jy(xn + jh)−hβ jy′ (xn + jh)

]
(1.5)

where y(xn) is an arbitrary continuously and differentiable function on [a,b].

Expanding y(xn + jh) and y′ (xn + jh) using the Taylor’s series expansion (1.4) about
xn and collecting terms in y(xn), y′(xn), y′′(xn), · · · yields the following equation.

L [y(xn) ;h] =C0,iy(xn)+C1,ihy′(xn)+ · · ·+Cq,ihqy(q)(xn) = 0, (1.6)

where i = 1,2, · · · ,N is number of point and

C0,i =
k

∑
j=0

α j,

C1,i =
k

∑
j=0

[
jα j−β j

]
,

...

Cq,i =
k

∑
j=0

[
j(q)

q!
α j−

j(q−1)

(q−1)!
β j

]
, q = 2,3, · · · ,N. (1.7)

3
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For a LMM (1.3) to be convergent it must be consistent and zero-stable (Buchanan
and Turner (1992)). Theorem 1.1 is given to support the statement.

Theorem 1.1 The necessary and sufficient conditions for a LMM (1.3) to be conver-
gent are that it be consistent and zero-stable.

Definition 1.4 The LMM (1.3) is consistent if and only if the following conditions
are satisfied:

k

∑
j=0

α j = 0, (1.8)

k

∑
j=0

jα j =
k

∑
j=0

β j. (1.9)

Definition 1.5 The LMM (1.3) is said to be zero-stable if no root of the first charac-
teristic polynomial ρ(t) has modulus greater than one, and every root with modulus
one is simple.

1.4 Problem Statement

This thesis considered to solve first order stiff ODEs in the form of equation (1.2)
by assuming that the equation has satisfied the following theorem to assure that the
existence of a unique solution to the initial value problems (IVPs).

Theorem 1.2 Let f̃ (x, ỹ) be defined and continuous for all points (x, ỹ) in the region
D defined by a ≤ x ≤ b, −∞ < ỹ < ∞, a and b finite and let there exist a constant L
such that, for every x, ỹ, ỹ∗ such that (x, ỹ) and (x, ỹ∗) are both in D,∣∣ f̃ (x, ỹ)− f̃ (x, ỹ∗)

∣∣≤ L |ỹ− ỹ∗| . (1.10)

Then, if η̃ is any given number, there exists a unique solution ỹ(x) of the initial value
problem (1.2), where ỹ(x) is continuous and differentiable for all x, ỹ in D.

The requirement (1.10) is known as a Lipschitz condition and the constant L is a
Lipschitz constant. See Henrici (1962) for further details proving.

1.5 Objective of the Thesis

In this research, we developed the formulas based on Block Backward Differentia-
tion Formula (BBDF) method with fixed step size for solving first order stiff ODEs.
The objectives of this thesis are

4
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1. to extend the derivation of 2-point Block Backward Differentiation Formula
method by Musa et al. (2013b) with a new set of coefficients to improve the
accuracy and computational time,

2. to construct a new set coefficients of 3-point block method by extending ob-
jective 1,

3. to investigate stability and convergence properties of the derived methods by
determining the stability region, zero stability and consistency,

4. to implement the derived methods by using Newton’s iteration for solving the
problems, and

5. to apply the derived methods on solving an application problem of the SIR
model.

1.6 Scope of the Thesis

This thesis focuses on the derivation of a new formulas of 2-point and 3-point block
methods for solving first order ODEs. The derived methods will be constructed using
constant step size to give the approximated solutions at two and three points simulta-
neously. It is limited to solve first order stiff ODEs. To illustrate the performance of
the derived method on solving the stiff problem, the numerical results obtained will
be compared with the existing methods in terms of the accuracy and computational
time. The given conclusions are restricted only to the selected test problems and
their numerical performances. In addition, the SIR model of Influenza A(H3N2) is
solved using the derived methods to show the capability of the method on solving
the application problem.

1.7 Outline of the Thesis

This thesis consists of seven chapters. In Chapter 1, a brief introduction regarding
the systems of ODEs and some definitions related to the study are provided. The
objectives of the research are stated in this chapter.

Chapter 2 discusses about the previous researches on one step method and multistep
method. The related literature on the stability and convergence properties of the
block method is also reviewed.

The derivation of 2-point block methods of third and fifth order are presented in
Chapter 3. Order and error constant of the methods are determined. Implementation
of the methods using Newton’s iteration for solving the first order stiff ODEs is
presented. Numerical results obtained in this chapter will be compared with some
known results to illustrate the performance of the derived methods in terms of the
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accuracy and efficiency.

Discussion on the stability characteristics of the methods is discussed in Chapter 4.
Consistency and zero stability of the methods are investigated for the purpose of
convergence properties.

The formulation of an implicit 3-point BBDF method for solving stiff ordinary
differential equation is presented in Chapter 5. Order and error constant of the
method are verified. Stability region and convergence properties of the 3-point block
method are analysed. Newton’s iteration is used for the implementation of method
to solve the first order stiff ODEs. The numerical results obtained are tabulated and
compared with the existing methods to measure its performance.

Ability of the derived methods are tested in Chapter 6 by solving an application prob-
lem. The method is used to solve the problem of first order ODEs in the Influenza
A(H3N2) disease related to the SIR model. The numerical results obtained will be
described and its performance will be compared with the approximation value ob-
tained by MAPLE2015 solver. Finally, Chapter 7 will be summarized the findings
of the research based on the listed objectives and recommendations for future work
are presented.
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