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Crowd behaviour analysis plays an important role in high security interests in 
public areas such as railway stations, shopping centres, and airports, where 
large populations gather. Crowd behaviour analysis framework can be divided 
into low-level, mid-level and high-level. This research is focused on problems of 
mid-level and high-level. The crowded scenes vary in various densities, 
structures and occlusion. It brings enormous challenges in effectively dividing 
detection feature points into cluster to develop dynamic group detector and 
grouping consistency between frames at mid-level. Besides that, it also poses 
challenges in identifying generic descriptors to describe motion dynamics 
caused by pedestrians walk in different directions with extremely diverse 
behaviours at high-level. Therefore, crowd behaviour analysis framework with 
enhanced mid and high levels approaches is used in this research to recognise 
the common properties across different crowded scenes. The recognised 
common properties are then used to identify generic descriptors from group-level 
for crowd behaviour classification and crowd video retrieval. At the low-level, 
motion feature extraction is performed to extract trajectories from each of the 
video frames. Kanade-Lucas-Tomasi feature point tracker is used to detect and 
track moving humans, and then tracklets are grouped to form trajectories. At the 
mid-level, a Collective Interaction Filtering is presented to identify groups by 
clustering trajectories. It is suitable for group detection in low, medium, and high 
crowds. At the high-level, the result of Collective Interaction Filtering is used in 
group motion pattern mining to predict collectiveness, uniformity, stability, and 
conflict generic descriptors. The generic descriptors identified are represented 
by graph-based descriptors. Graph-based descriptors are applied to crowd 
behaviour analysis and crowd video retrieval. All experiments are carried out 
using CUHK Crowd dataset. The group detection and crowd behaviour analysis 
ground truth results were provided by related work. The group detection 
experiment is implemented using the clustering algorithm. Normalized Mutual 
Information and Rand Index are used to measure the performance of Collective 
Interaction Filtering. The crowd behaviour analysis experiment is implemented 
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by using non-linear Structural Support Vector Machine with RBF-kernel 
classifier. Leave-one-out is used to measure the performance of the proposed 
graph-based descriptors to describe crowd behaviour. The proposed crowd 
video retrieval approach based on generic descriptors experiment is 
implemented by using Euclidean distance and Chi-Square distance to measure 
the similarity matching generic descriptors between the query video and the 
retrieval set of videos. The crowd video retrieval performance is measured by 
the average precision in the top k retrieved samples. Experimental results show 
that the crowd behaviour analysis framework achieves the state-of-the-art 
performance on the CUHK Crowd dataset. The Collective Interaction Filtering 
outperforms the related work by achieving 0.55 for Normalized Mutual 
Information and 0.83 for Rand Index. The average accuracy of the proposed 
graph-based descriptors for crowd behaviour analysis is 80% compared to the 
previous works. The proposed crowd video retrieval approach based on graph-
based descriptors obtained 49% in average top 10 precision. The performance 
improvement reveals the effectiveness of the graph-based descriptors for crowd 
video retrieval in different crowded scenes. 
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Oleh 

WONG PEI VOON 

Disember 2018

Pengerusi : Norwati Mustapha, PhD 
Fakulti : Sains Komputer dan Teknologi Maklumat 

Analisis tingkah laku orang ramai memainkan peranan penting dalam 
memastikan keselamatan di kawasan awam seperti stesen keretapi, pusat 
membeli-belah, dan lapangan terbang, di mana terdapat populasi yang besar 
berkumpul. Rangka kerja analisis tingkah laku orang ramai boleh dibahagikan 
kepada tahap rendah, tahap pertengahan dan tahap tinggi. Kajian ini memberi 
tumpuan kepada permasalahan tahap pertengahan dan tahap tinggi. Adegan 
yang sesak berbeza mengikut kepelbagaian kepadatan, struktur dan oklusi. Ia 
membawa cabaran besar dalam membahagikan titik ciri pengesanan yang 
berkesan ke dalam kluster untuk membangunkan kumpulan pengesan yang 
dinamik dan pengelompokan yang konsistensi antara bingkai pada peringkat 
pertengahan. Selain itu, ia juga menimbulkan cabaran dalam mengenal pasti 
deskriptor generik untuk menggambarkan dinamik pergerakan yang disebabkan 
oleh pejalan kaki berjalan ke arah yang berbeza dengan tingkah laku yang 
sangat pelbagai di peringkat tinggi. Oleh itu, rangka kerja analisis tingkah laku 
orang ramai dengan pendekatan tahap pertengahan dan tinggi yang 
dipertingkatkan digunakan dalam kajian ini untuk mengenali ciri-ciri umum di 
seluruh adegan sesak yang berbeza. Ciri umum yang diiktiraf kemudiannya 
digunakan untuk mengenal pasti deskriptor generik dari peringkat kumpulan 
untuk klasifikasi kelakuan orang ramai dan pengambilan semula video orang 
ramai. Di tahap rendah, pengekstrakan ciri gerakan dilakukan untuk 
mengeluarkan trajektori dari setiap bingkai video. Pengesan titik ciri Kanade-
Lucas-Tomasi digunakan untuk mengesan dan menjejaki pergerakan manusia, 
dan kemudiannya dikumpulkan untuk membentuk trajektori. Di tahap 
pertengahan, Collective Interaction Filtering dibentangkan untuk mengenal pasti 
kumpulan dengan cara pengumpulan trajektori. Teknik ini sesuai digunakkan 
untuk pengesanan kumpulan dalam kerumunan yang rendah, sederhana 
mahupun tinggi. Di tahap yang lebih tinggi, hasil Collective Interaction Filtering 
digunakan dalam perlombongan corak gerakan kumpulan untuk meramalkan 
kolektiviti, keseragaman, kestabilan, dan konflik deskriptor umum. Deskriptor 
umum yang ditemui diwakili oleh deskriptor berasaskan graf. Deskriptor 
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berasaskan graf digunakan untuk menganalisis tingkah laku orang ramai dan 
dapatan video orang ramai. Semua eksperimen dijalankan menggunakan 
dataset CUHK Crowd. Hasil pengesanan kumpulan dan analisis tingkah laku 
orang ramai telah diperolehi secara langsung berdasarkan kerja-kerja yang telah 
dilakukan baru-baru ini. Eksperimen pengesanan kumpulan dilaksanakan 
menggunakan algoritma penggugusan. Normalized Mutual Information dan 
Rand Index digunakan untuk mengukur prestasi Collective Interaction Filtering. 
Eksperimen analisis tingkah laku orang ramai dilaksanakan dengan 
menggunakan mesin vektor sokongan struktur tidak linear bersama pengelas 
kernel RBF. Leave-one-out digunakan untuk mengukur prestasi deskriptor 
berasaskan graf yang dicadangkan untuk menggambarkan kelakuan orang 
ramai. Pendekatan dapatan video orang ramai yang dicadangkan berdasarkan 
eksperimen deskriptor umum dilaksanakan dengan menggunakan jarak 
Euclidean dan jarak Chi-Square untuk mengukur persamaan deskriptor umum 
yang sepadan di antara video pertanyaan dan set dapatan video. Prestasi 
dapatan video orang ramai diukur menggunakan purata ketepatan dalam 
sampel dapatan video yang teratas. Keputusan eksperimen menunjukkan 
bahawa rangka kerja analisis tingkah laku orang ramai mencapai prestasi terbaik 
terhadap dataset CUHK Crowd. Collective Interaction Filtering melebihi prestasi 
terbaru yang dicatatkan dengan mencapai 0.55 untuk Normalized Mutual 
Information dan 0.83 untuk Rand Index. Purata ketepatan deskriptor berasaskan 
graf yang dicadangkan bagi analisis tingkah laku orang ramai adalah 80% 
berbanding dengan kerja sebelumnya. Pendekatan dapatan video orang ramai 
yang dicadangkan berdasarkan deskriptor berasaskan graf  memperoleh purata 
sebanyak 49% di kalangan 10 ketepatan tertinggi. Peningkatan prestasi 
menunjukkan keberkesanan deskriptor berasaskan graf bagi tujuan dapatan 
video orang ramai dalam adegan yang sesak dan berbeza. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Background 

Crowd is the agglomeration of many people with different kinds of behaviour in 
the same area at the same time (Junior et al., 2010) such as music festivals, 
sports events, railway stations, airports, shopping mall and other such places. In 
general, the security of large gatherings is the most important feature. Any 
abnormal behaviour or incident in dense crowds would cause undesirable 
happenings because of the synergic result of human relations (Mehran et al., 
2009; Mehran et al., 2010; Murino et al., 2017). As the size of the crowd becomes 
larger, the harder it becomes to monitor their actions with the human eye 
(Rodriguez et al., 2017).  

Researchers have turned to surveillance technology based on computer vision 
to monitor crowds automatically in helping to discover crowd disasters. 
Computer vision surveillance technology is also used for people management 
such as tourist flow estimation or pedestrian traffic management in recent years. 
However, dangerous and criminal behaviours are mostly observed within groups 
of people (Jacques et al., 2007; Mora Colque et al., 2014; Solera et al., 2016; 
Shao et al., 2017). Therefore, research surveillance community changed from 
the monitoring of a single person or a crowd population to group of people and 
their behaviour (Jacques et al., 2007; Mora Colque et al., 2014; Solera et al., 
2016; Shao et al., 2017; Wang et al., 2017). Group is defined as a collection of 
individuals assembled together in the same place who interact with one another, 
share similar characteristics, and collectively have a sense of unity (Ge et al., 
2012). The crowd is mainly composed of groups rather than individuals, so 
focusing on the group helps to understand the crowd, and vice versa (Murino et 
al., 2017). Crowd behaviour in different crowded scenes can be analysed based 
on group descriptors (Shao et al., 2017).  

From a computer vision point of view, the study of group or crowd analysis for 
crowded scenes are generally modelled after a three-level approach (Murino et 
al., 2017). At the low-level, moving objects are discovered and tracked to extract 
the crowd motion features from each of the video frames. Motion features such 
as particle flow (Ali & Shah, 2007), streak flow (Mehran et al., 2010), spatio-
temporal (Kratz & Nishino, 2009, 2012), and trajectory or tracklet (Zhou et al., 
2011, 2012; Shao et al., 2017) are extracted. At the mid-level, motion pattern 
segmentation is used in crowd analysis by grouping the features into similar 
categories through some resemblance measures or probabilities (Li et al., 2015). 
At the high-level, a semantic understanding of the group or crowd behaviour is 
obtained. 
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However, most studies on crowd behaviour analysis focus on specific scenes 
resulting in model overfitting, and thus are hardly useful for other scenes (Mehran 
et al., 2009; Junior et al., 2010; Thida et al., 2013; Li et al., 2015; Kok et al., 2016; 
Shao et al., 2017; Wang & Loy, 2017). 
 

1.2 Problem Statement 

The study of group or crowd analysis for crowded scenes are generally modelled 
in low, middle and high levels (Murino et al., 2017). Low-level algorithms have 
been widely studied in the field of computer vision, and achieved gratifying 
results. However, algorithms at the middle and high level have been just started 
studied in recent times. The motion features are the most useful and 
representative part in video frames which can help in describing crowd 
behaviour. Therefore, trajectory or tracklet motion feature applied in this 
research at the low-level. Trajectory or tracklet motion feature researches 
achieved relatively better performance for structured and unstructured crowded 
scenes (Zhou et al., 2014; Solera et al., 2016; Shao et al., 2017; Wang et al., 
2017). This research aims to tackle the following challenges from the middle and 
high levels for different crowded scenes.  
 
 
Tracking results are usually described as trajectory, and short-range trajectory 
fragments are defined as tracklets (Zhou et al., 2011). However, occlusion 
affects the terminations of tracklets cause complete trajectories are hard to gain 
(Zhou et al., 2011; Zhou et al., 2014; Solera et al., 2016; Shao et al., 2017; Wang 
et al., 2017). For that reason, most existing studies at mid-level follow holistic 
approach in which the crowd is considered as a single entity to segment the 
motions (Ali & Shah, 2007; Mehran et al., 2009; Mehran et al., 2010; Li et al., 
2015; Wu et al., 2017). The holistic approach focuses on crowd behaviour 
identification as a whole. Yet, holistic approach is only suitable to be applied in 
high-density population of structured crowded scenes. Hence, group detection 
approaches which can identify groups by clustering trajectories are proposed. 
Group detection approaches provide a trade-off between the holistic approach 
and the individual-based approach for crowd behaviour analysis (Ge et al., 2012; 
Zhou et al., 2012; Wang et al., 2013; Solera et al., 2016; Shao et al., 2017). 
Current group detection approaches suffer from the following problems: 1) 
Current clustering techniques cannot effectively divide the detection feature 
points into cluster to develop dynamic of group detector. The detection feature 
points across frames can be lost due to occlusion (Liang et al., 2014; Solera et 
al., 2016; Trojanová et al., 2016; Shao et al., 2017; Wang et al., 2017). 2) Crowds 
with various densities and structures (Junior et al., 2010; Li et al., 2015; Kok et 
al., 2016; Shao et al., 2017). 3) Many previous works (Zhou et al., 2012; Zhou et 
al., 2014; Trojanová et al., 2016; Shao et al., 2017) emphasis on the motion 
correlation of persons within a local area and limited to grouping consistency 
between frames.  
 
 
The high-level focuses on discovery of crowd motion descriptors based on low-
level motion features in order to facilitate understanding crowd behaviour. 
Therefore, various crowd motion descriptors such as social force (Mehran et al., 
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2009), potential field (Mehran et al., 2010), chaotic invariants (Wu et al., 2010), 
spatio-temporal gradients (Kratz & Nishino, 2009, 2012), eigenvalues (Solmaz 
et al., 2012), spatio-temporal viscous fluid field (Su et al., 2013), multi-scale 
histogram of optical flow (Cong et al., 2013) and collectiveness (Zhou et al., 
2014) have been suggested from different perspectives for scene-specific crowd 
behaviour analysis. These crowd motion descriptors are restricted to holistic 
perspective. Recently, some researchers proposed generic descriptors, such as 
curl, divergence, collectiveness, uniformity, stability, and conflict, from the 
computer vision point of view to describe crowd behaviour for different crowded 
scenes (Shao et al., 2015; Shao et al., 2017; Wang & Loy, 2017; Wu et al., 2017; 
Wu et al., 2017). However, these generic descriptors cannot perform well for the 
motion dynamics caused by pedestrians who walk in different directions with 
extremely diverse behaviours; such as pedestrians in streets or shopping malls. 
Current tracking approaches are difficult in capturing accurately motion 
interaction among people in different crowded scenes. Crowds with various 
densities, structures and occlusion affect the efficiency of generic description in 
classifying crowd behaviour for different crowded scenes accurately (Shao et al., 
2015; Shao et al., 2017; Wang & Loy, 2017; Wu et al., 2017; Yi et al., 2017).  
 
 
In recent years, researchers have shift their research interest to retrieve the 
preferred videos based on measuring the likeness between video queries and 
crowd patterns contained in crowd videos (Zhang et al., 2016; Shao et al., 2017; 
Wu et al., 2017). Crowd videos are difficult to segment the motion pattern 
because of people move to occlude each other or blocked by non-human items 
(Liang et al., 2014; Solera et al., 2016; Trojanová et al., 2016; Zhang et al., 2016;  
Shao et al., 2017; Wang et al., 2017). Besides that, it is also challenging to 
segment the motion pattern of crowds with low, medium and high densities in 
structured and unstructured crowd scenes (Junior et al., 2010; Li et al., 2015; 
Kok et al., 2016; Shao et al., 2017). These characteristics cause difficulty in 
identifying generic descriptors to describe crowd patterns (Shao et al., 2015; 
Shao et al., 2017; Wang & Loy, 2017; Wu et al., 2017; Yi et al., 2017), which 
commonly cause the difficulty in measuring the likeness between video queries 
and crowd patterns enclosed in crowd videos (Zhang et al., 2016; Shao et al., 
2017; Wu et al., 2017). 
 
 
In summary, the main limitation of the above discussed approaches includes 
difficulty in object detection and tracking when occlusion occurs in scenes which 
affects the accuracy of group clustering, crowd behaviour classification and 
crowd video retrieval. 
 
 
1.3 Research Objectives

The main aim of this research is development of crowd behaviour analysis (CBA) 
framework with enhanced mid and high levels approaches to recognise the 
common properties across different crowded scenes. The recognised common 
properties are then used to identify generic descriptors from group-level for 
crowd behaviour classification and crowd video retrieval. The accuracy of this 
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framework will be evaluated through extensive experiments. To achieve the 
objective, the following ideas are adopted:  

 To propose a group detection approach with abilities to accurately identify 
groups by clustering trajectories in crowds with various densities, structures 
and occlusion of each other. It also tackles grouping consistency between 
frames.  

 To propose group motion pattern mining and prediction approach to identify 
generic descriptor for crowd behaviour classification. 

 To propose a crowd video retrieval approach based on generic descriptors. 

 
1.4 Research Scope
  
The scope of this research is focused on the crowd behaviour analysis 
application offline processing. The more advanced case of real time processing 
is left for the future work since the implementation of real-time application 
normally requires hardware with high-specs. This research is concerned with 
crowd behaviour analysis for human interaction occurring in indoor and outdoor 
video surveillance such as streets, shopping malls and stations with low, medium 
and high population densities. All experiments are carried out using CUHK 
Crowd Dataset (Shao et al., 2017). Trajectories are the motion feature extracted 
when an object is moving. This experiments assumes that all the trajectories 
extracted are from the moving humans. Besides that, crowd behaviour 
classification and crowd video retrieval are only based on collectiveness, 
uniformity, stability, and conflict generic descriptors. 
 
 
1.5 Research Contributions

The core contribution of this research is proposal of an enhanced approach for 
CBA framework to identify generic descriptors from group-level for crowd 
behaviour classification and crowd video retrieval. The framework has motion 
feature extraction, group detection, generic descriptors, and crowd video 
retrieval components. Each component except motion feature extraction has 
their own contributions as follows: 

 A group detection approach is proposed. The first contribution is the ability 
to determine the key person which remains consistent between all frames 
in each cluster over time-varying dynamics in crowded scenes to handle 
grouping consistency between frames. The second contribution is to form 
an inference about human relationships using Expectation-Maximization 
(EM) algorithm based on distance, occurrence, and speed correlations of 
each person with the key person to handle the occlusion. The final 
contribution is a group refinement threshold based on the results gathered 
through the inferences on human relationships in order to tackle the crowds 
with various densities and structures. 

 A group motion pattern mining and prediction approach is proposed to 
identify the accuracy of collectiveness, uniformity, stability, and conflict 
generic descriptors for behaviour understating in different crowded scenes. 
A graph partitioning algorithm with assigned group size, evenly space, and 
speed direction connection between pairwise members in group weights to 
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each edge of undirected graph to mining the group interaction pattern. 
Kalman filtering is applied in generic descriptor prediction in order to obtain 
a precise prediction of their motion interaction over the frame in different 
crowded scenes and to tackle the problem of occlusion. 

 An effective crowd video retrieval approach that employs collectiveness, 
uniformity, stability, and conflict generic descriptors. The Euclidean distance 
and Chi-Square (X2) distance are used to measure the similarity matching 
between the query video and the remaining video clips. 

 
 
1.6 Thesis Outline  

Several approaches will be presented to address the critical problems of 
accurate object detection and tracking when occlusion occurs in scenes, which 
will affect the efficiency of group detection, crowd behaviour classification, and 
crowd video retrieval. To achieve the overall goal, each chapter shall describe a 
component of this research and each chapter is arranged as follows:  
 
 
Chapter 1: Introduction. The introduction chapter provides a brief background 
of the research work. Then, it addresses the main challenges of important tasks 
in automation of crowd behaviour analysis. This chapter also highlights the 
objectives, scopes and contributions of this research.  Finally, the thesis outline 
is provided, offering a summary of each chapter. 
 
 
Chapter 2: Literature Review. This chapter discusses the review of current 
researches for motion feature extraction, motion pattern segmentation and 
crowd motion descriptors.  
 
 
Chapter 3: Research Methodology. This chapter presents the steps taken for 
this research and the research methodology employed. The CBA framework with 
enhanced mid and high levels approaches is used as a solution to the limitations 
of current crowd behaviour analysis approaches that have been found though 
literature review. The evaluation dataset and metrics used in this research work 
are also explained in this chapter. 
 
 
Chapter 4: Group Detection. This chapter presents the proposed group 
detection approach to identify groups by clustering trajectories. The accuracy of 
the proposed approach is evaluated and compared with related works through a 
set of experiments. 
 
 
Chapter 5: Generic Descriptors. This chapter presents the group motion 
pattern mining and prediction approach to identify the accuracy of collectiveness, 
uniformity, stability, and conflict generic descriptors for group behaviour 
understating in different crowded scenes. Then, the non-linear Structural 
Support Vector Machine (SVM) with RBF-kernel classifier is trained based on 
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the prediction generic descriptors results in order to distinguish among the crowd 
videos. The results of extensive experiments are described to show its 
effectiveness over other crowd motion descriptors.   
 
 
Chapter 6: Crowd Video Retrieval. This chapter presents the proposed crowd 
video retrieval approach based on generic descriptors. This chapter also 
demonstrates the evaluation results of the proposed approach.  
 
 
Chapter 7: Conclusion and Future Work. This chapter offers concise 
conclusions on the outlined objective and highlights some recommendation for 
future works. 
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