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Dithiocarbazate Schiff bases and their derivatives have drawn considerable attention 

due to their unique properties and applications. Many dithiocarbazate metal complexes 

have been synthesised and applied in many applications such as antibacterial, 

antifungal, antioxidant agents and in catalysis. Dithiocarbazate metal complexes have 

also shown significant cytotoxicity against many types of cancer cell lines. This study 

aims to synthesise non-toxic compounds by synthesising para substituted chalcone 

derivatives and studying the effect of substituted functional group electronegativity on 

the cytotoxicity of the metal complexes. Nine chalcones were synthesised using base-

catalysed Aldol condensation. The chalcones were symmetrical in order to direct the 

electron density towards the transition metal in the complexes. These symmetrical 

chalcones were then reacted with S-benzyldithiocarbazate to form nine novel Schiff 

bases. A total of 45 novel metal complexes were synthesised by reacting these nine 

Schiff bases with five divalent transition metal acetates which were Ni2+, Fe2+, Cu2+, 

Zn2+ and Cd2+. These Schiff bases and their metal complexes were fully characterised 

using various characterisation techniques including FTIR, UV-Vis, 1H and 13C NMR 

spectroscopy, mass spectral, elemental analysis, and single crystal X-ray diffraction. 

The cytotoxic properties of these compounds were also tested against two types of 

bladder cancer cell lines which were the minimum-invasive human bladder cancer 

carcinoma cell line (RT112) and the invasive human bladder carcinoma cell line 

(EJ28).All Schiff bases were inactive against both types of bladder cancer cell. The 

unsubstituted chalcones and their metal complexes were inactive against both cells 

which means the substituted group on benzene ring plays an important roles toward 

the cytotoxicity of metal complexes. Cu(II) complexes of DTASB, DEASB, DIPASB, 

DCLASB, DBRASB, DNNMASB and DMeOSB showed moderate cytotoxicity 

against both cell lines with more selectivity toward EJ-28 than RT-112. Less than that, 

Zn(II) complexes of DTASB, DEASB and DIPASB showed moderate activity against 

bladder cancer cell line type EJ-28 while they were inactive against RT-112 cell lines. 
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An Fe(II) complex, FeDMeOSB, showed moderate activity against both cell lines. 

CuDMeOSB showed highest cytotoxicity against both types of bladder cancer cell 

lines EJ-28 and RT-112 with IC50 values equal to 1.651 and 1.762 M, respectively. 

In addition, CuDNNMASB showed more selectivity against RT-112 than EJ-28 with 

IC50 value equal to 1.874 M. 
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Bes Schiff ditiokarbazat dan terbitannya telah mendapat perhatian yang besar 

disebabkan oleh sifat dan aplikasi unik mereka. Banyak kompleks logam ditiokarbazat 

telah disintesis dan digunakan dalam banyak aplikasi seperti antibakteria, antikulat, 

agen antioksidan dan pemangkinan. Kompleks logam ditiokarbazat juga menunjukkan 

sitotoksisiti yang ketara terhadap pelbagai jenis sel kanser. Kajian ini bertujuan untuk 

mensintesis sebatian bukan toksik dengan mensintesis terbitan para kalkon gantian 

dan mengkaji kesan keelektronegatifan kumpulan fungsi yang digantikan pada 

kesitotoksikan kompleks logam. Sembilan kalkon telah disintesis dengan 

menggunakan pemeluwapan Aldol berbes. Kalkon ini kemudiannya bertindak balas 

dengan S-benzilditiokarbazat untuk membentuk sembilan novel bes Schiff. Empat 

puluh lima kompleks logam novel telah disintesis dengan bertindak balas terhadap 

sembilan bes Schiff dengan lima asetat logam peralihan divalen iaitu Ni2+, Fe2+, Cu2+, 

Zn2+ dan Cd2+. Bes Schiff dan kompleks logam mereka telah dicirikan sepenuhnya 

menggunakan teknik pencirian pelbagai termasuk spektroskopi FTIR, UV-Vis, 1H & 
13C NMR, spektrum jisim, analisis unsur, dan pembelauan sinar-X hablur tunggal. 

Sifat sitotoksik sebatian ini juga diuji terhadap dua jenis sel kanser pundi iaitu sel 

karsinoma kanser pundi manusia yang kurang invasif (RT112) dan sel karsinoma 

kanser pundi manusia yang invasif (EJ28). Semua bes Schiff tidak aktif terhadap 

kedua-dua jenis sel kanser pundi. Kalkon yang tiada gantian dan kompleks logam 

mereka tidak aktif terhadap kedua-dua sel bermaksud kumpulan yang digantikan pada 

gelang benzena memainkan peranan penting ke arah kesitotoksikan kompleks logam. 

Kompleks Cu(II) dengan DTASB, DEASB, DIPASB, DCLASB, DBRASB, 

DNNMASB dan DMeOSB menunjukkan kesitotoksikan sederhana terhadap kedua-

dua sel sel dengan lebih selektif ke arah EJ-28 daripada RT-112. Kompleks Zn(II) 

dengan DTASB, DEASB dan DIPASB menunjukkan aktiviti sederhana terhadap jenis 

sel kanser pundi jenis EJ-28 sementara mereka tidak aktif terhadap sel RT-112. 

Kompleks Fe(II), FeDMeOSB, menunjukkan aktiviti sederhana terhadap kedua-dua 
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sel. CuDMeOSB menunjukkan kesitotoksikan tertinggi terhadap kedua-dua jenis sel 

kanser pundi EJ-28 dan RT-112 dengan nilai IC50 bersamaan dengan 1.651 dan 1.762 

M masing-masing. Di samping itu, CuDNNMASB menunjukkan lebih banyak 

kepilihan terhadap RT-112 daripada EJ-28 dengan nilai IC50 bersamaan dengan 1.874 

M. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General  

Medicinal bioinorganic chemistry field blossoming inspired many worldwide 

researchers to design and innovate metal-based drugs to be used as anticancer drugs. 

Therefore, using transition metals has outweigh the organic-based drugs because of 

transition metals have wide range of oxidation and coordination numbers, redox states, 

tuneable kinetics and thermodynamics, and structural and geometries diversity of the 

substituted ligands (van Rijt& Sadler, 2009). The discovery of cisplatin as anticancer, 

about 45 years ago, has making a breakthrough in medicinal inorganic chemistry field 

as well as in our understandings to the disease and treatment approaches. The organic 

ligands which effectively bonded with metal ions enhanced the overall efficiency and 

also driving the innovation in therapy and disease diagnosis areas. Besides, increasing 

of therapeutic compounds potency and limiting their side-effects is a common goal in 

the field of medicinal chemistry (Jones et al., 2014). To achieve this goal, compounds 

are developed to target the disease site or activated by the disease of specific biological 

process. The metal complexes which containing the targeting functions or bioactive 

ligands or agents activated by specific enzymes provide a new avenues in drug 

development (Chiang et al., 2012). Nowadays, after more than 30 years from the 

improvement of using cisplatin as a powerful chemotherapeutic agent, still it is the 

best-selling anticancer drug in the world. It is used as chemotherapeutic agent to treat 

many types of cancer such as bladder, ovarian, head and neck, lymphomas and cervical 

cancers. Over many past decades, cispaltin and its derivatives have been ensured as 

powerful anticancer agents, while, only two of them (oxaliplatin and carboplatin) have 

been used clinically worldwide. Unfortunately, there are some obstacles side-effects 

against current platinum drugs such as (van Rijt & Sadler,  2009):- 

- Limited efficiency because they are efficient for limited cancer types. 

- Some types of tumors may have acquired or intrinsic resistance. 

- They have many side-effects like, kidney toxicity, bone narrow suppression 

and nausea. 

 

 

Therefore, there is a big need to discover new compounds to treat many types of cancer 

with less side-effects better than cisplatin and its derivatives. New anticancer metal 

based compounds development is important challenge for many inorganic chemists to 

face the fact that after more than four decades of researches in anticancer field there 

are few compounds clinically used as anticancer drug. Based on metal-based 

anticancer action mode, metal anticancer compounds can be categorized into five 

categories (Gianferrara et al., 2009):- 
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(1) The metal in any compound may has the functional role and bind with the 

biological target. 

(2) The central metal may has structural role and bind through non-covalent 

bond with the biological target. 

(3) The metal may acts as a good carrier for the active ligands which delivered 

in vivo. 

(4) The metal compound may acts like catalyst. 

(5) The metal compound may behaves as a photo-sensitizer or photoactive.    

 

 

It is known that the fourth most common cancer among men is bladder cancer. Recent 

diagnostic data on this disease showed that men diagnostic four times more than 

women. Older people are most affected by bladder cancer than young people. 90% of 

people suffer from bladder cancer are older than 55 years old. The average age of 

people who diagnosed with bladder cancer is 73 years old (Fosså et al. 2008; Jacobs 

et al. 2010; Tiwari & Roy,2012). Recent therapy of bladder cancer are Cisplatin, 

Methotrexate, Gemcitabine, Mitomycin, Vinblastine, Doxorubicin, Carboplatin, 

Docetaxel, Paclitaxel, 5-Flurouracil (5-FU) and its derivatives (Edson Pontes, 1994; 

Galsky& Bajorin,2007; Kaufman et al.,2009; Oosterlinck et al., 2002).  They are 

general therapy and have many disadvantages such as expensive, difficult to 

synthesised, only 25% response to the treatment and many side effects of 

chemotherapy like nausea and vomiting, loss of appetite, hair loss, mouth sores, 

diarrhea or constipation, increased risk of infections (because of shortage of white 

blood cells), bleeding or bruising after minor cuts or injuries due to a shortage of blood 

platelets and fatigue because of a shortage of red blood cells (Dasari& Bernard 

Tchounwou, 2014; Georg et al.,2012; Koya et al., 2006).  

Metal-containing drugs have been used to treat many diseases. The most famous one 

is cisplatin, used in late 1978, which is the most effective anticancer drug in the world 

(Jemal et al., 2009; Swarts et al., 2008). Cisplatin success has been motivate many 

researcher in the past few decades to try another transition metals in term of alternative 

searching  in metal-base chemotherapeutic area (Jakupec et al., 2008). There is an 

urgent issue to synthesise new drugs with less side effects and better selectivity, 

activity and bioavailability to treat different types of cancer diseases. Furthermore, 

discovering new drugs with non platin metal centre might open new way to develop 

useful drugs with fewer side effects (Marcon et al., 2002; Ronconi et al., 2006). There 

are many articles highlighted and explained in details the effect of metal complexes 

potential in designing of novel drugs (Fricker, 2007; Haas & Franz, 2009; Hambley, 

2007; Meggers, 2009; Ronconi& Sadler, 2007; Thompson & Orvig, 2006).  

Metal centre in transition metal complexes has intrinsic nature, accessible redox state, 

distinctive coordination modes, and tuneable kinetic and thermodynamic properties 

drive the transition metal complexes to add more potential advantages more than the 

organic ligand in the complexes (van Rijt& Sadler, 2009). Furthermore, metal 

reactivity in the complexes not only controlled by ligands but also the ligands play 

important roles in the biological activity (Gianferrara et al.,2009). In the few last 

decades there were a great expansion researches happened in the field of coordination 
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chemistry of nitrogen-sulphur containing Schiff bases compounds such as 

thiosemicarbazides, dithiocarbazates and their organic derivatives (Akbar Ali et 

al.,1974; Beraldo, 2004; Pelosi, 2010).Transition metal complexes derived from 

Schiff bases have been played an important role to develop coordination chemistry. 

Furthermore, the synthesis and application of Schiff bases and their metal complexes 

add more attention on this area. Schiff bases can be synthesized by the condensation 

reaction between aliphatic or aromatic aldehydes or ketonesand primary amines. The 

yielded imine (R-C=N-R’) can be used as a chelating ligands for the metal complexes 

preparation which are useful and can be used in many biological and industrial 

applications (Kumar et al.,2009; Soliman et al.,2007). This type of Schiff bases 

possess two types of donor atoms soft nitrogen and hard sulphur. They have the ability 

to act as a good chelating agent for various transition metals (Mohamed et al.,2009). 

The bioactivity and flexibility of sulphur and nitrogen containing ligands associated 

with the presence of both thioamino        (-(C=S)-NH-) and imino (-HC=N-) in their 

structures moieties (Stringer et al., 2011). Many advantages can be gain from 

synthesizing these metal complexes such as: chelating of metals with such Schiff bases 

enhances their biological activity, easy preparation and low coast (Perrin & Chang, 

2016). 

1.2 Dibenzalacetone Ketones 

Aldol condensation reaction like Grignard reaction both are useful carbon-carbon 

bond-forming organic reaction. Aldol condensation reaction can be used to synthesize 

unsaturated ketones by reacting aliphatic or aromatic aldehyde with ketone in the 

presence of mineral acid or alkaline base. This type of reaction is usually used in 

organic reaction to form bigger ketones with C-C bonds (Carey et al., 2008). This type 

of reaction contains two steps the first step called Aldol reaction while the second step 

called elimination reaction for both acid and base Aldol condensation (Carey et al., 

2000). Base catalyzed Aldol condensation can be proceeds by using sodium hydroxide 

or potassium hydroxide.  

Dibenzalacetone is a conjugated symmetric chalcone contains two benzene rings 

connected by unsaturated aliphatic chain with carbonyl group as shown in Figure1.1.  

X X

O

 
Figure 1.1 : General chemical structure of dibenzalacetone  
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Table1.1 represents dibenzalacetone derivatives. 

Table 1.1 : Dibenzalacetone derivatives used in this study 

 
X Compound name Abbreviation Reference 

H Dibenzalacetone DBA (Conard et al., 1932) 

CH3 Di-p-tolylacetone DTA (Arshadet al., 2008) 

C2H5 Di-p-ethylbenzalacetone DEA New compound 

CH(CH3)2 Di-p-isopropylbenzalacetone DIPA New compound 

Cl Di-p-chlorobenzalacetone DCLA (Butcher et al., 2007) 

Br Di-p-bromobenzalacetone DBRA New compound 

OCH3 Di-p-methoxybenzalacetone DMeO (Handani et al., 2008) 

N(CH3)2 Di-p-N,N-dimethylbenzalacetone DNNMA New compound 

 

 

Unsymmetrical chalcones, type from flavonoids family, are naturally occurring 

compounds in many edible plants such as fruits, spices and vegetables which are non-

toxic to normal cells. While, symmetrical chalcones like dibenzalacetone and 

dicinnamalacetone are not naturally occurring compounds. Dibenzalacetone can be 

synthesized by using Aldol condensation from the reaction between two moles of 

benzaldehyde or its derivatives and one mole of acetone (Youg et al., 2016). Figure 

1.2 explains the reaction mechanism of base catalyzed Aldol condensation to 

synthesized dibenzalacetone ketone in the following main steps (Kim et al., 2016; 

Perrin et al., 2016):- 

- First step: - Deprotonation of acetone by potassium hydroxide or sodium 

hydroxide and produce nucleophilic enolate. 

- Second step: - The nucleophile attacks thye electrophile which is benzaldehyde 

or its derivatives to give alkoxide.  

- Third step: - Protonation of alkoxide to produce neutral hydroxylketone. 

- Fourth step: - Deprotonation again of hydroxyl-ketone to make nucleophilic 

enolate (hydroxyenolate). 

- Fifth step: - Elimination of hydroxide ion to produce benzalacetone 

(monoaddition). 

- Sixth step: - Repeat steps one to five again to produce the final product 

dibenzalacetone or its derivatives. 
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Figure 1.2 : Base catalyzed Aldol condensation mechanism (Kim et al., 2016) 

 

 

Dibenzalacetone derivatives can be synthesized by using benzaldehyde derivatives 

instead of un-substituted benzaldehyde.Dibenzalacetone or dibenzylideneacteone is 

used as an ingredient in sunscreen cream and also as a ligand in organometallic 

chemistry in the synthesis of palladium(0) complexes (Ogasawara et al., 2001). Para 

substituted dibenzalacetone can be synthesized by the following Aldol condensation 

procedure with para substituted benzaldehyde. In the same manner, dicinnamalacetone 

(Figure 1.3) can be synthesized by using also base catalyzed Aldol condensation with 

using cinnamaldehyde instead of benzaldehyde.  

O

 

Figure 1.3 : Chemical structure of dicinnamalacetone DCNMA  

(da Silva et al., 2018) 

 

 

These ketones have many features:- 

- These compounds are symmetrical chalcones. 

- These compounds have long double-single bond conjugation system. 

- Many types of functional groups can be substituted on the benzene ring. 

- By varying the number of substituted group and the type of substituted group 

on the two benzene rings it is easy to direct the electron density.  
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1.3 Dithiocarbazate 

Dithiocarbazate compounds are sulphur-nitrogen containing compounds which have 

the structural analogy to semicarbazides, thiosemicarbazides and carbazates as shown 

in Figure 1.4.  

N
H

H2N
NH2

O

(a)

N
H

H2N
O

O

(b)

R

N
H

H2N
NH2

S

(c)

N
H

H2N
S

S

(d)

R

 
Figure 1.4 : Molecular structure of (a) semicarbazide, (b) carbazate, (c) 

thiosemicarbazide and (d) dithiocarbazate 

 

 

The origin of this type of organic compounds is not well-known but the earliest 

publication on these compounds was made on 1905 (Dunlap, 1905) who synthesized 

Schiff base derived from phthalic anhydride and phenylsemicarbazide. In 1946 

Domagk studied the antitubercular activity of some thiosemicarbazide derivatives 

(Domagk et al., 1946). Another important finding in 1970 it was reported on the 

cytotoxicity of thiosemicarbazide derivatives which were synthesized from 

thiosemicarbazide and aminopyridine-2-carboxaldehyde (Meldrum et al., 1970). The 

first publication on dithiocarbazate derivatives was reported in the chemistry of their 

metal complexes (Ali et al., 1972).  

Dithiocarbazate is an organic amine containing two nitrogen atoms and two sulphur 

atoms as shown in Figure1.5. Ali and Livingstone was first toreview on the chemistry 

of this type of organic compound which was used to synthesize different compounds 

of Schiff bases (Akbar et al., 1974). Since then, many derivatives of dithiocarbazate 

compounds had been synthesized and applied in different applications.  

The researchers in this field mostly focused on S-benzyl and S-methyldithiocarbazate 

(Ali et al., 1978; Rao et al., 1965; Tofazzal et al., 2000) while the others studied 

recently (Antony et al., 2014; Begum et al., 2015a; Begum et al., 2015b; Low et al., 

2016; Mirza et al., 2014).    
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1.4 Schiff bases 

Schiff base has the general chemical structure as shown in the Figure1.5. It is manly 

produce from reacting primary amine with ketone or aldehyde.  

C N R
 

Figure 1.5 : Chemical structure of Schiff base  

 

 

Many nitrogen-sulphur Schiff bases have been synthesized from the condensation of 

dithiocarbazate derivatives with aliphatic and aromatic aldehydes and ketones. 

Dithiocarbazate Schiff bases have tautomeric resonance which is called thione-thiol 

reseonance as shown in Figure1.6 (Krasowska et al., 2010).  

R
S

S

NH N

R'

Thione Form

R
S

N N

R'

SH

Thiol Form
 

Figure 1.6 : Thione-Thiol tautomerism   

 

 

Thiosemicarbazide Schiff bases coordinate with transition metal ions in both thione 

and thiol forms (De Lima et al., 1999). In the same manner, dithiosemicarbazide Schiff 

bases appear in the thione form when coordinate with transition metal complexes 

(Hossain et al., 1996).  

In this study, nine Schiff bases have been synthesised from reacting SBDTC with 

dibenzalacetone, dibenzalacetone derivatives and dicinnamalacetone. The reaction 

between SBDTC and the synthesised ketones was catalyzed by hydrochloric acid or 

acetic acid. The reaction scheme illustrated in Figure1.7.  
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Ketone DBA Schiff Base DBASBSBDTC

SBDTC DCNMA
 

 
R Ketone Schiff Base 

- H Dibenzalacetone (DBA) DBASB 

- CH3 Di-p-tolylacetone (DTA) DTASB 

- C2H5 Di-p-ethylbenzalacetone (DEA) DEASB 

- CH(CH3)2 Di-p-isopropylbenzalacetone (DIPA) DEASB 

- Cl Di-p-chlorobenzalacetone (DCLA) DCLASB 

- Br Di-p-bromobenzalacetone (DBRA) DBRASB 

- OCH3 Di-p-methoxybenzalacetone (DMeO) DMeOSB 

- N(CH3)2 Di-p-N,N-dimethylaminobenzalacetone (DNNMA) DNNMASB 

 

Figure 1.7 : Reaction scheme of Schiff bases synthesis and chemical structure of 

the synthesized Schiff bases 

 

 

1.5 Metal complexes 

It is well known that the drug action can be accelerated by metal complexes and 

therapeutic efficiency can be enhanced by the coordination with transition metal ions 

(Navarro et al., 2004; Raman et al., 2008; Sánchez-Delgado et al., 1996). Biological 

activity of metal complexes highly depends on the transition metal and the donor 

ligand. The observation from different published articles on metal complexes of NS 

donor Schiff bases showed that nickel, copper and zinc complexes have good activity 

against Human T-lymphoblastic leukemia cell (CEM-SS) with low CD50 values 2.0-

3.4 g cm-3. While cadmium complexes showed moderate activity against cervical 

cancer cells (HELA) and CEM-SS cell with CD50 values 4.0 and 4.95 g cm-3, 

respectively (Tarafder et al., 2002a). 

To summarize briefly, this thesis aimed to study the effect of aromatic dithiocarbazate 

(SBDTC), double bond-single bond conjugation system (highly conjugated ketones), 

vital transition metals and the effect of functional group substituted on para position 

of both benzene rings on the cytoxicity of these metal complexes against two types of 

bladder cancer cell lines which are invasive human bladder carcinoma cell line (EJ-
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28) and minimally invasive human bladder carcinoma cell line (RT-112). The target 

metal complexes were synthesized and characterized. The five divalent transition 

metals were chosen in this study due to their biological lability and inertness (Figure 

1.8). While, Cd(II) and Zn(II) were the most labile (Blusch et al., 2013; Karlin, 2012). 

Their vital presence in biological systems and many enzymes, as outlined previously, 

were also chosen as important aspects in their selection in this study.  

 
 

Figure 1.8 : General chemical structure of the transition metal complexes   

 

 

Table 1.2 shows the metal complexes which have been synthesised in this study. 

 

 

Table 1.2 : The synthesised transition metal complexes 

  
X M Name X M Name 

Hydrogen H 

Ni(II) NiDBASB 

Methyl 

CH3 

Ni(II) NiDTASB 

Cu(II) CuDBASB Cu(II) CuDTASB 

Fe(II) FeDBASB Fe(II) FeDTASB 

Cd(II) CdDBASB Cd(II) CdDTASB 

Zn(II) ZnDBASB Zn(II) ZnDTASB 

Ethyl 

C2H5 

Ni(II) NiDEASB 

isopropyl 

CH(CH3)2 

Ni(II) NiDIPASB 

Cu(II) CuDEASB Cu(II) CuDIPASB 

Fe(II) FeDEASB Fe(II) FeDIPASB 

Cd(II) CdDEASB Cd(II) CdDIPASB 

Zn(II) ZnDEASB Zn(II) ZnDIPASB 

Chloro 

Cl 

Ni(II) NiDCLASB 

Bromo 

Br 

Ni(II) NiDBRASB 

Cu(II) CuDCLASB Cu(II) CuDBRASB 

Fe(II) FeDCLASB Fe(II) FeDBRASB 

Cd(II) CdDCLASB Cd(II) CdDBRASB 

Zn(II) ZnDCLASB Zn(II) ZnDBRASB 

Methoxy 

OCH3 

Ni(II) NiDMeOSB 

N,N-

dimethylamino 

N(CH3)2 

Ni(II) NiDNNMASB 

Cu(II) CuDMeOSB Cu(II) CuDNNMASB 

Fe(II) FeDMeOSB Fe(II) FeDNNMASB 

Cd(II) CdDMeOSB Cd(II) CdDNNMASB 

Zn(II) ZnDMeOSB Zn(II) ZnDNNMASB 

N

X X

N

S S N

XX

N

SS

M
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1.6 Cytotoxicity 

The biological activity of a chemical species can be explained by experimental and 

computational methods. There are a lot of theoretical studies about the determination 

of chemical activity. Generally, quantum chemical descriptors are used to determine 

the ranking of biological activities (Sayin & Karakas, 2013). The examples of these 

parameters include the highest occupied molecular orbital energies (HOMO), the 

lowest unoccupied molecular orbital energies (LUMO), the energy gap between 

LUMO and HOMO, hardness or softness of the molecules or atoms and the global 

electronegativity. The biological activities closely depend on the separation of the 

LUMO and HOMO in a molecule. The bending ability of an inhibitor to the 

appropriate molecule will increase with the increase of the HOMO and decrease of the 

LUMO of complex ions. This due to the ability of electrons to transfer to the acceptor 

molecule and the strong electron accepting ability of the molecules. The smaller the 

energy gap between HOMO and LUMO, the more active the molecule is in the term 

of biological properties. This because the electrons are easily excited from the lower 

energy orbital to higher energy orbital (Zhang et al., 2012). Besides that, soft 

complexes (complexes in which sulphur atoms act as donor atoms) have a small 

energy gap between the molecular orbital and can interact easily with biological 

molecules. Hence, the biological activity is increased with the increase of softness of 

the complexes. Cytotoxicity of some sulphur-nitrogen ligands and their metal 

complexes is based on four main criteria. Firstly, the complex should be reasonably 

labile. Zinc and cadmium complexes are the most labile with d10 configurations. 

Secondly, the metal chelate should have reasonably high thermodynamic stability. The 

metals used on complexation should be (b) class metals (4d metals), in particular 

palladium and platinum due to its similarity to cisplatin, a common anticancer drug 

used in cancer treatment. Complexes or ligands with sulphur acting as donor atoms 

are the most likely to be effective drugs. This is because they allow for lipid solubility 

of the stable metal complexes (Ali et al., 2011). 

Besides, some studies on the behaviour of bladder cancer cells shown that acidic 

environments help bladder cancer cells grow. From this point, synthesizing of alkaline 

or neutral metal complexes may raises pH level and make the body more alkaline and 

cure or prevent bladder cancer. While, some in vitro studies on cancer cells do not 

represent the complex acidity or basicity nature of how tumors behave in vivo or in 

the human body (Ali & Livingstone, 1974).   

1.7 Problem statements 

Globally, bladder cancer is the fourth most common type of cancer in men. General 

therapy such as Cisplatin, Methotrexate, Gemcitabine, Mitomycin, Vinblastine, 

Doxorubicin, Carboplatin, Docetaxel, Paclitaxel, 5-Flurouracil (5-FU) and its 

derivatives are still used in the treatment of bladder cancer and also they are used to 

treat many types of cancer. The side effects of these chemotherapies include nausea, 

vomiting, loss of appetite, hair loss, mouth sores, diarrhea or constipation, increased 

risk of infections (because of a shortage of white blood cells), bleeding or bruising 
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after minor cuts or injuries (due to a shortage of blood platelets), fatigue (because of 

a shortage of red blood cells) are very severe. Thus there is a need to identify, 

efficacious anti-cancer drugs that are less toxic. Besides, the electron density can be 

directed to the complex centre which is transition metal by using symmetrical 

chalcones better than using unsymmetrical chalcones. Therefore, the cytotoxicity of 

the synthesized metal complexes solution dissolved in DMSO as a solvent was 

determined which are non-toxic due to the nontoxicity of dibenzalacetone which are 

chalcones. The advantage of using these aromatic chalcones is to synthesise chalcones 

substituted with many functional groups after studying the effect of functional group 

against bladder cancer cells. The cytotoxicity of dithiocarbazate metal complexes have 

been studied by many researchers against many types of cancer. Unfortunately, there 

is a very little research on using dithiocarbazate complexes as an anticancer agents 

against bladder cancer. The previous works on testing dithiocarbazate complexes 

against different types of cancer cells showed significant activity. The previous studies 

showed that the metal complexes of Cu2+, Ni2+, Cd2+, and Zn2+ were active compounds 

against cancer cells. In the same manner, these metal complexes derived from SBDTC 

and symmetrical dibenzalacetone are expected to show significant activity against 

bladder cancer cells due to their lipholicity and ability to penetrate lipid permeable 

membrane of cancer cell. Then, ligands (Schiff base) used to transport and address the 

compounds to the specific site of cancer cell.  This research will not study the toxicity 

of the synthesised compounds against normal bladder cells because of the slow growth 

of normal bladder cells and the concentration of the tested compounds is less than the 

toxic concentration of dithiocarbazate metal complexes which is more than 10 M.  

1.8 Objectives 

This study was conducted to synthesizeand fully characterize dithiocarbazate derived 

from S-benzyldithiocarbazate and highly conjugated ketones and their metal 

complexes. Besides, this study aimed to test the cytotoxicity activity against two types 

of bladder cancer cell lines EJ28 & RT112. The toxicity of the synthesised complexes 

will not tested in this study because normal bladder cells grow at much slower rate in 

induced conditions compared to cancer cells. Besides, bladder cancer cells mutate and 

not typically like normal cells and making the test inaccurate. Secondly, normal 

bladder cells tend to get contaminated and died very easly compared to cancer cells 

which means sustaining enough cells for analysis is difficult. The main objectives of 

this study include: 

 To synthesise and characterize nine symmetrical ketones with highly conjugated 

system via base catalysed Aldol condensation. 

 To synthesise and characterize nine novel Schiff bases derived from the above 

symmetrical ketones and S-benzyldithiocarbazate by acid catalised condensation. 

 To synthesise and characterize 45 novel metal complexes derived from the above 

Schiff bases and five divalent transition metals which are Ni(II), Cu(II), Fe(II), 

Zn(II) and Cd(II). 

 To elucidate the cytotoxic activity of the Schiff bases and their metal complexes 

against two types from bladder cancer cell lines (EJ28 & RT112). 
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